首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Calpain inhibitors induce pertussis toxin (PTx)-sensitive chemotaxis in human neutrophils and monocytes. Here, we show that various calpain inhibitors (PD150606, PD151746, N-acetyl-Leu-Leu-Nle-CHO [ALLN], N-acetyl-Leu-Leu-Met-CHO [ALLM], and calpeptin) and γ-secretase inhibitor I induced PTx-sensitive increase in cytoplasmic free Ca2+ ([Ca2+]i) in human neutrophils and neutrophil migration. HEK-293 cells stably expressing human formyl peptide receptor (hFPR) or hFPR-like 1 (hFPRL1) displayed stimulus-specific increase in [Ca2+]i in response to calpain inhibitors (PD150606, PD151746, ALLN, ALLM, MG-132, and calpeptin), γ-secretase inhibitor I, and N-formyl-Met-Leu-Phe. Parent HEK-293 cells also displayed PTx-sensitive increase in [Ca2+]i in response to calpeptin and γ-secretase inhibitor I, whereas they displayed PTx-resistant increase in [Ca2+]i in response to MG-132. MDL-28170 induced neither an increase in [Ca2+]i in neutrophils and HEK-293 cells nor neutrophil migration. Ionomycin-induced cleavage of talin (a substrate of calpain) in neutrophils was inhibited by all inhibitors used here. These findings suggest that potent calpain inhibitors could stimulate phagocyte functions via activation of hFPR, hFPRL1 and/or other G-protein coupled receptors depending on the inhibitors used.  相似文献   

2.
The anti-infective peptide, innate defense-regulator peptide (IDR-1), has been selectively reported to modulate the innate immune response. We found that IDR-1 stimulates the chemotactic migration in human neutrophils. Moreover, IDR-1-induced neutrophil chemotaxis was completely blocked by pertussis toxin, suggesting the importance of the Gi protein in this process. The mechanism governing the IDR-1-induced neutrophil chemotaxis was found to be completely inhibited by the formyl peptide receptor (FPR) antagonist; cyclosporin H. IDR-1 was also found to induce chemotactic migration in FPR but not in vector-expressing HCT116 cells. Meanwhile, IDR-1 failed to stimulate superoxide anion generation and intracellular calcium increase in human neutrophils. Furthermore, IDR-1 was found to inhibit fMLF (an FPR agonist)-induced superoxide generation and calcium signaling in human neutrophils and FPR-expressing HCT116 cells. Taken together, the results demonstrate that IDR-1 is a partial agonist for FPR and further, stimulates neutrophil chemotaxis without inducing calcium signaling and superoxide generation.  相似文献   

3.
F2L is an acetylated amino-terminal peptide derived from the cleavage of the human heme-binding protein. Very recently, F2L was identified as an endogenous chemoattractant peptide acting specifically through formyl peptide receptor-like (FPRL)2. In the present study, we report that F2L stimulates chemotactic migration in human neutrophils. However, F2L inhibits formyl peptide receptor (FPR) and FPRL1 activities, resulting in the complete inhibition of intracellular calcium increases, and superoxide generation induced by N-formyl-Met-Leu-Phe, MMK-1, or Trp-Lys-Tyr-Met-Val-d-Met (WKYMVm) in human neutrophils. In terms of the inhibitory role of F2L on FPR- and FPRL-mediated signaling, we found that F2L competitively inhibits the binding of (125)I-WKYMVm to its specific receptors, FPR and FPRL1. F2L is the first endogenous molecule that inhibits FPR- and FPRL1-mediated signaling, and is expected to be useful in the study of FPR and FPRL1 signaling and in the development of drugs to treat diseases involving the FPR family of receptors.  相似文献   

4.
While stimulation of formyl peptide receptors (FPRs) on the surface of human neutrophils induces several immune responses, under conditions of continuous activation of the receptor by agonists such as formyl-Met-Leu-Phe-OH (fMLP), neutrophil-dependent tissue damage ensues. Thus, FPR antagonists could be anticipated as drugs for FPR-related disease. In this study, Boc-Phe-d-Leu-Phe-d-Leu-Phe-OH (Boc-FlFlF), one of several FPR subtype selective antagonists, was chosen and the positions at the Phe residues were optimized. We found that substitution with unnatural amino acids resulted in an improvement of two orders of magnitude. The most potent antagonist indicated FPR subtype selectivity at 1 μM. In addition to finding a potent antagonist, the structure–activity trends observed in this study should be valuable in designing a new type of FPR subtype selective antagonist.  相似文献   

