首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclization of linear sequences is a well recognized tool in opioid peptide chemistry for generating analogs with improved bioactivities. Cyclization can be achieved through various bridging bonds between peptide ends or side-chains. In our earlier paper we have reported the synthesis and biological activity of a cyclic peptide, Tyr-c[d-Lys-Phe-Phe-Asp]NH2 (1), which can be viewed as an analog of endomorphin-2 (EM-2, Tyr-Pro-Phe-Phe-NH2). Cyclization was achieved through an amide bond between side-chains of d-Lys and Asp residues. Here, to increase rigidity of the cyclic structure, we replaced d-Lys with cis- or trans-4-aminocyclohexyl-d-alanine (d-ACAla). Two sets of analogs incorporating either Tyr or Dmt (2′,6′-dimethyltyrosine) residues in position 1 were synthesized. In the binding studies the analog incorporating Dmt and trans-d-ACAla showed high affinity for both, μ- and δ-opioid receptors (MOR and DOR, respectively) and moderate affinity for the κ-opioid receptor (KOR), while analog with Dmt and cis-d-ACAla was exceptionally MOR-selective. Conformational analyses by NMR and molecular docking studies have been performed to investigate the molecular structural features responsible for the noteworthy MOR selectivity.  相似文献   

2.
In an effort to improve biphalin’s potency and efficacy at the µ-(MOR) and δ-opioid receptors (DOR), a series of cyclic biphalin analogues 15 with a cystamine or piperazine linker at the C-terminus were designed and synthesized by solution phase synthesis using Boc-chemistry. Interestingly, all of the analogues showed balanced opioid agonist activities at all opioid receptor subtypes due to enhanced κ-opioid receptor (KOR) activity. Our results indicate that C-terminal flexible linkers play an important role in KOR activity compared to that of the other cyclic biphalin analogues with a hydrazine linker. Among them, analogue 5 is a potent (Ki?=?0.27, 0.46, and 0.87?nM; EC50?=?3.47, 1.45, and 13.5?nM at MOR, DOR, and KOR, respectively) opioid agonist with high efficacy. Based on the high potency and efficacy at the three opioid receptor subtypes, the ligand is expected to have a potential synergistic effect on relieving pain and further studies including in vivo tests are worthwhile.  相似文献   

3.
In our efforts to develop new candidate drugs with antinociceptive and/or antidepressant-like activity, two novel endomorphin-2 (EM-2, Tyr-Pro-Phe-Phe-NH2) analogs, containing proline surrogates in position 2 were synthesized using commercially available racemic trans-4-phenylpyrrolidine-3-carboxylic acid (4-Ph-β-Pro). The obtained mixture of two diastereoisomeric peptides (2a and 2b) was separated by HPLC and both enantiopure analogs were used in the in vitro and in vivo studies. To assign the absolute configuration to the 4-Ph-β-Pro residues in both peptides, the stereoselective synthesis of (3R,4S)-4-phenylpyrrolidine-3-carboxylic acid was performed and this enantiomer was introduced into position 2 of EM-2 sequence. Based on the HPLC retention times we were able to assign the absolute configuration of 4-Ph-β-Pro residues in both peptide analogs. Analog 2a incorporating (3R,4S)-4-Ph-β-Pro residue produced strong analgesia in mice after intracerebroventricular (icv) administration which was antagonized by the μ-opioid receptor (MOR) antagonist, β-funaltrexamine (β-FNA). This analog also influenced an emotion-related behavior of mice, decreasing immobility time in the forced swimming and tail suspension tests, without affecting locomotor activity. The antidepressant-like effect was reversed by the δ-selective antagonist, naltrindole (NLT) and κ-selective nor-binaltorphimine (nor-BNI). Thus, the experiments with selective opioid receptor antagonists revealed that analgesic action of analog 2a was mediated through the MOR, while the δ- and κ-receptors (DOR and KOR, respectively) were engaged in the antidepressant-like activity. Analog 2b with (3S,4R)-4-Ph-β-Pro in position 2 showed no antinociceptive or antidepressant-like activity in animal studies.  相似文献   

