首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whole-body magnetic resonance imaging allows acquisition of diagnostic images in the shortest scan time, leading to better patient compliance and artifact-free images. Methods of clinical examination of the anterior chest wall joints vary between physician groups and consideration of the rules of rib motion is suggested. The type of joint and its synovial lining may also aid imaging/clinical correlation. This well-written study by experts in the field with a standardized design and methodology allows good scientific analysis and suggests the advantages of whole-body magnetic resonance imaging in anterior chest wall imaging. Selection of clinical examination criteria and specific joints may have had an influence on the study results and the lack of association reported.  相似文献   

2.
The paper presents the standard of a procedure for magnetic resonance imaging of temporomandibular joints, which has been used to examine 275 patients. It describes the study projections, that are most significant for visualization, and scanning protocols. Illustrations of magnetic resonance imaging of the structures of the intact temporomandibular joint are presented.  相似文献   

3.
In vivo bubble formation was studied in the megalopal stage of the crab Pachygrapsus crassipes. The animals were equilibrated with elevated argon, nitrogen, or helium pressures then rapidly decompressed to atmospheric pressure. Voluntary motions induced bubble nucleation in leg joints after exposures to as low as 2 atm nitrogen (gauge pressure). Delays of several minutes sometimes passed between decompression and bubble formation. Mechanically stimulating the animals to move their legs increased this bubble formation, whereas immobilizing the legs before gas equilibration prevented it, even in animals decompressed from 150 atm nitrogen. We conclude that preformed nuclei are not responsible for bubbles developing in the legs of this animal. Instead, tribonucleation of bubbles apparently occurs as a result of limb motions at relatively low gas supersaturations.  相似文献   

4.
In vivo bubble formation was studied in various crustaceans equilibrated with high gas pressures and rapidly decompressed to atmospheric pressure. The species varied widely in susceptibility to bubble formation, and adults were generally more susceptible than larval stages. Bubbles did not form in early brine shrimp larvae unless equilibration pressures of at least 175 atm argon or 350 atm helium were used; for adult brine shrimp, copepods, and the larvae of crabs and shrimps, 100-125 atm argon or 175-225 atm helium were required. In contrast, bubbles formed in the leg joints of megalopa and adult crabs following decompression from only 3-10 atm argon; stimulation of limb movements increased this bubble formation, whereas inhibition of movements decreased it. High hydrostatic compressions applied before gas equilibration or slow compressions did not affect bubble formation. We concluded that circulatory systems, musculature, and storage lipids do not necessarily render organisms susceptible to bubble formation and that bubbles do not generally originate as preformed nuclei. In some cases, tribonucleation appears to be the cause of the bubbles.  相似文献   

5.
The use of magnetic resonance imaging has been proposed by many investigators for establishment of joint reference systems and kinematic tracking of musculoskeletal joints. In this study, the intraobserver and interobserver reliability of a strategy to establish anatomic reference systems using manually selected fiducial points were quantified for seven sets of MR images of the human knee joint. The standard error of the measurement of the intraobserver and interobserver errors were less than 2.6 degrees, and 1.2 mm for relative tibiofemoral orientation and displacement, respectively. An automated motion tracking algorithm was also validated with a controlled motion experiment in a cadaveric knee joint. The controlled displacements and rotations prescribed in our motion tracking validation were highly correlated to those predicted (Pearson's correlation = 0.99, RMS errors = 0.39 mm, 0.38 degree). Finally, the system for anatomic reference system definition and motion tracking was demonstrated with a set of MR images of in vivo passive flexion in the human knee.  相似文献   

6.
Honda K  Natsumi Y  Urade M 《Gerodontology》2008,25(4):251-257
Objectives: The relationship of bony changes in the condylar surfaces in articular disc displacement without reduction in temporomandibular joint (TMJ) was investigated using diagnostic imaging. The study also evaluated whether the bony changes in the condylar surfaces limit disc and condyle motion, and produce pathological joint sounds. Materials and methods: Thirty‐seven joints in 28 patients diagnosed with degenerative bony changes in the condylar surfaces radiographically and anterior disc displacement without reduction using magnetic resonance imaging (MRI) were studied. The bony changes were assessed by radiographic examination and classified into two types: pathological bone changes (PBCs) including erosion, osteophyte formation and deformity, and adaptive bone changes (ABCs) including flattening and concavity. MRI was performed on the TMJ to examine the configuration and position of the discs. Joint sounds in the TMJ were determined using electrovibratograghy with a joint vibration analysis. Results: The articular disc motion to the condyle in the PBC group was smaller than in the ABC group irrespective of the configuration of the disc, even though there were no significant differences between the two types of bony changes in the disc position during jaw closing. The joint vibration analysis of the TMJ showed that joint sounds with a higher frequency were observed in the PBC group than in the ABC group. High energy levels needed to produce the higher frequencies (over 300 Hz) were observed only in the PBC group.  相似文献   

