首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fragment of 2-substituted-3-sulfonylaminobenzamide has been proposed to replace the fragment of 2-substituted-3-sulfonylaminopyridine in PI3K and mTOR dual inhibitors to design novel anticancer agents based on bioisostere. The combination of the fragment of 2-substituted-3-sulfonylaminobenzamide with the fragment of 2-aminobenzothiazole or 2-aminothiazolo[5,4-b]pyridine, or 2-amino[1,2,4]triazolo[1,5-a]pyridine produced the novel structures of anticancer agents. As a result, nineteen target compounds were synthesized and characterized. Their antiproliferative activities in vitro were evaluated via MTT assay against four human cancer cell lines including HCT-116, A549, MCF-7 and U-87 MG. The SAR of target compounds was preliminarily discussed. Compound 1g with potent antiproliferative activity was examined for its effect on the AKT and p-AKT473. The anticancer effect of 1g was evaluated in established nude mice HCT-116 xenograft model. The results suggested that compound 1g can block PI3K/AKT/mTOR pathway and significantly inhibit tumor growth. These findings strongly support our assumption that the fragment of benzamide can replace the pyridine ring in some PI3K and mTOR dual inhibitor to design novel anticancer agents.  相似文献   

2.
A series of chalcones containing naphthalene moiety 4a4p have been synthesized, characterized by 1H NMR and 13C NMR and evaluated for their in vitro anticancer activity. The majority of the screened compounds displayed potent anticancer activity against both HCT116 and HepG2 human cancer cell lines. Among the series, compound 4h with a diethylamino group at the para position of the phenyl ring exhibited the most potent anticancer activity against HCT116 and HepG2 cell lines with IC50 values of 1.20 ± 0.07 and 1.02 ± 0.04 μM, respectively. The preliminary structure–activity relationship has been summarized. Tubulin polymerization experiments indicated that 4h effectively inhibited tubulin polymerization and flow cytometric assay revealed that 4h arrests HepG2 cells at the G2/M phase in a dose-dependent manner. Furthermore, molecular docking studies suggested that 4h binds to the colchicine binding site of tubulin.  相似文献   

3.
The enzyme glyoxalase-I (Glo-I) is an essential therapeutic target in cancer treatment. Significant efforts have been made to discover competitive inhibitors of Glo-I as potential anticancer agents. Herein, we report the synthesis of a series of diazenylbenzenesulfonamide derivatives, their in vitro evaluation against Glo-I and the resulting structure–activity relationships. Among the compounds tested, compounds 9h and 9j exhibited the highest activity with IC50 1.28 µM and 1.13 µM, respectively. Docking studies to explore the binding mode of the compounds identified key moieties that may contribute to the observed activities. The active compounds will serve as suitable leads for further chemical optimization.  相似文献   

4.
In the present study, endoperoxide and 4-anilinoqnazoline were conjugated to obtain a series of compounds. These conjugates exhibited high antiproliferative potency against a number of cancer cell lines, including the epidermal growth factor receptor (EGFR) L858R/T790M mutant cell. Compound 5 was selected as a representative for mechanistic study. Further experiments revealed the conjugate’s reactive oxygen species (ROS) generating ability, apoptosis inducing activity and involvement in EGFR downstream signaling pathways.  相似文献   

5.
In present study, we described the synthesis and biological evaluation of a new class of EGFR inhibitors containing 2,9-disubstituted 8-phenylthio/phenylsulfinyl-9H-purine scaffold. Thirty-one compounds were synthesized. Among them, compound C9 displayed the IC50 of 29.4?nM against HCC827 cell line and 1.9?nM against EGFRL858R. Compound C12 showed moderate inhibitory activity against EGFRL858R/T790M/C797S (IC50?=?114?nM). Western bolt assay suggested that compound C9 significantly inhibited EGFR phosphorylation. In vivo test, compound C9 remarkably exhibited inhibitory effect on tumor growth at 5.0?mg/kg by oral administration in established nude mouse HCC827 xenograft model. These results indicate that the 2,9-disubstituted 8-phenylsulfinyl/phenylsulfinyl-9H-purine derivatives can act as potent EGFR(L858R) inhibitors and effective anticancer agents. Additionally, optimization of compound C12 may result in discovering the fourth-generation EGFR-TKIs.  相似文献   

