首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we used crystal structure of mycobacterial pantothenate synthetase (PS) bound with 2-(2-(benzofuran-2-ylsulfonylcarbamoyl)-5-methoxy-1H-indol-1-yl) acetic acid inhibitor for virtual screening of antitubercular compound database to identify new scaffolds. One of the identified lead was modified synthetically to obtain thirty novel analogues. These synthesized compounds were evaluated for Mycobacterium tuberculosis (MTB) PS inhibition study, in vitro antimycobacterial activities and cytotoxicity against RAW 264.7 cell line. Among the compounds tested, N′-(1-naphthoyl)-2-methylimidazo[1,2-a]pyridine-3-carbohydrazide (5b) was found to be the most active compound with IC50 of 1.90 ± 0.12 μM against MTB PS, MIC of 4.53 μM against MTB with no cytotoxicity at 50 μM. The binding affinity of the most potent inhibitor 5b was further confirmed biophysically through differential scanning fluorimetry.  相似文献   

2.
A series of twenty seven substituted 2-(2-oxobenzo[d]oxazol-3(2H)-yl)acetamide derivatives were designed based on our earlier reported Mycobacterium tuberculosis (MTB) enoyl-acyl carrier protein reductase (InhA) lead. Compounds were evaluated for MTB InhA inhibition study, in vitro activity against drug-sensitive and -resistant MTB strains, and cytotoxicity against RAW 264.7 cell line. Among the compounds tested, 2-(6-nitro-2-oxobenzo[d]oxazol-3(2H)-yl)-N-(5-nitrothiazol-2-yl)acetamide (30) was found to be the most promising compound with IC50 of 5.12 ± 0.44 μM against MTB InhA, inhibited drug sensitive MTB with MIC 17.11 μM and was non-cytotoxic at 100 μM. The interaction with protein and enhancement of protein stability in complex with compound 30 was further confirmed biophysically by differential scanning fluorimetry.  相似文献   

3.
A series of twenty eight molecules of ethyl 5-(piperazin-1-yl)benzofuran-2-carboxylate and 3-(piperazin-1-yl)benzo[d]isothiazole were designed by molecular hybridization of thiazole aminopiperidine core and carbamide side chain in eight steps and were screened for their in vitro Mycobacterium smegmatis (MS) GyrB ATPase assay, Mycobacterium tuberculosis (MTB) DNA gyrase super coiling assay, antitubercular activity, cytotoxicity and protein–inhibitor interaction assay through differential scanning fluorimetry. Also the orientation and the ligand–protein interactions of the top hit molecules with MS DNA gyrase B subunit active site were investigated applying extra precision mode (XP) of Glide. Among the compounds studied, 4-(benzo[d]isothiazol-3-yl)-N-(4-chlorophenyl)piperazine-1-carboxamide (26) was found to be the most promising inhibitor with an MS GyrB IC50 of 1.77 ± 0.23 μM, 0.42 ± 0.23 against MTB DNA gyrase, MTB MIC of 3.64 μM, and was not cytotoxic in eukaryotic cells at 100 μM. Moreover the interaction of protein–ligand complex was stable and showed a positive shift of 3.5 °C in differential scanning fluorimetric evaluations.  相似文献   

4.
In this study we have designed p-phenylene diamine linked acridine derivative from our earlier reported quinoline–aminopiperidine hybrid MTB DNA gyrase inhibitors with aiming more potency and less cardiotoxicity. We synthesized thirty six compounds using four step synthesis from 2-chloro benzoic acid. Among them compound 4-chloro-N-(4-((2-methylacridin-9-yl)amino)phenyl)benzenesulphonamide (6) was found to be more potent with MTB DNA gyrase super coiling IC50 of 5.21 ± 0.51 μM; MTB MIC of 6.59 μM and no zHERG cardiotoxicity at 30 μM and 11.78% inhibition at 50 μM against mouse macrophage cell line RAW 264.7.  相似文献   