7.
The paper deals with the visualizing study of the ankle joint and foot by MRI and with the problems in the interpretation of magnetic resonance images in health. For this, 50 healthy volunteers without diseases and lesions of the ankle joint and foot were examined. The study was performed by using flexible superficial coils and T1-, T2-, and proton-weighed pulse-sequences in the orthogonal projections. The articular surfaces and cavity of the ankle joint were evaluated. The specific features of visualization of the muscles and tendons of this area and the pattern of fluid under their membranes were explored. The typical location of the "magic corner" phenomenon was revealed. The individual specific features of identification of the ligaments of the ankle joint and foot and plantar aponeurosis were defined. The features of visualization of bones simulating abnormalities were studied. A category of normalcy in the MRI of the ankle joint and foot was formulated.  相似文献   

8.

Objective

To investigate whether an injury of the common extensor tendon (CET) is associated with other abnormalities in the elbow joint and find the potential relationships between these imaging features by using a high-resolution magnetic resonance imaging (MRI).

Methods

Twenty-three patients were examined with 3.0 T MR. Two reviewers were recruited for MR images evaluation. Image features were recorded in terms of (1) the injury degree of CET; (2) associated injuries in the elbow joint. Spearman’s rank correlation analysis was performed to analyze the relationships between the injury degree of CET and associated abnormalities of the elbow joint, correlations were considered significant at p<0.05.

Results

Total 24 elbows in 23 patients were included. Various degrees of injuries were found in total 24 CETs (10 mild, 7 moderate and 7 severe). Associated abnormalities were detected in accompaniments of the elbow joints including ligaments, tendons, saccussynovialis and muscles. A significantly positive correlation (r = 0.877,p<0.01) was found in injuries of CET and lateral ulnar collateral ligament (LUCL).

Conclusion

Injury of the CET is not an isolated lesion for lateral picondylitis, which is mostly accompanied with other abnormalities, of which the LUCL injury is the most commonly seen in lateral epicondylitis, and there is a positive correlation between the injury degree in CET and LUCL.  相似文献   

9.
X-ray evaluation of rheumatoid joints is relatively inexpensive, is widely available and has standardised methods for interpretation. It also has limitations, including the inability to reliably determine structural change in less than 6-12 months, the need for experienced readers to interpret images and the limited acceptance of this technique in routine clinical practice. High-frequency ultrasound, with or without power Doppler, and magnetic resonance imaging of rheumatoid joints permit an increasingly refined analysis of anatomic detail. However, further research using these sensitive imaging technologies is required to delineate pathophysiological correlates of imaging abnormalities and to standardise methods for assessment.  相似文献   

10.
Kinematics and flexibility properties of both natural and replaced ankle joints are affected by the geometry of the articulating surfaces. Recent studies proposed an original saddle-shaped, skewed, truncated cone with laterally oriented apex, as tibiotalar contact surfaces for ankle prosthesis. The goal of this study was to compare in vitro this novel design with traditional cylindrical or medially centered conic geometries in terms of their ability to replicate the natural ankle joint mechanics. Ten lower limb cadaver specimens underwent a validated process of custom design for the replacement of the natural ankle joint. The process included medical imaging, 3D modeling and printing of implantable sets of artificial articular surfaces based on these three geometries. Kinematics and flexibility of the overall ankle complex, along with the separate ankle and subtalar joints, were measured under cyclic loading. In the neutral and in maximum plantarflexion positions, the range of motion under torques in the three anatomical planes of the three custom artificial surfaces was not significantly different from that of the natural surfaces. In maximum dorsiflexion the difference was significant for all three artificial surfaces at the ankle complex, and only for the cylindrical and medially centered conic geometries at the tibiotalar joint. Natural joint flexibility was restored by the artificial surfaces nearly in all positions. The present study provides experimental support for designing articular surfaces matching the specific morphology of the ankle to be replace, and lays the foundations of the overall process for designing and manufacturing patient-specific total ankle replacements.  相似文献   