5.
The increased level of LDL and its modification into oxLDL has been regarded as an important risk factor for the development of cardiovascular diseases such as atherosclerosis. Although some scavenger receptors including CD36 and RAGE have been considered as target receptors for oxLDL, involvement of other receptors should be investigated for oxLDL-induced pathological responses. In this study, we found that oxLDL-induced foam cell formation was inhibited by formyl peptide receptor 2 (FPR2) antagonist WRW4. oxLDL also stimulated calcium signaling and chemotactic migration in FPR2-expressing RBL-2H3 cells but not in vector-expressing RBL-2H3 cells. Moreover, oxLDL stimulated TNF-α production, which was also almost completely inhibited by FPR2 antagonist. Our findings therefore suggest that oxLDL stimulates macrophages, resulting in chemotactic migration, TNF-α production, and foam cell formation via FPR2 signaling, and thus likely contributes to atherogenesis.  相似文献   

6.
We have discovered that humanin (HN) acts as a ligand for formyl peptide receptor-like 1 (FPRL1) and 2 (FPRL2). This discovery was based on our finding that HN suppressed forskolin-induced cAMP production in Chinese hamster ovary (CHO) cells expressing human FPRL1 (CHO-hFPRL1) or human FPRL2 (CHO-hFPRL2). In addition, we found that N-formylated HN (fHN) performed more potently as a ligand for FPRL1 than HN: in CHO-hFPRL1 cells, the effective concentration for the half-maximal response (EC(50)) value of HN was 3.5nM, while that of fHN was 0.012nM. We demonstrated by binding experiments using [(125)I]-W peptide that HN and fHN directly interacted with hFPRL1 on the membrane. In addition, we found that HN and fHN showed strong chemotactic activity for CHO-hFPRL1 and CHO-hFPRL2 cells. HN is known to have a protective effect against neuronal cell death. Our findings contribute to the understanding of the mechanism behind HN's function.  相似文献   

7.
Although formyl peptide receptor like 2 (FPRL2) has been regarded as an important classical chemoattractant receptor, its functional role and signaling pathway have not been fully investigated, because of the lack of its specific ligand. Recently F2L, a heme-binding protein fragment peptide, has been reported as an FPRL2-selective endogenous agonist. In the present study, we examined the effect of Trp-Arg-Trp-Trp-Trp-Trp-CONH2 (WRWWWW, WRW4), on F2L-induced cell signaling. WRW4 inhibited the activation of FPRL2 by F2L, resulting in the complete inhibition of intracellular calcium increase and chemotactic migration induced by F2L. WRW4 also completely inhibited F2L-induced NF-kappaB activation in FPRL2-transfected HEK293 cells. WRW4 specifically inhibited F2L-induced intracellular calcium increase and chemotactic migration in mature monocyte-derived dendritic cells, which express FPRL2 but not the other FPR family. Taken together, WRW4 is the first FPRL2 antagonist and is expected to be useful in the study of FPRL2 signaling and in development of drugs against FPRL2-related cellular responses.  相似文献   

8.
In this study, we report that one of the antimicrobial peptides scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates actin polymerization and the subsequent chemotactic migration of macrophages through the activation of ERK and protein kinase B (Akt) activity. The scolopendrasin VII-induced chemotactic migration of macrophages is inhibited by the formyl peptide receptor 1 (FPR1) antagonist cyclosporine H. We also found that scolopendrasin VII stimulate the chemotactic migration of FPR1-transfected RBL-2H3 cells, but not that of vector-transfected cells; moreover, scolopendrasin VII directly binds to FPR1. Our findings therefore suggest that the antimicrobial peptide scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates macrophages, resulting in chemotactic migration via FPR1 signaling, and the peptide can be useful in the study of FPR1-related biological responses. [BMB Reports 2015; 48(8): 479-484]  相似文献   

