首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 799 毫秒
1.
A method for the synthesis of long chain fatty acids substituted at the ω and ω-1 positions has been developed. The key step is the isomerization of the triple bond of an alkyn-1-ol from an internal position in the chain to the free terminus with a new, convenient reagent, sodium aminopropylamide (NaAPA). Standard functional group manipulations i.e., Jones oxidation, esterification and hydroboration of the triple bond are used to prepare ω-hydroxy fatty esters. The generality of the method is illustrated with syntheses of ω-hydroxy fatty esters with 24, 26, 28 and 30 carbon chains.In the 24 carbon series, hydration of the terminal triple bond of alkynoic ester 4a followed by reduction gave the (ω-1)-hydroxy ester.  相似文献   

2.
We examined the effect of insulin on the synthesis and degradation of muscle lipid pools [phospholipid (PL), diacylglycerol (DG), triacylglycerol (TG)] and palmitate oxidation in isolated resting and contracting (20 tetani/min) soleus muscles. Lipid metabolism was monitored using the previously defined pulse-chase procedure. At rest, insulin significantly increased total palmitate uptake into soleus muscle (+49%, P < 0.05), corresponding to enhanced DG (+60%, P < 0.05) and TG (+61%, P < 0.05) esterification, but blunted palmitate oxidation (-38%, P < 0.05) and TG hydrolysis (-34%, P < 0.05). During muscle contraction, when total palmitate uptake was increased, insulin further enhanced uptake (+21%, P < 0.05) and esterification of fatty acids (FA) to PL (+73%, P < 0.05), DG (+19%, P < 0.05), and TG (+161%, P < 0.01). Despite a profound shift in the relative partitioning of FA away from esterification and toward oxidation during contraction, the increase in palmitate oxidation and TG hydrolysis was significantly blunted by insulin [oxidation, -24% (P = 0.05); hydrolysis, -83% (P < 0.01)]. The effects of insulin on FA esterification (stimulation) and oxidation (inhibition) during contraction were reduced in the presence of the phosphatidylinositol 3-kinase inhibitor LY-294002. In summary, the effects of insulin and contraction on palmitate uptake and esterification are additive, while insulin opposes the stimulatory effect of contraction on FA oxidation and TG hydrolysis. Insulin's modulatory effects on muscle FA metabolism during contraction are mediated at least in part through phosphatidylinositol 3-kinase.  相似文献   

3.
Tetradecylthioacetic acid (TTA) is a novel peroxisome proliferator-activated receptor (PPAR) ligand with marked hypolipidemic and insulin-sensitizing effects in obese models. TTA has recently been shown to attenuate dyslipidemia in patients with type 2 diabetes, corroborating the potential for TTA in antidiabetic therapy. In a recent study on normal mice, we showed that TTA increased myocardial fatty acid (FA) oxidation, which was associated with decreased cardiac efficiency and impaired postischemic functional recovery. The aim of the present study was, therefore, to elucidate the effects of TTA treatment (0.5%, 8 days) on cardiac metabolism and function in a hyperlipidemic type 2 diabetic model. We found that TTA treatment increased myocardial FA oxidation, not only in nondiabetic (db/+) mice but also in diabetic (db/db) mice, despite a clear lipid-lowering effect. Although TTA had deleterious effects in hearts from nondiabetic mice (decreased efficiency and impaired mitochondrial respiratory capacity), these effects were not observed in db/db hearts. In db/db hearts, TTA improved ischemic tolerance, an effect that is most likely related to the antioxidant property of TTA. The present study strongly advocates the need for investigation of the cardiac effects of PPAR ligands used in antidiabetic/hypolipidemic therapy, because of their pleiotropic properties.  相似文献   

4.
Both endogenous and exogenous lipid levels may be regulators of total lipid oxidation in skeletal muscles. We studied the dynamics of lipid oxidation in human myotubes established from healthy, lean subjects exposed to acutely and chronically increased palmitate concentrations. The intramyocellular triacylglycerol content increased with chronic palmitate exposure. Both, ectopically increased intracellular and extracellular lipid levels were simultaneously oxidized and could partly suppress each other's oxidation. Overall, the highest acute palmitate treatments stimulated fatty acid oxidation whilst the highest chronic treatments decreased total lipid oxidation. Intracellular lipids showed a more complete oxidation than exogenous lipids. Endogenous lipids reduced insulin-mediated glucose oxidation. Thus, both endogenous and exogenous lipid concentrations regulated each other's oxidation and total lipid oxidation in human myotubes. A reduced exogenous lipid oxidation, secondary to increased triacylglycerol levels, may redirect free fatty acids into esterification and oxidation from intracellular stores, thereby protecting myotubes from FFA lipotoxic effects.  相似文献   