5.
Thirty three derivatives of 2-substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amine analogues were synthesized by molecular modification of a reported antimycobacterial molecule (GSK163574A). Compounds were evaluated in vitro against actively replicative and nutrient starved non-replicative Mycobacterium tuberculosis (MTB), enzymatic screening and cytotoxicity against RAW 264.7 cell line. Among the compounds, 2-ethyl-N-phenethyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-amine (5c) was found to be the most active compound against non-replicative MTB with 2.7 log reduction of bacteria at 10 μg/mL and was more potent than isoniazid (1.2 log reduction) and rifampicin (2.0 log reduction) at same dose level. Compound 5c also showed activity against MTB alanine dehydrogenase enzyme with IC50 of 1.82 ± 0.42 μM and showed 25% cytotoxicity against RAW 264.7 cell line at 50 μg/mL.  相似文献   

6.
Twenty six 2,6-disubstituted 4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide derivatives were designed by molecular hybridization approach using and synthesized from piperidin-4-one by five step synthesis. Compounds were evaluated for Mycobacterium tuberculosis (MTB) pantothenate synthetase (PS) inhibition study, in vitro activities against MTB, cytotoxicity against RAW 264.7 cell line. Among the compounds, 6-(4-nitrophenylsulfonyl)-2-(5-nitrothiophene-2-carboxamido)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide (11) was found to be the most active compound with IC50 of 5.87 ± 0.12 μM against MTB PS, inhibited MTB with MIC of 9.28 μM and it was non-cytotoxic at 50 μM. The binding affinity of the most potent inhibitor 11 was further confirmed biophysically through differential scanning fluorimetry.  相似文献   

7.
Urease is an important enzyme which breaks urea into ammonia and carbon dioxide during metabolic processes. However, an elevated activity of urease causes various complications of clinical importance. The inhibition of urease activity with small molecules as inhibitors is an effective strategy for therapeutic intervention. Herein, we have synthesized a series of 19 benzofurane linked N-phenyl semithiocarbazones (3a3s). All the compounds were screened for enzyme inhibitor activity against Jack bean urease. The synthesized N-phenyl thiosemicarbazones had varying activity levels with IC50 values between 0.077 ± 0.001 and 24.04 ± 0.14 μM compared to standard inhibitor, thiourea (IC50 = 21 ± 0.11 μM). The activities of these compounds may be due to their close resemblance of thiourea. A docking study with Jack bean urease (PDB ID: 4H9M) revealed possible binding modes of N-phenyl thiosemicarbazones.  相似文献   

8.
In the present study, we have designed imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole derivatives from earlier reported imidazo[1,2-a]pyridine based Mycobacterium tuberculosis (MTB) pantothenate synthetase (PS) inhibitors. We synthesized thirty compounds and they were evaluated for MTB PS inhibition study, in vitro anti-TB activities against replicative and non-replicative MTB, in vivo activity using Mycobacterium marinum infected Zebra fish and cytotoxicity against RAW 264.7 cell line. Among them compound 2-methyl-N′-(4-phenoxybenzoyl)benzo[d]imidazo[2,1-b]thiazole-3-carbohydrazide (5bc) emerged as potent compound active against MTB PS with IC50 of 0.53 ± 0.13 μM, MIC of 3.53 μM, 2.1 log reduction against nutrient starved MTB, with 33% cytotoxicity at 50 μM. It also showed 1.5 log reduction of M. marinum load in Zebra fish at 10 mg/kg.  相似文献   

9.
A series of new malonamide derivatives were synthesized by Michael addition reaction of N1,N3-di(pyridin-2-yl)malonamide into α,β-unsaturated ketones mediated by DBU in DCM at ambient temperature. The inhibitory potential of these compounds in vitro, against α-glucosidase enzyme was evaluated. Result showed that most of malonamide derivatives were identified as a potent inhibitors of α-glucosidase enzyme. Among all the compounds, 4K (IC50 = 11.7 ± 0.5 μM) was found out as the most active one compared to standard drug acarbose (IC50 = 840 ± 1.73 μM). Further cytotoxicity of 4a4m were also evaluated against a number of cancer and normal cell lines and interesting results were obtained.  相似文献   