4.
Endogenous μ-opioid receptor (MOR) selective peptides, endomorphin-1 (EM-1) and endomorphin-2 (EM-2), unlike so called ‘typical opioids’, are characterized by the presence of Pro2 residue, which is a spacer connecting aromatic pharmacophoric residues. In order to investigate structural requirements for position 2, we synthesized endomorphin analogs incorporating, instead of Pro, unnatural amino acids with six-membered heterocyclic rings, such as piperidine 2-, 3- or 4-carboxylic acids (Pip, Nip and Inp, respectively). (R)-Nip residue turned out to be favourable for improving MOR affinity. Introduction of 2′,6′-dimethyltyrosine (Dmt) instead of Tyr1 led to obtaining [Dmt1, (R)-Nip2]EM-2 which showed exceptional MOR affinity and high stability against enzymatic degradation in rat brain homogenate. In in vivo hot-plate test in mice, this analog given intracerebroventicularly (i.c.v.), produced profound supraspinal analgesia, being much more potent than EM-2. The antinociceptive effect of this analog lasted about 170 min and was almost completely reversed by β-funaltrexamine (β-FNA), a selective MOR antagonist.  相似文献   

5.
Dermorphin (Tyr-d-Ala-Phe-Gly-Tyr-Pro-Ser-NH2) is a heptapeptide isolated from amphibian skin. With a very high affinity and selectivity for μ-opioid receptors, dermorphin shows an extremely potent antinociceptive effect. The structure-activity relationship studies of dermorphin analogs clearly suggest that the N-terminal tetrapeptide is the minimal sequence for agonistic activity at μ-opioid receptors, and that the replacement of the d-Ala2 residue with d-Arg2 makes the tetrapeptides resistant to enzymatic metabolism. At present, only a handful of dermorphin N-terminal tetrapeptide analogs containing d-Arg2 have been developed. The analogs show potent antinociceptive activity that is greater than that of morphine with various injection routes, and retain high affinity and selectivity for μ-opioid receptors. Interestingly, some analogs show pharmacological profiles that are distinct from the traditional μ-opioid receptor agonists morphine and [d-Ala2,NMePhe4,Gly-ol5]enkephalin (DAMGO). These analogs stimulate the release of dynorphins through the activation of μ-opioid receptors. The activation of κ-opioid receptors by dynorphins is suggested to reduce the side effects of μ-opioid receptor agonists, e.g., dependence or antinociceptive tolerance. The dermorphin N-terminal tetrapeptide analogs containing d-Arg2 may provide a new target molecule for developing novel analgesics that have fewer side effects.  相似文献   

6.
The μ-opioid receptor (MOR) is the major opioid receptor targeted by most analgesics in clinical use. However, the use of all known MOR agonists is associated with severe adverse effects. We reported that the 1-phenyl-3,6,6-trimethyl-1,5,6,7-tetrahydro-4H-indazol-4-ones are novel opioid receptor agonists. Subsequent structural modification resulted in the potent MOR/KOR (κ-opioid receptor) agonists 19, 20, and 21. Testing the analgesic effect of these in WT B6 mice (tail-flick test) gave ED50 values of 8.4, 10.9, and 26.6 mg/kg, respectively. The 1-phenyl-3,6,6-trimethyl-1,5,6,7-tetrahydro-4H-indazol-4-one core could be addressed in 1 or 2 synthetic steps with moderate to high percent of yield. In the adenylyl cyclase assay, compound 19 displayed a MOR/KOR agonist profile, with IC50 values of 0.73 and 0.41 μM, respectively. Current results suggest that compound 19 is a promising lead to go further development and in vitro/in vivo adverse effects studies.  相似文献   

7.
Endomorphin (EM)-1 and EM-2 are the most effective endogenous analgesics with efficient separation of analgesia from the risk of adverse effects. Poor metabolic stability and ineffective analgesia after peripheral administration were detrimental for the use of EMs as novel clinical analgesics. Therefore, here, we aimed to establish new EM analogs via introducing different bifunctional d-amino acids at position 2 of [(2-furyl)Map4]EMs. The combination of [(2-furyl)Map4]EMs with D-Arg2 or D-Cit2 yielded analogs with enhanced binding affinity to the μ-opioid receptor (MOR) and increased stability against enzymatic degradation (t1/2 > 300 min). However, the agonistic activities of these analogs toward MOR were slightly reduced. Similar to morphine, peripheral administration of the analog [D-Cit2, (2-furyl)Map4]EM-1 (10) significantly inhibited the pain behavior of mice in multiple pain models. In addition, this EM-1 analog was associated with reduced tolerance, less effect on gastrointestinal mobility, and no significant motor impairment. Compared to natural EMs, the EM analogs synthesized herein had enhanced metabolic stability, bioavailability, and analgesic properties.  相似文献   