5.
The metabolic syndrome and the hepatic fatty acid drainage hypothesis   总被引:4,自引:0,他引:4  
Much data indicates that lowering of plasma triglyceride levels by hypolipidemic agents is caused by a shift in the liver metabolism towards activation of peroxisome proliferator activated receptor (PPAR)alpha-regulated fatty acid catabolism in mitochondria. Feeding rats with lipid lowering agents leads to hypolipidemia, possibly by increased channeling of fatty acids to mitochondrial fatty acid oxidation at the expense of triglyceride synthesis. Our hypothesis is that increased hepatic fatty acid oxidation and ketogenesis drain fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects on fat mass accumulation and improved peripheral insulin sensitivity. To investigate this theory we employ modified fatty acids that change the plasma profile from atherogenic to cardioprotective. One of these novel agents, tetradecylthioacetic acid (TTA), is of particular interest due to its beneficial effects on lipid transport and utilization. These hypolipidemic effects are associated with increased fatty acid oxidation and altered energy state parameters of the liver. Experiments in PPAR alpha-null mice have demonstrated that the effects hypolipidemic of TTA cannot be explained by altered PPAR alpha regulation alone. TTA also activates the other PPARs (e.g., PPAR delta) and this might compensate for deficiency of PPAR alpha. Altogether, TTA-mediated clearance of blood triglycerides may result from a lowered level of apo C-III, with a subsequently induction of hepatic lipoprotein lipase activity and (re)uptake of fatty acids from very low density lipoprotein (VLDL). This is associated with an increased hepatic capacity for fatty acid oxidation, causing drainage of fatty acids from the blood stream. This can ultimately be linked to hypolipidemia, anti-adiposity, and improved insulin sensitivity.  相似文献   

6.
The aim of the present study was to examine whether pretreatment with different fatty acids, as well as the liver X receptor (LXR) agonist T0901317, could modify metabolic switching of human myotubes. The n-3 FA eicosapentaenoic acid (EPA) increased suppressibility, the ability of glucose to suppress FA oxidation. Substrate-regulated flexibility, the ability to increase FA oxidation when changing from a high glucose, low fatty acid condition (“fed”) to a high fatty acid, low glucose (“fasted”) condition, was increased by EPA and other n-3 FAs. Adaptability, the capacity to increase FA oxidation with increasing FA availability, was enhanced after pretreatment with EPA, linoleic acid (LA), and palmitic acid (PA). T0901317 counteracted the effect of EPA on suppressibility and adaptability, but it did not affect these parameters alone. EPA per se accumulated less, however, EPA, LA, oleic acid, and T0901317 treatment increased the number of lipid droplets (LD) in myotubes. LD volume and intensity, as well as mitochondrial mass, were independent of FA pretreatment. Microarray analysis showed that EPA regulated more genes than the other FAs and that specific pathways involved in carbohydrate metabolism were induced only by EPA. The present study suggests a favorable effect of n-3 FAs on skeletal muscle metabolic switching and glucose utilization.  相似文献   

7.
Hydrolysis of triacylglycerols (TG) in circulating chylomicrons by endothelium-bound lipoprotein lipase (LPL) provides a source of fatty acids (FA) for cardiac metabolism. The effect of diabetes on the metabolism of chylomicrons by perfused mouse hearts was investigated with db/db (type 2) and streptozotocin (STZ)-treated (type 1) diabetic mice. Endothelium-bound heparin-releasable LPL activity was unchanged in both type 1 and type 2 diabetic hearts. The metabolism of LPL-derived FA was examined by perfusing hearts with chylomicrons containing radiolabeled TG and by measuring (3)H(2)O accumulation in the perfusate (oxidation) and incorporation of radioactivity into tissue TG (esterification). Rates of LPL-derived FA oxidation and esterification were increased 2.3-fold and 1.7-fold in db/db hearts. Similarly, LPL-derived FA oxidation and esterification were increased 3.4-fold and 2.5-fold, respectively, in perfused hearts from STZ-treated mice. The oxidation and esterification of [(3)H]palmitate complexed to albumin were also increased in type 1 and type 2 diabetic hearts. Therefore, diabetes may not influence the supply of LPL-derived FA, but total FA utilization (oxidation and esterification) was enhanced.  相似文献   