9.
10.
We investigated the effects of serum amyloid A (SAA) on the production of C-C chemokine motif ligand 2 (CCL2) and the mechanism underlying SAA action in human umbilical vein endothelial cells (HUVECs). Stimulation of HUVECs by SAA elicited CCL2 production in a concentration-dependent manner. SAA induced the activations of NF-κB and AP-1, which were essential for CCL2 production after SAA stimulation. HUVECs expressed formyl peptide receptor-like 1 (FPRL1), and short interfering RNA knockdown of FPRL1 nearly completely blocked SAA-induced CCL2 production in HUVECs. We suggest that SAA stimulates CCL2 production via FPRL1 and, thus, contributes to atherosclerosis.  相似文献   

11.
Hui Yang  Peng Shi 《遗传学报》2010,37(12):771-778
Formyl peptide receptors (FPRs) were observed to expand in rodents and were recently suggested as candidate vomeronasal chemo-sensory receptors. Since vomeronasal chemosensory receptors usually underwent positive selection and evolved concordantiy with the vomeronasal organ (VNO) morphology, we surveyed FPRs in primates in which VNO morphology is greatly diverse and thus it would provide us a clearer view of VNO-FPRs evolution. By screening available primate genome sequences, we obtained the FPR repertoires in representative primate species. As a result, we did not find FPR family size expansion in primates. Further analyses showed no evolutionary force variance between primates with or without VNO structure, which indicated that there was no functional divergence among primates FPRs. Our results suggest that primates lack the VNO-specific FPRs and the FPR expansion is not a common phenomenon in mammals outside rodent lineage, regardless of VNO complexity.  相似文献   

12.
Calpain inhibitors, including peptide aldehydes (N-acetyl-Leu-Leu-Nle-CHO and N-acetyl-Leu-Leu-Met-CHO) and α-mercapto-acrylic acid derivatives (PD150606 and PD151746), have been shown to stimulate phagocyte functions via activation of human formyl peptide receptor (hFPR) and/or hFPR-like 1 (hFPRL1). Using the homology modeling of the receptors and the ligand docking simulation, here we show that these calpain inhibitors could bind to the putative N-formyl-Met-Leu-Phe (fMLF) binding site on hFPR and/or hFPRL1. The studies with HEK-293 cells stably expressing hFPR or hFPRL1 showed that the concentrations of calpain inhibitors required to induce an increase in cytoplasmic free Ca2+ ([Ca2+]i) was much higher (>100 folds) than those of fMLF and Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm). HEK-293 cells expressing hFPR or hFPRL1 with the mutated fMLF binding site never exhibited the [Ca2+]i response to calpain inhibitors. When the optimal concentrations of each stimulus were used, pretreatment of cells with fMLF or WKYMVm abolished an increase in [Ca2+]i induced by calpain inhibitors as well as the same stimulus, whereas pretreatment of cells with calpain inhibitors significantly suppressed, but never abolished, the [Ca2+]i response induced by fMLF or WKYMVm, suggesting that the binding affinity of the inhibitors to the putative fMLF binding site may be lower than that of fMLF or WKYMVm.  相似文献   

13.
A series of Arg-Phe-NH2 peptidomimetics containing an Arg mimetic were synthesized and tested as agonists of human MrgX1, rat MrgC, and mouse MrgC11 receptors. As predicted from the previously established species specificity, these peptidomimetics were found to be devoid of MrgX1 agonist activity. In contrast, these compounds acted as agonists of MrgC and/or MrgC11 with varying degrees of potency. These new peptidomimetics should complement the existing small molecule human MrgX1 agonists and enhance our ability to assess the therapeutic utility of targeting Mrg receptors in rodent models.  相似文献   

14.
15.
We synthesized and investigated the effect of formyl peptide receptor 2 (FPR2)-derived pepducins in human monocytes. The FPR2-based cell-penetrating lipopeptide, “pepducin” (F2pal-16), stimulated intracellular calcium increase in human monocytes via pertussis toxin (PTX)-sensitive G-protein and phospholipase C (PLC) activity. From a functional aspect, we showed that F2pal-16 stimulated monocyte chemotaxis. F2pal-16 also stimulated the generation of superoxide anion in human monocytes. Moreover, F2pal-16 dramatically increased the production of several kinds of pro-inflammatory cytokines (CXCL8, CCL2, IL-1β and TNF-α) in human monocytes via NF-κB activation. Since FPR2 plays an important role in immune responses, F2pal-16 can serve as a useful reagent for the study of FPR2-mediated immune modulation.  相似文献   