6.
Deregulation of many kinases is directly linked to cancer development and the tyrosine kinase family is one of the most important targets in current cancer therapy regimens. In this study, we have designed and synthesized a series of thieno[2,3-d]pyrimidine derivatives as an EGFR and HER2 tyrosine kinase inhibitors. All the synthesized compounds were evaluated in vitro for their inhibitory activities against EGFRWT; and the most active compounds that showed promising IC50 values against EGFRWT were tested in vitro for their inhibitory activities against mutant EGFRT790M and HER2 kinases. Moreover, the antitumor activities of these compounds were tested against four cancer cell lines (HepG2, HCT-116, MCF-7 and A431). Compounds 13g, 13h and 13k exhibited the highest activities against the examined cell lines with IC50 values ranging from 7.592 ± 0.32 to 16.006 ± 0.58 µM comparable to that of erlotinib (IC50 ranging from 4.99 ± 0.09 to 13.914 ± 0.36 µM). Furthermore, the most potent antitumor agent (13k) was selected for further studies to determine its effect on the cell cycle progression and apoptosis in MCF-7 cell line. The results indicated that this compound arrests G2/M phase of the cell cycle and it is a good apoptotic agent. Finally, molecular docking studies showed a good binding pattern of the synthesized compounds with the prospective target, EGFRWT and EGFRT790M.  相似文献   

7.
The present work describes the design and synthesis of a novel series of 1,3-diaryl-4-sulfonamidoarylpyrazole derivatives 1a–q and 2a–q and their in vitro biological activities. The target compounds were evaluated for antiproliferative activity against NCI-60 cell line panel. Compounds 1c, 1g, 1k–m, 1o, 2g, 2h, 2k–m, 2o, and 2q showed the highest mean inhibition percentages at 10 µM single-dose testing and were selected to be tested at 5-dose mode. The ICs50 of the most potent compounds were determined over the 60 cell lines. Compound 2l exhibited the strongest activity against different cell lines with IC50 0.33 µM against A498 renal cancer cell line. Compound 2l was tested over a panel of 20 kinases to determine its molecular target(s), and its IC50 values over the most sensitive kinases were defined. In vitro stability and in vivo pharmacokinetic profile of compound 2l was also investigated.  相似文献   

8.
The present study was carried out in the attempt to synthesize a new class of potential anticancer agents comprising eleven compounds (2434) sharing the 3,5-diarylisoxazole as a core. The chemical structure of the new synthesized compounds was established by IR, 1H NMR, 13C NMR and elemental analysis. Their biological potential towards prostate cancer was evaluated by using cancer PC3 cells and non-tumorigenic PNT1a cells. Interestingly, compound 26 distinguished from others with a quite high selectivity value that is comparable to 5-FU. The binding mode of 26 towards Ribosomal protein S6 kinase beta-1 (S6K1) was investigated at a molecular level of detail by employing docking simulations based on GLIDE standard precision as well as MM-GBSA calculations.  相似文献   

9.
A series of 2-aminodihydroquinoline analogs were synthesized and their in vitro cytotoxicities against metastatic breast adenocarcinoma cell line MDA-MB-231 were tested. Five out of 16 compounds exhibited promising activity and structure–activity relationship revealed major role of dialkylaminoethyl substituents on dihydroquinoline ring for the activity. Two compounds, 5f and 5h, presented cytotoxicity with IC50 values of about 2 μM when the compounds were treated to the cells without serum. The cell proliferation was inhibited mildly when the cells cultured with serum. Flow cytometry analyses showed that those compounds arrested the cells at G2/M checkpoint when the cell cycle is active while they induce apoptosis when the cell growth is restricted due to the absence of growth factors. These results suggest the two novel compounds may have anticancer activity through cell cycle arrest and pro apoptosis mechanism.  相似文献   