8.
Salvinorin A (SalA) is a potent and selective agonist of the kappa-opioid receptor (KOR), but its instability has frustrated medicinal chemistry efforts. Treatment of SalA with weak bases like DBU leads to C8 epimerization with loss of receptor affinity and signaling potency. Here we show that replacement of C20 with H and replacement of O6 with CH2 stabilizes the SalA scaffold relative to its C8 epimer, so much so that epimerization is completely supressed. This new compound, O6C-20-nor-SalA, retains high potency for agonism of KOR.  相似文献   

9.
《Life sciences》1995,56(15):PL285-PL290
The mechanism of the antinociceptive effect of buprenorphine was assessed by administering selective μ-, μ1-, δ- and κ-opioid receptor antagonists in mice. Intraperitoneal administration of buprenorphine, at doses of 0.3 to 3 mg/kg, produced dose-dependent antinociception in the tail-flick test. The antinociceptive activity of buprenorphine did not result from the activation of κ- or δ-opioid receptors, since treatment with either nor-binaltorphimine, a selective κ-opioid receptor antagonist, or naltrindole, a selective δ-opioid receptor antagonist, was completely ineffective in blocking buprenorphine-induced antinociception. However, the antinociceptive effect of buprenorphine was significantly antagonized by β-funaltrexamine, a selective μ-opioid receptor antagonist. Moreover, selective μ1-opioid receptor antagonists, naloxonazine and naltrexonazine, also significantly antagonized the antinociceptive effect of buprenorphine. Co-administration of κ- and δ-opioid receptor antagonists with the μ-opioid receptor antagonists had no significant effect on the antagonistic profiles of the μ-opioid receptor antagonists on the antinociceptive effect of buprenorphine. These results suggest that buprenorphine acts selectively at μ1-opioid receptors to induce antinociceptive effects in mice.  相似文献   

10.
Transcranial Direct Current Stimulation (tDCS) is a method of non-invasive brain stimulation that has been frequently used in experimental and clinical pain studies. However, the molecular mechanisms underlying tDCS-mediated pain control, and most important its placebo component, are not completely established. In this pilot study, we investigated in vivo the involvement of the endogenous μ-opioid system in the global tDCS-analgesia experience. Nine healthy volunteers went through positron emission tomography (PET) scans with [11C]carfentanil, a selective μ-opioid receptor (MOR) radiotracer, to measure the central MOR activity during tDCS in vivo (non-displaceable binding potential, BPND) - one of the main analgesic mechanisms in the brain. Placebo and real anodal primary motor cortex (M1/2mA) tDCS were delivered sequentially for 20 minutes each during the PET scan. The initial placebo tDCS phase induced a decrease in MOR BPND in the periaqueductal gray matter (PAG), precuneus, and thalamus, indicating activation of endogenous μ-opioid neurotransmission, even before the active tDCS. The subsequent real tDCS also induced MOR activation in the PAG and precuneus, which were positively correlated to the changes observed with placebo tDCS. Nonetheless, real tDCS had an additional MOR activation in the left prefrontal cortex. Although significant changes in the MOR BPND occurred with both placebo and real tDCS, significant analgesic effects, measured by improvements in the heat and cold pain thresholds, were only observed after real tDCS, not the placebo tDCS. This study gives preliminary evidence that the analgesic effects reported with M1-tDCS, can be in part related to the recruitment of the same endogenous MOR mechanisms induced by placebo, and that such effects can be purposely optimized by real tDCS.  相似文献   