8.
The low-molecular-mass, cytosolic heart-type fatty acid-binding protein (H-FABP) is thought to be required for shuttling FA through the cytosol. Therefore, we examined the effects of an H-FABP-null mutation on FA and carbohydrate metabolism in isolated soleus muscle at rest and during a period of increased metabolic demand (30-min contraction). There were lower concentrations of creatine phosphate (-41%), ATP (-22%), glycogen (-34%), and lactate (-31%) (P < 0.05) in H-FABP-null soleus muscles, but no differences in citrate synthase and beta-3-hydroxyacyl-CoA dehydrogenase activities or in the intramuscular triacylglycerol (TAG) depots. There was a 43% increase in subsarcolemmal mitochondria in H-FABP-null solei. FA transport was reduced by 30% despite normal content of sarcolemmal long-chain fatty acid transporters fatty acid translocase/CD36 and plasma membrane-associated FABP transport proteins. Compared with wild-type soleus muscles, the H-FABP-null muscles at rest hydrolyzed less TAG (-22%), esterified less TAG (-49%), and oxidized less palmitate (-71%). The H-FABP-null soleus muscles retained a substantial capacity to increase FA metabolism during contraction (TAG esterification by +72%, CO2 production by +120%), although these rates remained lower (TAG esterification -26% and CO2 production -64%) than in contracting wild-type soleus muscles. Glycogen utilization during 30 min of contraction did not differ, whereas glucose oxidation was lower at rest (-24%) and during contraction (-32%) in H-FABP-null solei. Although these studies demonstrate that the absence of H-FABP alters rates of FA metabolism, it is also apparent that glucose oxidation is downregulated. The substantial increase in FA metabolism in contracting H-FABP-null muscle may indicate that other FABPs are also present, a possibility that we were not able to completely eliminate.  相似文献   

9.
Although liver fatty acid binding protein (L-FABP) is known to enhance uptake and esterification of straight-chain fatty acids such as palmitic acid and oleic acid, its effects on oxidation and further metabolism of branched-chain fatty acids such as phytanic acid are not completely understood. The present data demonstrate for the first time that expression of L-FABP enhanced initial rate and average maximal oxidation of [2,3-3H] phytanic acid 3.5- and 1.5-fold, respectively. This enhancement was not due to increased [2,3-3H] phytanic acid uptake, which was only slightly stimulated (20%) in L-FABP expressing cells after 30 min. Similarly, L-FABP also enhanced the average maximal oxidation of [9,10-3H] palmitic acid 2.2-fold after incubation for 30 min. However, the stimulation of L-FABP on palmitic acid oxidation nearly paralleled its 3.3-fold enhancement of uptake. To determine effects of metabolism on fatty acid uptake, a non-metabolizable fluorescent saturated fatty acid, BODIPY-C16, was examined by laser scanning confocal microscopy (LSCM). L-FABP expression enhanced uptake of BODIPY-C16 1.7-fold demonstrating that L-FABP enhanced saturated fatty acid uptake independent of metabolism. Finally, L-FABP expression did not significantly alter [2,3-3H] phytanic acid esterification, but increased [9,10-3H] palmitic acid esterification 4.5-fold, primarily into phospholipids (3.7-fold) and neutral lipids (9-fold). In summary, L-FABP expression enhanced branched-chain phytanic acid oxidation much more than either its uptake or esterification. These data demonstrate a potential role for L-FABP in the peroxisomal oxidation of branched-chain fatty acids in intact cells.  相似文献   

10.
Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA in the ranking order PPARalpha > PPARdelta > PPARgamma. Expression of PPARgamma target genes in adipose tissue was unaffected by TTA treatment, whereas the hepatic expression of PPARalpha-responsive genes encoding enzymes involved in fatty acid uptake, transport, and oxidation was induced. This was accompanied by increased hepatic mitochondrial beta-oxidation and a decreased fatty acid/ketone body ratio in plasma. These findings indicate that PPARalpha-dependent mechanisms play a pivotal role, but additionally, the involvement of PPARalpha-independent pathways is conceivable. Taken together, our results suggest that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity.  相似文献   