16.
A new class of melanocortin 4 receptor (MC4r) agonists was discovered from an unexpected sidereaction in which formaldehyde caused cyclization. These cyclophanes were found to be sub micromolar agonists of the MC1 and MC4 and were less potent on the MC3 and MC5 receptor. They were shown to compete with the peptidic antagonist SHU9119 for binding to the MC4 receptor. In an acute feeding study in Sprague Dawley rats, food intake was reduced more than 50% versus vehicle after 3 h at a dose of 1 mg/kg.  相似文献   

17.
This Letter reports the design and synthesis of several novel series of piperazinyl pyrimidinones as 5-HT2C agonists. Several of the compounds presented exhibit good in vitro potency and selectivity over the closely related 5-HT2A and 5-HT2B receptors. Compound 11 was active in in vivo models of stress urinary incontinence.  相似文献   

18.
Rubimetide (Met-Arg-Trp), which had been isolated as an antihypertensive peptide from an enzymatic digest of spinach ribulose-bisphosphate carboxylase/oxygenase (Rubisco), showed anxiolytic-like activity prostaglandin (PG) D2-dependent manner in the elevated plus-maze test after administration at a dose of 0.1 mg/kg (ip.) or 1 mg/kg (p.o.) in male mice of ddY strain. In this study, we found that rubimetide has weak affinities for the FPR1 and FPR2, subtypes of formyl peptide receptor (FPR). The anxiolytic-like activity of rubimetide (0.1 mg/kg, ip.) was blocked by WRW4, an antagonist of FPR2, but not by Boc-FLFLF, an antagonist of FPR1, suggesting that the anxiolytic-like activity was mediated by the FPR2. Humanin, an endogenous agonist peptide of the FPR2, exerted an anxiolytic-like activity after intracerebroventricular (icv) administration, which was also blocked by WRW4. MMK1, a synthetic agonist peptide of the FPR2, also exerted anxiolytic-like activity. Thus, FPR2 proved to mediate anxiolytic-like effect as the first example of central effect exerted by FPR agonists. As well as the anxiolytic-like activity of rubimetide, that of MMK1 was blocked by BW A868C, an antagonist of the DP1-receptor. Furthermore, anxiolytic-like activity of rubimetide was blocked by SCH58251 and bicuculline, antagonists for adenosine A2A and GABAA receptors, respectively. From these results, it is concluded that the anxiolytic-like activities of rubimetide and typical agonist peptides of the FPR2 were mediated successively by the PGD2-DP1 receptor, adenosine-A2A receptor, and GABA-GABAA receptor systems downstream of the FPR2.  相似文献   

19.
Analogues of the nonselective bombesin receptor synthetic agonist H-D-Phe-Gln-Trp-Ala-Val-betaAla-His-Phe-Nle-NH2 were prepared and their biological activity assessed at the NMB-preferring/bombesin receptor (NMB-R: BB1), the GRP-preferring/bombesin receptor (GRP-R: BB2) and the orphan receptor bombesin receptor subtype-3 (BRS-3; BB3). Progressive N-terminal deletions identified the minimum C-terminal sequences required for maintaining a significant agonist effect, whilst an alanine scan, targeted changes in stereochemistry and other pertinent substitutions identified key side-chain and stereochemical requirements for activation. Key structural elements required for functional potency at BB1 BB2 and BB3, and for selectivity between these receptor subtypes were established. Synthetic peptides were discovered. which were highly potent agonists at BB2 and extremely selective over both BB1 and BB3.  相似文献   

20.
Cryptochinones A–D are tetrahydroflavanones isolated from the leaves of Cryptocarya chinensis, an evergreen tree whose extracts are believed to have a variety of health benefits. The origin of their possible bioactivity is unclear. The farnesoid X receptor (FXR) is a member of nuclear receptor superfamily that has been widely targeted for developing treatments for chronic liver disease and for hyperglycemia. We studied whether cryptochinones A–D, which are structurally similar to known FXR ligands, may act at this target. Indeed, in mammalian one-hybrid and transient transfection reporter assays, cryptochinones A–D transactivated FXR to modulate promoter action including GAL4, SHP, CYP7A1, and PLTP promoters in dose-dependent manner, while they exhibited similar agonistic activity as chenodeoxycholic acid (CDCA), an endogenous FXR agonist. Through molecular modeling docking studies we evaluated their ability to bind to the FXR ligand binding pocket. Our results indicate that cryptochinones A–D can behave as FXR agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号