10.
In the past years, several methodologies were developed for potency ranking of genotoxic carcinogens and germ cell mutagens. In this paper, we analyzed six sub-classes of covalent deoxyribonucleic acid (DNA) binding antineoplastic drugs comprising a total of 37 chemicals and, in addition, four alkyl-epoxides, using four approaches for the ranking of genotoxic agents on a potency scale: the EPA/IARC genetic activity profile (GAP) database, the ICPEMC agent score system, and the analysis of qualitative and quantitative structure-activity and activity-activity relationships (SARs, AARs) between types of DNA modifications and genotoxic endpoints. Considerations of SARs and AARs focused entirely on in vivo data for mutagenicity in male germ cells (mouse, Drosophila), carcinogenicity (TD50s) and acute toxicity (LD50s) in rodents, whereas the former two approaches combined the entire database on in vivo and in vitro mutagenicity tests. The analysis shows that the understanding and prediction of rank positions of individual genotoxic agents requires information on their mechanism of action. Based on SARs and AARs, the covalent DNA binding antineoplastic drugs can be divided into three categories. Category 1 comprises mono-functional alkylating agents that primarily react with N7 and N3 moieties of purines in DNA. Efficient DNA repair is the major protective mechanism for their low and often not measurable genotoxic effects in repair-competent germ cells, and the need of high exposure doses for tumor induction in rodents. Due to cell type related differences in the efficiency of DNA repair, a strong target cell specificity in various species regarding the potency of these agents for adverse effects is found. Three of the four evaluation systems rank category 1 agents lower than those of the other two categories. Category 2 type mutagens produce O-alkyl adducts in DNA in addition to N-alkyl adducts. In general, certain O-alkyl DNA adducts appear to be slowly repaired, or even not at all, which make this kind of agents potent carcinogens and germ cell mutagens. Especially the inefficient repair of O-alkyl—pyrimidines causes the high mutational response of cells to these agents. Agents of this category give high potency scores in all four expert systems. The major determinant for the high rank positions on any scale of genotoxic of category 3 agents is their ability to induce primarily structural chromosomal changes. These agents are able to cross-link DNA. Their high intrinsic genotoxic potency appears to be related to the number of DNA cross-links per target dose unit they can induce. A confounding factor among category 3 agents is that often the genotoxic endpoints occur closed to or toxic levels, and that the width of the mutagenic dose range, i.e., the dose area between the lowest observed effect level and the LD50, is smaller (usually no more than 1 logarithmic unit) than for chemicals of the other two categories. For all three categories of genotoxic agents, strong correlations are observed between their carcinogenic potency, acute toxicity and germ cell specificity.  相似文献   

11.
A novel series of 4-pyrazolyl-1,8-naphthalimide derivatives have been designed and facilely synthesized. For anticancer activity in vitro, most of the compounds were found to be more toxic against human mammary cancer cells (MCF-7) than human cervical carcinoma cells (Hela) and human lung cancer cells (A549). Compounds 4i, 4h, 4b and 4a showed improved cytotoxic activity against MCF-7 cells over amonafide, in particular compounds 4i and 4h, the IC50 values of which against cell lines of MCF-7 were 0.51 μM and 0.79 μM, respectively. The DNA-binding properties of 4i were investigated by UV–vis, fluorescence, and Circular Dichroism (CD) spectroscopies and thermal denaturation. The results indicated that compound 4i as the DNA-intercalating agent exhibited middle binding affinity with CT-DNA.  相似文献   

12.
A series of novel water-soluble N-mustard-benzene conjugates bearing a urea linker were synthesized. The benzene moiety contains various hydrophilic side chains are linked to the meta- or para-position of the urea linker via a carboxamide or an ether linkage. The preliminary antitumor studies revealed that these agents exhibited potent cytotoxicity in vitro and therapeutic efficacy against human tumor xenografts in vivo. Remarkably, complete tumor remission in nude mice bearing human breast carcinoma MX-1 xenograft and significant suppression against prostate adenocarcinoma PC3 xenograft were achieved by treating with compound 9aa′ at the maximum tolerable dose with relatively low toxicity. We also demonstrate that the newly synthesized compounds are able to induce DNA cross-linking through alkaline agarose gel shift assay. A pharmacokinetic profile of the representative 9aa′ in rats was also investigated. The current studies suggest that this agent is a promising candidate for preclinical studies.  相似文献   