11.
The adipocyte-derived hormone leptin has been shown to acutely increase fatty acid (FA) oxidation and decrease esterification in resting rodent skeletal muscle. However, the effects of leptin on human skeletal muscle FA metabolism are completely unknown. In these studies, we have utilized an isolated human skeletal muscle preparation combined with the pulse-chase technique to measure FA metabolism with and without leptin in lean and obese human skeletal muscle. Under basal conditions (in the absence of leptin), muscle from the obese demonstrated significantly elevated levels of total FA uptake (+72%, P = 0.038) and enhanced rates of FA esterification into triacylglycerol (+102%, P = 0.042) compared with lean subjects. In the presence of leptin, lean muscle had elevated rates of endogenous (+103%, P = 0.01) and exogenous (+150%, P = 0.03) palmitate oxidation. When the ratio of esterification to exogenous oxidation was examined, leptin reduced this ratio (-47%, P = 0.032), demonstrating the increased partitioning of FA toward oxidation and away from storage. Contrary to these findings in lean muscle, leptin had no effect on FA metabolism in skeletal muscle of the obese. This study provides the first evidence that leptin increases FA oxidation in skeletal muscle of lean, but not obese humans, thus demonstrating the development of leptin resistance in obese human skeletal muscle.  相似文献   

12.
Carnitine palmitoyltransferase 1 (CPT1) catalyzes the first step in long-chain fatty acid import into mitochondria, and it is believed to be rate limiting for β-oxidation of fatty acids. However, in muscle, other proteins may collaborate with CPT1. Fatty acid translocase/CD36 (FAT/CD36) may interact with CPT1 and contribute to fatty acid import into mitochondria in muscle. Here, we demonstrate that another membrane-bound fatty acid binding protein, fatty acid transport protein 1 (FATP1), collaborates with CPT1 for fatty acid import into mitochondria. Overexpression of FATP1 using adenovirus in L6E9 myotubes increased both fatty acid oxidation and palmitate esterification into triacylglycerides. Moreover, immunocytochemistry assays in transfected L6E9 myotubes showed that FATP1 was present in mitochondria and coimmunoprecipitated with CPT1 in L6E9 myotubes and rat skeletal muscle in vivo. The cooverexpression of FATP1 and CPT1 also enhanced mitochondrial fatty acid oxidation, similar to the cooverexpression of FAT/CD36 and CPT1. However, etomoxir, an irreversible inhibitor of CPT1, blocked all these effects. These data reveal that FATP1, like FAT/CD36, is associated with mitochondria and has a role in mitochondrial oxidation of fatty acids.  相似文献   

13.
Reactive oxygen species produced by activated leuko-cytes in the alveolar epithelial lining fluid have been implicated in the inactivation of pulmonary surfactant and the impairment of lung function. Oxidation of bovine lipid extract surfactant (BLES), a therapeutic surfactant, with hypochlorous acid (H-BLES) or the Fenton reaction (F-BLES) led to temporary increases in conjugated dienes and formation of malondialdehyde and 4-hydroxy-2-nonenal. Electrospray ionization mass spectrometry revealed the appearance of lipid hydroperoxides, peroxides, lysophospholipids, and free fatty acids. Captive bubble tensiometer studies of H-BLES demonstrated prolonged adsorption times, film instability at low surface tensions during film compression, and reduced respreadability during film expansion. F-BLES exhibited prolonged adsorption times, a marked effect on increasing compressibility during compression, and a lesser effect on reducing respreadability on expansion. Addition of native bovine or rat surfactant-associated protein A (SP-A) reversed the effects of oxidation on surfactant biophysical properties. Studies using mutant recombinant rat SP-As indicated that an intact carbohydrate recognition domain and disulfide-dependent oligomeric assembly are critical for these effects, but the collagen-like region is not required. We conclude that SP-A can reverse the detrimental effects of surfactant oxidation on the biophysical properties of surfactant, by a mechanism that is dependent on interchain disulfide bond formation and the C-terminal domains of the protein.  相似文献   

14.
Modification of hypothalamic fatty acid (FA) metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO) from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1) and fatty acid oxidation (FAOx), exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT) inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK) in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS), and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism.  相似文献   