11.
Formerly considered as an exclusively peripheral receptor, it is now accepted that CB2 cannabinoid receptor is also present in limited amounts and distinct locations in the brain of several animal species, including mice. However, the possible roles of CB2 receptors in the brain need to be clarified. The aim of our work was to study the μ-opioid receptor (MOR) mRNA expression level and functional activity after acute in vivo and in vitro treatments with the endocannabinoid noladin ether (NE) and with the CB2 receptor antagonist SR144528 in brainstem of mice deficient in either CB1 or CB2 receptors. This study is based on our previous observations that noladin ether (NE) produces decrease in the activity of MOR in forebrain and this attenuation can be antagonized by the CB2 cannabinoid antagonist SR144528, suggesting a CB2 receptor mediated effect. We used quantitative real-time PCR to examine the changes of MOR mRNA levels, [35S]GTPγS binding assay to analyze the capability of μ-opioid agonist DAMGO to activate G-proteins and competition binding assays to directly measure the ligand binding to MOR in mice brainstem. After acute NE administration no significant changes were observed on MOR signaling. Nevertheless pretreatment of mice with SR144528 prior to the administration of NE significantly decreased MOR signaling suggesting the involvement of SR144528 in mediating the effect of MOR. mRNA expression of MORs significantly decreased both in CB1 wild-type and CB1 knockout mice after a single injection of SR144528 at 0.1 mg/kg when compared to the vehicle treated controls. Consequently, MOR-mediated signaling was attenuated after acute in vivo treatment with SR144528 in both CB1 wild-type and CB1 knockout mice. In vitro addition of 1 μM SR144528 caused a decrease in the maximal stimulation of DAMGO in [35S]GTPγS binding assays in CB2 wild-type brainstem membranes whereas no significant changes were observed in CB2 receptor knockouts. Radioligand binding competition studies showed that the noticed effect of SR144528 on MOR signaling is not mediated through MORs. Our data demonstrate that the SR144528 caused pronounced decrease in the activity of MOR is mediated via CB2 cannabinoid receptors.  相似文献   

12.
《Life sciences》1994,55(17):PL339-PL344
The effects of δ-receptor antagonists on cocaine- and methamphetamine-induced place preferences were examined in rats. Cocaine- and methamphetamine-induced place preferences were significantly attenuated by naltrindole (NTI: a non-selective δ-opioid receptor antagonist). Furthermore, naltriben (NTB: a selective δ2-opioid receptor antagonist), but not 7-benzylidenenaltrexone (BNTX: a selective δ1-opioid receptor antagonist), attenuated the cocaine- and methamphetamine-induce place preferences. These results suggest that δ-opioid receptors, particularly δ2-opioid receptors, may be involved in the reinforcing effects of cocaine and methamphetamine.  相似文献   

13.
Some novel iboga-analogues consisting of benzofuran moiety and dehydroisoquinuclidine ring connected by –CH2–, (CH2)2 and (CH2)3 linkers have been synthesized with the view to develop potential antinociceptive drugs. The compounds 14 and 21 showed binding at the μ-opioid receptor (MOR), while the compound 11a exhibited dual affinities at both MOR and κ-opioid receptor (KOR). MAP kinase activation indicated all three compounds have opioid agonistic properties. The presence of a double bond and endo-methylcarboxylate group in the dehydroisoquinuclidine ring and the benzofuran and methylene spacer appeared to be essential for opioid receptor binding. Further studies demonstrated 11a caused significant antinociception in mice in the hot-plate test which was comparable to that produced by morphine. The compound 11a was also found to be nontremorigenic unlike various iboga congeners. This study identifies a new pharmacophore which may lead to the development of suitable substitute of morphine in the treatment of pain.  相似文献   

14.
《Life sciences》1994,54(23):PL425-PL430
The involvement of δ-opioid receptor subtypes in cold water swim stress (CWSS)-induced antinociception in diabetic mice was compared with that in non-diabetic mice. Three-minute swim stress produced significant antinociception in both diabetic and non-diabetic mice as determined by the tail-pinch test. However, the extent of CWSS-induced antinociception in diabetic mice was significantly greater than that in non-diabetic mice. Pretreatment with naltriben, a selective δ2-opioid receptor antagonist, significantly attenuated CWSS-induced antinociception in both non-diabetic and diabetic mice. In contrast, although 7-benzylidenenaltrexone, a selective δ1-opioid receptor antagonist, significantly attenuated CWSS-induced antinociception in diabetic mice, it had no effect in non-diabetic mice. These results suggest that CWSS-induced antinociceotion in non-diabetic mice is mediated by δ2-opioid receptors, whereas CWSS-induced antinociception in diabetic mice is mediated by both δ1- and δ2-opioid receptors. Furthermore, the enhanced CWSS-induced antinociception in diabetic mice may be due to the activation of δ1-opioid receptors.  相似文献   