10.
A novel series of N-arylbenzo[d]oxazol-2-amines (4a4m) were synthesized and evaluated for their α-glucosidase inhibitory activity. Compounds 4f4i, 4k and 4m displayed potent inhibitory activity against α-glucosidase with IC50 values in the range of 32.49 ± 0.17–120.24 ± 0.51 μM as compared to the standard drug acarbose. Among all tested compounds, compound 4g having 4-phenoxy substitution at the phenyl ring was found to be the most active inhibitor of α-glucosidase with an IC50 value of 32.49 ± 0.17 μM. Analysis of the kinetics of enzyme inhibition indicated that compound 4g is a noncompetitive inhibitor of α-glucosidase with a Ki value of 31.33 μM. Binding interaction of compound 4g with α-glucosidase was explored by molecular docking simulation.  相似文献   

11.
Current study based on the synthesis of new thiazole derivatives via “one pot” multicomponent reaction, evaluation of their in vitro α-glucosidase inhibitory activities, and in silico studies. All synthetic compounds were fully characterized by 1H NMR, 13C NMR and EIMS. CHN analysis was also performed. These newly synthesized compounds showed activities in the range of IC50 = 9.06 ± 0.10–82.50 ± 1.70 μM as compared to standard acarbose (IC50 = 38.25 ± 0.12 μM). It is worth mentioning that most of the compounds such as 1 (IC50 = 23.60 ± 0.39 μM), 2 (IC50 = 22.70 ± 0.60 μM), 3 (IC50 = 22.40 ± 0.32 μM), 4 (IC50 = 26.5 ± 0.40 μM), 6 (IC50 = 34.60 ± 0.60 μM), 7 (IC50 = 26.20 ± 0.43 μM), 8 (IC50 = 14.06 ± 0.18 μM), 9 (IC50 = 17.60 ± 0.28 μM), 10 (IC50 = 27.16 ± 0.41 μM), 11 (IC50 = 19.16 ± 0.19 μM), 12 (IC50 = 9.06 ± 0.10 μM), 13 (IC50 = 12.80 ± 0.21 μM), 14 (IC50 = 11.94 ± 0.18 μM), 15 (IC50 = 16.90 ± 0.20 μM), 16 (IC50 = 12.60 ± 0.14 μM), 17 (IC50 = 16.30 ± 0.29 μM), and 18 (IC50 = 32.60 ± 0.61 μM) exhibited potent inhibitory potential. Molecular docking study was performed in order to understand the molecular interactions between the molecule and enzyme. Newly identified α-glucosidase inhibitors except few were found to be completely non-toxic.  相似文献   

12.
Dihydropyrimidones 137 were synthesized via a ‘one-pot’ three component reaction according to well-known Biginelli reaction by utilizing Cu(NO3)2·3H2O as catalyst, and screened for their in vitro β-glucuronidase inhibitory activity. It is worth mentioning that amongst the active molecules, compounds 8 (IC50 = 28.16 ± .056 μM), 9 (IC50 = 18.16 ± 0.41 μM), 10 (IC50 = 22.14 ± 0.43 μM), 13 (IC50 = 34.16 ± 0.65 μM), 14 (IC50 = 17.60 ± 0.35 μM), 15 (IC50 = 15.19 ± 0.30 μM), 16 (IC50 = 27.16 ± 0.48 μM), 17 (IC50 = 48.16 ± 1.06 μM), 22 (IC50 = 40.16 ± 0.85 μM), 23 (IC50 = 44.16 ± 0.86 μM), 24 (IC50 = 47.16 ± 0.92 μM), 25 (IC50 = 18.19 ± 0.34 μM), 26 (IC50 = 33.14 ± 0.68 μM), 27 (IC50 = 44.16 ± 0.94 μM), 28 (IC50 = 24.16 ± 0.50 μM), 29 (IC50 = 34.24 ± 0.47 μM), 31 (IC50 = 14.11 ± 0.21 μM) and 32 (IC50 = 9.38 ± 0.15 μM) found to be more potent than the standard d-saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 μM). Molecular docking study was conducted to establish the structure–activity relationship (SAR) which demonstrated that a number of structural features of dihydropyrimidone derivatives were involved to exhibit the inhibitory potential. All compounds were characterized by spectroscopic techniques such as 1H, 13C NMR, EIMS and HREI-MS.  相似文献   