13.
A series of levoglucosenone-derived 1,2,3-triazoles and isoxazoles featuring a flexible spacer between the heteroaromatic and anhydropyranose cores have been designed and synthesized following an hetero Michael // 1,3-dipolar cycloaddition path. The use of a design of experiments approach allowed the optimization of the oxa-Michael reaction with propargyl alcohol as nucleophile, a key step for the synthesis of the target compounds. All of the compounds were tested for their anticancer activity on MDA-MB-231 cells, featuring mutant p53. The results highlighted the importance of the introduction of the flexible spacer as well as the higher activity of oxa-Michael isoxazole-derivatives. The most prominent compounds also showed anti-proliferative activities against lung and colon cancer cell lines. The compounds showed enhanced cytotoxic effects in the presence of mutant p53, determined both by endogenous mutant p53 knock down (R280K) and by reintroducing p53 R280K in cells lacking p53 expression.  相似文献   

14.
In trying to develop new anticancer agents, a series of 1H-pyrazolo[3,4-b]pyridine derivatives was designed and synthesized. Fifteen compounds were evaluated in vitro for their anti-proliferative activity against HePG-2, MCF-7, HCT-116, and PC-3 cell lines. Additionally, DNA binding affinity of the synthesized derivatives was investigated as a potential mechanism for the anticancer activity using DNA/methyl green assay and association constants assay. Compounds 19, 20, 21, 24 and 25 exhibited good activity against the four cancer cells comparable to that of doxorubicin. Interestingly, DNA binding assay results were in agreement with that of the cytotoxicity assays where the most potent anticancer compounds showed good DNA binding affinity comparable to that of doxorubicin and daunorubicin. Furthermore, a molecular docking of the tested compounds was carried out to investigate their binding pattern with the prospective target, DNA (PDB-code: 152d).  相似文献   

15.
Novel 6,7-methylenedioxy-4-substituted phenylquinolin-2(1H)-one derivatives 12an were designed and prepared through an intramolecular cyclization reaction and evaluated for in vitro anticancer activity. Among the synthesized compounds, 6,7-methylenedioxy-4-(2,4-dimethoxyphenyl)quinolin-2(1H)-one (12e) displayed potent cytotoxicity against several different tumor cell lines at a sub-micromolar level. Furthermore, results of fluorescence-activated cell sorting (FACS) analysis suggested that 12e induced cell cycle arrest in the G2/M phase accompanied by apoptosis in HL-60 and H460 cells. This action was confirmed by Hoechst staining and caspase-3 activation. Due to their easy synthesis and remarkable biological activities, 4-phenylquinolin-2(1H)-one analogs (4-PQs) are promising new anticancer leads based on the quinoline scaffold. Accordingly, compound 12e was identified as a new lead compound that merits further optimization and development as an anticancer candidate.  相似文献   

16.
A series of novel 4,7-dihydroxycoumarin based acryloylcyanohydrazone derivatives were synthesized and evaluated for antiproliferative activity against four different cancer cell lines (A549, HeLa, SKNSH, and MCF7). Most of the compounds displayed potent cytotoxicity with IC50 values ranging from 3.42 to 31.28 µM against all the tested cancer cell lines. The most active compound, 8h was evaluated for pharmacological mechanistic studies on cell cycle progression and tubulin polymerization inhibition assay. The results revealed that the compound 8h induced the cell cycle arrest at G2/M phase and inhibited tubulin polymerization with IC50 = 6.19 µM. Experimental data of the tubulin polymerization inhibition assay was validated by molecular docking technique and the results exhibited strong hydrogen bonding interactions with amino acids (ASN-101, TYR-224, ASN-228, LYS-254) of tubulin.  相似文献   

17.
1,3,4-Oxadiazole derivatives have drawn continuing interest over the years because of their varied biological activities. In order to search for novel anticancer agents, we designed and synthesized a series of new 1,3,4-oxadiazole derivatives containing benzotriazole moiety as potential focal adhesion kinase (FAK) inhibitors. All the synthesized compounds were firstly reported. Among the compounds, compound 4 shows the most potent inhibitory activity against MCF-7 and HT29 cell lines with IC50 values of 5.68 μg/ml and 10.21 μg/ml, respectively. Besides, all the compounds were assayed for FAK inhibitory activity using the TRAP–PCR–ELISA assay. The results showed compound 4 exhibited the most potent FAK inhibitory activity with IC50 values of 1.2 ± 0.3 μM. Docking simulation by positioning compound 4 into the FAK structure active site was performed to explore the possible binding mode. Apoptosis which was analyzed by flow cytometry, demonstrated that compound 4 induced apoptosis against MCF-7 cells. Therefore, compound 4 may be a potential anticancer agent against MCF-7 cancer cell.  相似文献   