15.
Desensitization of the µ-opioid receptor (MOR) has been implicated as an important regulatory process in the development of tolerance to opiates. Monitoring the release of intracellular Ca2+ ([Ca2+]i), we reported that [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO)-induced receptor desensitization requires receptor phosphorylation and recruitment of β-arrestins (βArrs), while morphine-induced receptor desensitization does not. In current studies, we established that morphine-induced MOR desensitization is protein kinase C (PKC)-dependent. By using RNA interference techniques and subtype specific inhibitors, PKCε was shown to be the PKC subtype activated by morphine and the subtype responsible for morphine-induced desensitization. In contrast, DAMGO did not increase PKCε activity and DAMGO-induced MOR desensitization was not affected by modulating PKCε activity. Among the various proteins within the receptor signaling complex, Gαi2 was phosphorylated by morphine-activated PKCε. Moreover, mutating three putative PKC phosphorylation sites, Ser44, Ser144 and Ser302 on Gαi2 to Ala attenuated morphine-induced, but not DAMGO-induced desensitization. In addition, pretreatment with morphine desensitized cannabinoid receptor CB1 agonist WIN 55212-2-induced [Ca2+]i release, and this desensitization could be reversed by pretreating the cells with PKCε inhibitor or overexpressing Gαi2 with the putative PKC phosphorylation sites mutated. Thus, depending on the agonist, activation of MOR could lead to heterologous desensitization and probable crosstalk between MOR and other Gαi-coupled receptors, such as the CB1.  相似文献   

16.
Prior studies have shown that the cerebral cortex cholecystokinin (CCK) receptor can bind CCK and gastrin analogs with high affinity. In the present work the brain CCK receptor had approximately a three times greater affinity for CCK8 than its C-terminal tetrapeptide (CCK4) while the C-terminal tripeptide (CCK3) was 1000-fold less potent than CCK4. Thus the C-terminal tetrapeptide appears to be the minimal C-terminal CCK sequence required for high affinity binding. Since brain membranes degrade various peptides including CCK, we also evaluated the stability of CCK analogs under the conditions used to measure receptor binding by the following three methods: (1) Studies of degradation-resistant analogs in binding assays; (2) analysis of analog degradation by high performance liquid chromatography (HPLC); and (3) determination of the change in potency of CCK analogs in competitive binding studies subsequent to preincubation with brain membranes. These studies indicated that degradation of analogs by the brain membranes although significant did not account for the differences in potency of analogs in competitive binding studies. Therefore, the observed differences in potencies of the analogs tested are due to the receptor affinity and not sensitivity of the analog to degradation.  相似文献   

17.
The present study aimed to investigate the m-trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] effects on prefrontal cortical MOR and KOR protein levels and phenotype induced by repeated forced swim stress (FSS) in mice. Adult Swiss mice were subjected to repeated FSS sessions, and after that, they performed the spontaneous locomotor/exploratory activity, tail suspension, and splash tests. (m-CF3-PhSe)2 (0.1 to 5 mg/kg) was administered to mice 30 min before the first FSS session and 30 min before the subsequent repeated FSS. (m-CF3-PhSe)2 abolished the phenotype induced by repeated FSS in mice. In addition, a single FSS session increased μ but reduced δ-opioid receptor contents, without changing the κ content. Mice subjected to repeated FSS had an increase in the μ content when compared to those of naïve group or subjected to single FSS. Repeated FSS induced an increase of δ-opioid receptor content compared to those mice subjected to single FSS. However, the δ-opioid receptor contents were lower than those found in the naïve group. The mice subjected to repeated FSS showed an increase in the κ-opioid receptor content when compared to that of the naïve mice. (m-CF3-PhSe)2 regulated the protein contents of μ and κ receptors in mice subjected to repeated FSS. These findings demonstrate that (m-CF3-PhSe)2 was effective to abolish the phenotype induced by FSS, which was accompanied by changes in the contents of cortical μ- and κ-opioid receptors.  相似文献   