13.
Thiadiazole derivatives 124 were synthesized via a single step reaction and screened for in vitro β-glucuronidase inhibitory activity. All the synthetic compounds displayed good inhibitory activity in the range of IC50 = 2.16 ± 0.01–58.06 ± 1.60 μM as compare to standard d-saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 μM). Molecular docking study was conducted in order to establish the structure–activity relationship (SAR) which demonstrated that thiadiazole as well as both aryl moieties (aryl and N-aryl) involved to exhibit the inhibitory potential. All the synthetic compounds were characterized by spectroscopic techniques 1H, 13C NMR, and EIMS.  相似文献   

14.
In this study, twenty-five (25) substituted aryl thiazoles (SAT) 125 were synthesized, and their in vitro cytotoxicity was evaluated against four cancer cell lines, MCF-7 (ER+ve breast), MDA-MB-231 (ER−ve breast), HCT116 (colorectal) and HeLa (cervical). The activity was compared with the standard anticancer drug doxorubicin (IC50 = 1.56 ± 0.05 μM). Among them, compounds 1, 48, and 19 were found to be toxic to all four cancer cell lines (IC50 values 5.37 ± 0.56–46.72 ± 1.80 μM). Compound 20 was selectively active against MCF7 breast cancer cells with IC50 of 40.21 ± 4.15 μM, whereas compound 19 was active against MCF7 and HeLa cells with IC50 of 46.72 ± 1.8, and 19.86 ± 0.11 μM, respectively. These results suggest that substituted aryl thiazoles 1 and 4 deserve to be further investigated in vivo as anticancer leads.  相似文献   

15.
A new series of coumarin thiazole derivatives 7a-7t were synthesized, characterized by 1H NMR, 13C NMR and element analysis, evaluated for their α-glucosidase inhibitory activity. The majority of the screened compounds displayed potent inhibitory activities with IC50 values in the range of 6.24 ± 0.07–81.69 ± 0.39 μM, when compared to the standard acarbose (IC50 = 43.26 ± 0.19 μM). Structure–activity relationship (SAR) studies suggest that the pattern of substitution in the phenyl ring is closely related to the biological activity of this class of compounds. Among all the tested molecules, compound 7e (IC50 = 6.24 ± 0.07 μM) was found to be the most active compound in the library of coumarin thiazole derivatives. Enzyme kinetic studies showed that compound 7e is a non-competitive inhibitor with a Ki of 6.86 μM. Furthermore, the binding interactions of compound 7e with the active site of α-glucosidase were confirmed through molecular docking. This study has identified a new class of potent α-glucosidase inhibitors for further investigation.  相似文献   

16.
Isatin base Schiff bases (1–20) were synthesized, characterized by 1H NMR and EI/MS and evaluated for α-glucosidase inhibitory potential. Out of these twenty (20) compounds only six analogs showed potent α-glucosidase inhibitory potential with IC50 value ranging in between 2.2 ± 0.25 and 83.5 ± 1.0 μM when compared with the standard acarbose (IC50 = 840 ± 1.73 μM). Among the series compound 2 having IC50 value (18.3 ± 0.56 μM), 9 (83.5 ± 1.0 μM), 11 (3.3 ± 0.25 μM), 12 (2.2 ± 0.25 μM), 14 (11.8 ± 0.15 μM), and 20 (3.0 ± 0.15 μM) showed excellent inhibitory potential many fold better than the standard acarbose. The binding interactions of these active analogs were confirmed through molecular docking.  相似文献   

17.
The synthesis of novel indolopyrazoline derivatives (P1-P4 and Q1-Q4) has been characterized and evaluated as potential anti-Alzheimer agents through in vitro Acetylcholinesterase (AChE) inhibition and radical scavenging activity (antioxidant) studies. Specifically, Q3 shows AChE inhibition (IC50: 0.68 ± 0.13 μM) with strong DPPH and ABTS radical scavenging activity (IC50: 13.77 ± 0.25 μM and IC50: 12.59 ± 0.21 μM), respectively. While P3 exhibited as the second most potent compound with AChE inhibition (IC50: 0.74 ± 0.09 μM) and with DPPH and ABTS radical scavenging activity (IC50: 13.52 ± 0.62 μM and IC50: 13.13 ± 0.85 μM), respectively. Finally, molecular docking studies provided prospective evidence to identify key interactions between the active inhibitors and the AChE that furthermore led us to the identification of plausible binding mode of novel indolopyrazoline derivatives. Additionally, in-silico ADME prediction using QikProp shows that these derivatives fulfilled all the properties of CNS acting drugs. This study confirms the first time reporting of indolopyrazoline derivatives as potential anti-Alzheimer agents.  相似文献   