18.
A series of new nopinone-based thiosemicarbazone derivatives were designed and synthesized as potent anticancer agents. All these compounds were identified by 1H NMR, 13C NMR, HR-MS spectra analyses. In the in vitro anticancer activity, most derivatives showed considerable cytotoxic activity against three human cancer cell lines (MDA-MB-231, SMMC-7721 and Hela). Among them, compound 4i exhibited most potent antitumor activity against three cancer cell lines with the IC50 values of 2.79 ± 0.38, 2.64 ± 0.17 and 3.64 ± 0.13 μM, respectively. Furthermore, the cell cycle analysis indicated that compound 4i caused cell cycle arrest of MDA-MB-231 cells at G2/M phase. The Annexin V-FITC/7-AAD dual staining assay also revealed that compound 4i induced the early apoptosis of MDA-MB-231 cells.  相似文献   

19.
Colchicine is the major alkaloid isolated from the plant Colchicum autumnale, which shows strong therapeutic effects towards different types of cancer. However, due to the toxicity of colchicine towards normal cells its application is limited. To address this issue we synthesized a series of seven triple-modified 4-bromothiocolchicine analogues with amide moieties. These novel derivatives were active in the nanomolar range against several different cancer cell lines and primary acute lymphoblastic leukemia cells, specifically compounds: 5–9 against primary ALL-5 (IC50 = 5.3–14 nM), 5, 7–9 against A549 (IC50 = 10 nM), 5, 7–9 against MCF-7 (IC50 = 11 nM), 5–9 against LoVo (IC50 = 7–12 nM), and 5, 7–9 against LoVo/DX (IC50 = 48–87 nM). These IC50 values were lower than those obtained for unmodified colchicine and common anticancer drugs such as doxorubicin and cisplatin. Further studies revealed that colchicine and selected analogues induced characteristics of apoptotic cell death but manifested their effects in different phases of the cell cycle in MCF-7 versus ALL-5 cells. Specifically, while colchicine and the studied derivatives arrested MCF-7 cells in mitosis, very little mitotically arrested ALL-5 cells were observed, suggesting effects were manifest instead in interphase. We also developed an in silico model of the mode of binding of these compounds to their primary target, β-tubulin. We conducted a correlation analysis (linear regression) between the calculated binding energies of colchicine derivatives and their anti-proliferative activity, and determined that the obtained correlation coefficients strongly depend on the type of cells used.  相似文献   

20.
A novel series of 6-aryl-3-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-ones 3a-h were synthesized in a single step via condensation of carboxamide 2 with some aromatic aldehydes (presence of iodine). Treatment of aminopyrazole 1a with acetic anhydride afforded pyrazolopyrimidines 4 which on treatment with ethyl chloroacetate in refluxing dry DMF furnished a single product identified as ethyl 2-(3,6-dimethyl-4-oxo-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-5(4H)-yl) acetate 5. On the other hand, esterification of compound 6 with different alcohol, led to the formation of new esters linked pyrazolo[3,4-d]pyrimidinones hybrids 7a-f. The reaction of compound 2 with 3-propargyl bromide gave the compound 8 used as a dipolarophile to access to triazoles (4- and 5-regioisomers (9a-e) and (10a-e), respectively) via the 1,3-dipoar cycloaddition reaction. Finally, condensation reaction of aminopyrazole 1b with α-cyanocinnamonitiles gave the new pyrazolo[1,5-a]pyrimidine-3,6-dicarbonitriles 11a-e. Structures of compounds were established on the basis of 1H/13C NMR and ESI-HRMS. Compounds were screened for their cytotoxic (HCT-116 and MCF-7) and 5-lipoxygenase inhibition activities. The structure-activity relationship (SAR) was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号