18.
The stereochemical requirements for δ-opioid receptor binding of a series of linear peptide antagonists with a novel conformationally restricted Phe analogue (Tic) as a second residue were examined by using a variety of computational chemistry methods. The δ-opioid receptor analogues with significant affinity, Tyr-Tic-NH2 (TI-NH2), Tyr-Tic-Phe-OH (TIP), Tyr-Tic-Phe-NH2(TIP-NH2), Tyr-Tic-Phe-Phe-OH (TIPP), Tyr-Tic-Phe-Phe-NH2) (TIPP-NH2), and the low affinity δ-opioid peptides Tyr-Pro-Phe-Pro-NH2 (morphiceptin) and Tyr-Phe-Phe-Phe-NH2 (TPPP-NH2), were included in this study. The conformational profiles of these peptides were obtained by consecutive cycles of high and low temperature molecular dynamic simulations, coupled to molecular mechanical energy minimization carried out until no new conformational minima were obtained. Comparing the results for TPPP-NH2 and TIPP-NH2, the presence of the conformationally restricted Tic residue did not greatly reduce the number of unique low energy conformations, but did allow low energy conformers involving cis bonds between the first two residues. The conformational libraries of these peptides were examined for their ability to satisfy the three key ligand components for receptor recognition already identified by previous studies of high affinity cyclic (Tyr1-D -Pen2-Gly3-Phe4-D -Pen5) enkephalin (DPDPE) type agonists: a protonated amine group, an aromatic ring, and a lipophilic moiety in a specific geometric arrangement. Two types of conformations common to the five high δ-opioid affinity L -Tic analogues were found that satisfied these requirements, one with a cis and the other with a trans peptide bond between the Tyr1 and Tic2 residues. Moreover, both the Tic2 and Phe3 residues could mimic the hydrophobic interactions with the receptor of the Phe4 moiety in the cyclic DPDPE type agonists, consistent with the appreciable affinity of both di-and tripeptides. The low δ-opioid receptor affinity of morphiceptin can be understood as the result of conformational preferences that prevent the fulfillment of this pharmacophore for recognition. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
Isosterism is commonly used in drug discovery and development to address stability, selectivity, toxicity, pharmacokinetics, and efficacy issues. A series of 14-O-substituted naltrexone derivatives were identified as potent mu opioid receptor (MOR) antagonists with improved selectivity over the kappa opioid receptor (KOR) and the delta opioid receptor (DOR), compared to naltrexone. Since esters are not metabolically very stable under typical physiological conditions, their corresponding amide analogs were thus synthesized and biologically evaluated. Unlike their isosteres, most of these novel ligands seem to be dually selective for the MOR and the KOR over the DOR. The restricted flexibility of the amide bond linkage might be responsible for their altered selectivity profile. However, the majority of the 14-N-substituted naltrexone derivatives produced marginal or no MOR stimulation in the 35S-GTP[γS] assay, which resembled their ester analogs. The current study thus indicated that the 14-substituted naltrexone isosteres are not bioisosteres since they have distinctive pharmacological profile with the regard to their opioid receptor binding affinity and selectivity.  相似文献   

20.
Cannabinoid (CB) and opioid systems are both involved in analgesia, food intake, mood and behavior. Due to the co-localization of µ-opioid (MOR) and CB1 receptors in various regions of the central nervous system (CNS) and their ability to form heterodimers, bivalent ligands targeting to both these systems may be good candidates to investigate the existence of possible cross-talking or synergistic effects, also at sub-effective doses. In this work, we selected from a small series of new Rimonabant analogs one CB1R reverse agonist to be conjugated to the opioid fragment Tyr-D-Ala-Gly-Phe-NH2. The bivalent compound (9) has been used for in vitro binding assays, for in vivo antinociception models and in vitro hypothalamic perfusion test, to evaluate the neurotransmitters release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号