15.
Sterol carrier protein-2 (SCP-2) and SCP-x are ubiquitous proteins found in all mammalian tissues. Although both proteins interact with fatty acids, their relative contributions to the uptake, oxidation, and esterification of straight-chain (palmitic) and branched-chain (phytanic) fatty acids in living cells has not been resolved. Therefore, the effects of each gene product on fatty acid metabolism was individually examined. Based on the following, SCP-2 and SCP-x did not enhance the uptake/translocation of fatty acids across the plasma membrane into the cell: i) a 2-fold increase in phytanic and palmitic acid uptake was observed at long incubation times in SCP-2- and SCP-x-expressing cells, but no differences were observed at initial time points; ii) uptake of 2-bromo-palmitate, a nonoxidizable, poorly metabolizable fatty acid analog, was unaffected by SCP-2 or SCP-x overexpression; and iii) SCP-2 and SCP-x expression did not increase targeting of radiolabeled phytanic and palmitic acid to the unesterified fatty acid pool. Moreover, SCP-2 and SCP-x expression enhanced fatty acid uptake by stimulating the intracellular metabolism via fatty acid oxidation and esterification. In summary, these data showed for the first time that SCP-2 and SCP-x stimulate oxidation and esterification of branched-chain as well as straight-chain fatty acids in intact cells.  相似文献   

16.
Lowering of plasma triglyceride levels by hypolipidemic agents is caused by a shift in the liver cellular metabolism, which become poised toward peroxisome proliferator-activated receptor (PPAR) alpha-regulated fatty acid catabolism in mitochondria. After dietary treatment of rats with the hypolipidemic, modified fatty acid, tetradecylthioacetic acid (TTA), the energy state parameters of the liver were altered at the tissue, cell, and mitochondrial levels. Thus, the hepatic phosphate potential, energy charge, and respiratory control coefficients were lowered, whereas rates of oxygen uptake, oxidation of pyridine nucleotide redox pairs, beta-oxidation, and ketogenesis were elevated. Moderate uncoupling of mitochondria from TTA-treated rats was confirmed, as the proton electrochemical potential (Delta(p)) was 15% lower than controls. The change affected the Delta(Psi) component only, leaving the (Delta)pH component unaltered, suggesting that TTA causes induction of electrogenic ion transport rather than electrophoretic fatty acid activity. TTA treatment induced expression of hepatic uncoupling protein 2 (UCP-2) in rats as well as in wild type and PPARalpha-deficient mice, accompanied by a decreased double bond index of the mitochondrial membrane lipids. However, changes of mitochondrial fatty acid composition did not seem to be related to the effects on mitochondrial energy conductance. As TTA activates PPARdelta, we discuss how this subtype might compensate for deficiency of PPARalpha. The overall changes recorded were moderate, making it likely that liver metabolism can maintain its function within the confines of its physiological regulatory framework where challenged by a hypolipemic agent such as TTA, as well as others.  相似文献   

17.
It has been demonstrated that the absorption of EPA and DHA is significantly lower for ethyl esters than for the corresponding free fatty acids. Since these fatty acids exist in nature and are catabolized by beta-oxidation, we instead wanted to investigate the absorption, distribution and biological effects of a non-beta-oxidizable modified fatty acid. The modified fatty acid tetradecylthioacetic acid (TTA) and the ethyl ester of TTA (EtTTA) were administered to rats for 10 days, in doses corresponding to 150 mg TTA/kg BW/day. No significant differences were found between the accumulated amounts of TTA or its Delta9 desaturated metabolite in plasma, liver, heart and epididymal white adipose tissue between EtTTA and TTA treated rats. EtTTA and TTA increased the activities of carnitine palmitoyltransferase-II and fatty acyl-CoA oxidase in liver, with no differences between the two treatment groups, but did not affect these activities in heart. EtTTA and TTA treatment decreased the plasma levels of triacylglycerols, cholesterol and phospholipids to similar extents, but no significant effects were seen in hepatic and cardiac lipid levels. EtTTA and TTA had similar effects on the fatty acid composition in plasma, liver, heart and epididymal white adipose tissue. Based on changes in fatty acid indexes it seems that these drugs had comparable stimulating effects on stearoyl-CoA desaturase and Delta6 desaturase, and reduced the Delta5 desaturase activity in liver. From the presented results we conclude that the absorption and distribution of the ethyl ester and the free form of TTA are not significantly different, and that the two administered forms of TTA have similar effects on lipid metabolism in rats.  相似文献   