18.
A series of thiazole derivatives 121 were prepared, characterized by EI-MS and 1H NMR and evaluated for α-glucosidase inhibitory potential. All twenty one derivatives showed good α-glucosidase inhibitory activity with IC50 value ranging between 18.23 ± 0.03 and 424.41 ± 0.94 μM when compared with the standard acarbose (IC50, 38.25 ± 0.12 μM). Compound (8) (IC50, 18.23 ± 0.03 μM) and compound (7) (IC50 = 36.75 ± 0.05 μM) exhibited outstanding inhibitory potential much better than the standard acarbose (IC50, 38.25 ± 0.12 μM). All other analogs also showed good to moderate enzyme inhibition. Molecular docking studies were carried out in order to find the binding affinity of thiazole derivatives with enzyme. Studies showed these thiazole analogs as a new class of α-glucosidase inhibitors.  相似文献   

19.
Coumarin sulfonates 443 were synthesized by reacting 3-hydroxy coumarin 1, 4-hydroxy coumarin 2 and 6-hydroxy coumarin 3 with different substituted sulfonyl chlorides and subjected to evaluate for their in vitro immunomodulatory potential. The compounds were investigated for their effect on oxidative burst activity of zymosan stimulated whole blood phagocytes using a luminol enhanced chemiluminescence technique. Ibuprofen was used as standard drug (IC50 = 54.2 ± 9.2 μM). Eleven compounds 6 (IC50 = 46.60 ± 14.6 μM), 8 (IC50 = 11.50 ± 6.5 μM), 15 (IC50 = 21.40 ± 12.2 μM), 19 (IC50 = 5.75 ± 0.86 μM), 22 (IC50 = 10.27 ± 1.06 μM), 23 (IC50 = 33.09 ± 5.61 μM), 24 (IC50 = 4.93 ± 0.58 μM), 25 (IC50 = 21.96 ± 14.74 μM), 29 (IC50 = 12.47 ± 9.2 μM), 35 (IC50 = 20.20 ± 13.4 μM) and 37 (IC50 = 14.47 ± 5.02 μM) out of forty demonstrated their potential suppressive effect on production of reactive oxygen species (ROS) as compared to ibuprofen. All the synthetic derivatives 443 were characterized by different available spectroscopic techniques such as 1H NMR, 13C NMR, EIMS and HRMS. CHN analysis was also performed.  相似文献   

20.
Recently numerous non-fluoroquinolone-based bacterial type II topoisomerase inhibitors from both the GyrA and GyrB classes have been reported as antibacterial agents. Inhibitors of the GyrA class include aminopiperidine-based novel bacterial type II topoisomerase inhibitors (NBTIs). However, inhibition of the cardiac ion channel remains a serious liability for the aminopiperidine based NBTIs. In this paper we replaced central aminopiperidine linker with piperazine moiety and tested for its biological activity. We developed a series of twenty four compounds with a piperazine linker 1-(2-(piperazin-1-yl)ethyl)-1,5-naphthyridin-2(1H)-one, by following a multistep protocol. Among them compound 4-(2-(7-methoxy-2-oxo-1,5-naphthyridin-1(2H)-yl)ethyl)-N-(4-nitrophenyl)piperazine-1-carboxamide (11) was the most promising inhibitor with Mycobacterium tuberculosis (MTB) DNA gyrase enzyme supercoiling IC50 of 0.29 ± 0.22 μM, with a good MTB MIC of 3.45 μM. These kind of compounds retains good potency and showed reduced cardiotoxicity compared to aminopiperidines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号