18.
The effects of clofibrate feeding on the metabolism of polyunsaturated fatty acids were studied in isolated rat hepatocytes. Administration of clofibrate stimulated the oxidation and particularly the peroxisomal beta-oxidation of all the fatty acids used. The increase in oxidation products was markedly higher when n-3 fatty acids were used as substrate, indicating that peroxisomes contribute more to the oxidation of n-3 than n-6 fatty acids. The whole increase in oxidation could be accounted for by a corresponding decrease in acylation in triacylglycerol while the esterification in phospholipids remained unchanged. A marked stimulation of the amounts of newly synthesized C16 and C18 fatty acids recovered, was observed when 18:2(n-6), 20:3(n-6), 18:3 (n-3) and 20:5(n-3), but not when 20:4(n-6) and 22:4(n-6) were used as substrate. This agrees with the view that extra-mitochondrial acetyl-CoA produced from peroxisomal beta-oxidation is more easily used for fatty acid new synthesis than acetyl-CoA from mitochondrial beta-oxidation. The delta 6 and delta 5 desaturase activities were distinctly higher in cells from clofibrate fed rats indicating a stimulating effect.  相似文献   

19.
We have examined the nutritional and insulin regulation of the mRNA expression of transmembrane fatty acid (FA) transporters [FA transport protein-1 (FATP1) and CD36] together with the lipoprotein lipase (LPL), the cytosolic FA carrier FA binding protein (FABP3), and mitochondrial FA-CoA and -carnitine palmitoyl transferase carriers (CPT)1 and -2 in Atlantic salmon tissues and myocyte cell culture. Two weeks of fasting diminished FATP1, CD36, and LPL in adipose tissue, suggesting a reduction in FA uptake, while FABP3 increased in liver, probably enhancing the transport of FA to the mitochondria. Insulin injection decreased FATP1 and CD36 in white and red muscles, while both transporters were upregulated in the adipose tissue in agreement with the role of insulin-inhibiting muscle FA oxidation and stimulating adipose fat stores. Serum deprivation of 48 h in Atlantic salmon myotubes increased FATP1, FABP3, and CPT-2, while CPT-1 was diminished. In myotubes, insulin induced FATP1 expression but decreased CD36, FABP3, and LPL, suggesting that FATP1 could be more involved in the insulin-stimulated FA uptake. Insulin increased the FA uptake in myotubes mediated, at least in part, through the relocation of FATP1 protein to the plasma membrane. Overall, Atlantic salmon FA transporters are regulated by fasting and insulin on in vivo and in vitro models.  相似文献   

20.
Fatty acid metabolism and oxidation capacity in the placenta, which likely affects the rate and composition of lipid delivered to the fetus remains poorly understood. Long chain polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), are critical for fetal growth and brain development. We determined the impact of maternal obesity on placental fatty acid oxidation, esterification and transport capacity by measuring PhosphatidylCholine (PC) and LysoPhosphatidylCholine (LPC) containing DHA by mass spectrometry in mother-placenta-baby triads as well as placental free carnitine and acylcarnitine metabolites in women with normal and obese pre-pregnancy BMI. Placental protein expression of enzymes involved in beta-oxidation and esterification pathways, MFSD2a (lysophosphatidylcholine transporter) and OCTN2 (carnitine transporter) expression in syncytiotrophoblast microvillous (MVM) and basal (BM) membranes were determined by Western Blot. Maternal obesity was associated with decreased umbilical cord plasma DHA in LPC and PC fractions in male, but not female, fetuses. Basal membrane MFSD2a protein expression was increased in placenta of males of obese mothers. In female placentas, despite an increased MVM OCTN2 expression, maternal obesity was associated with a reduced MUFA-carnitine levels and increased esterification enzymes. We speculate that lower DHA-PL in fetal circulation of male offspring of obese mothers, despite a significant increase in transporter expression for LPC-DHA, may lead to low DHA needed for brain development contributing to neurological consequences that are more prevalent in male children. Female placentas likely have reduced beta-oxidation capacity and appear to store FA through greater placental esterification, suggesting impaired placenta function and lipid transfer in female placentas of obese mothers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号