11.
Post mortem studies have shown volume changes of the hypothalamus in psychiatric patients. With 7T magnetic resonance imaging this effect can now be investigated in vivo in detail. To benefit from the sub-millimeter resolution requires an improved segmentation procedure. The traditional anatomical landmarks of the hypothalamus were refined using 7T T1-weighted magnetic resonance images. A detailed segmentation algorithm (unilateral hypothalamus) was developed for colour-coded, histogram-matched images, and evaluated in a sample of 10 subjects. Test-retest and inter-rater reliabilities were estimated in terms of intraclass-correlation coefficients (ICC) and Dice''s coefficient (DC). The computer-assisted segmentation algorithm ensured test-retest reliabilities of ICC≥.97 (DC≥96.8) and inter-rater reliabilities of ICC≥.94 (DC = 95.2). There were no significant volume differences between the segmentation runs, raters, and hemispheres. The estimated volumes of the hypothalamus lie within the range of previous histological and neuroimaging results. We present a computer-assisted algorithm for the manual segmentation of the human hypothalamus using T1-weighted 7T magnetic resonance imaging. Providing very high test-retest and inter-rater reliabilities, it outperforms former procedures established at 1.5T and 3T magnetic resonance images and thus can serve as a gold standard for future automated procedures.  相似文献   

12.
Modern imaging modalities, including magnetic resonance imaging (MRI), are valuable diagnostic and therapy monitoring tools in rheumatoid arthritis (RA). This article reviewed how these imaging modalities have greatly improved our understanding of pathogenic mechanisms in RA, namely the link between inflammation and damage. For example, traditional paradigms regarding the mechanisms of joint destruction, including the idea that synovitis and damage are uncoupled, have been challenged. As the power of MRI increases, there is a need to define normality since apparently normal joints occasionally exhibit MRI evidence of synovitis in the absence of symptoms.  相似文献   

13.
Non-invasive techniques for quantifying early biochemical and biomechanical changes in articular cartilage may provide a means of more precisely assessing osteoarthritis (OA) progression. The goals of this study were to determine the relationship between T1rho magnetic resonance (MR) imaging relaxation times and changes in cartilage composition, cartilage mechanical properties, and synovial fluid biomarker levels and to demonstrate the application of T1rho imaging to evaluate cartilage composition in human subjects in vivo. Femoral condyles and synovial fluid were harvested from healthy and OA porcine knee joints. Sagittal T1rho relaxation MR images of the condyles were acquired. OA regions of OA joints exhibited an increase in T1rho relaxation times as compared to non-OA regions. Furthermore in these regions, cartilage sGAG content and aggregate modulus decreased, while percent degraded collagen and water content increased. In OA joints, synovial fluid concentrations of sGAG decreased and C2C concentrations increased compared to healthy joints. T1rho relaxation times were negatively correlated with cartilage and synovial fluid sGAG concentrations and aggregate modulus and positively correlated with water content and permeability. Additionally, we demonstrated the application of these in vitro findings to the study of human subjects. Specifically, we demonstrated that walking results in decreased T1rho relaxation times, consistent with water exudation and an increase in proteoglycan concentration with in vivo loading. Together, these findings demonstrate that cartilage MR imaging and synovial fluid biomarkers provide powerful non-invasive tools for characterizing changes in the biochemical and biomechanical environments of the joint.  相似文献   

14.
Modern imaging modalities, including magnetic resonance imaging (MRI), are valuable diagnostic and therapy monitoring tools in rheumatoid arthritis (RA). This article reviewed how these imaging modalities have greatly improved our understanding of pathogenic mechanisms in RA, namely the link between inflammation and damage. For example, traditional paradigms regarding the mechanisms of joint destruction, including the idea that synovitis and damage are uncoupled, have been challenged. As the power of MRI increases, there is a need to define normality since apparently normal joints occasionally exhibit MRI evidence of synovitis in the absence of symptoms.  相似文献   

15.
One-hundred consecutive orthognathic surgery candidates with mandibular retrusion were selected for retrospective analysis. Patients had undergone imaging studies that included magnetic resonance imaging (MRI) of both temporomandibular joints to assess the presence or absence, stage, and activity of suspected internal derangement(s). Patients were divided into stable and unstable deformity groups based on the presence or absence of change in their facial contour and/or occlusal disturbances in the 24 months prior to evaluation. Each of the 58 unstable and 30 of 42 stable patients were found to have internal derangements of at least one temporomandibular joint. The degree of joint degeneration directly paralleled the severity of retrognathia in most cases. We concluded that temporomandibular joint internal derangement is common in cases of mandibular retrusion and leads to the facial morphology in a high percentage of patients. Preoperative temporomandibular joint imaging with MRI is recommended prior to orthognathic surgical correction of retrognathic deformities.  相似文献   

16.
High-resolution magnetic resonance images (MRI) of the right femorotibial joint of normal Han:Wistar rats were acquired using a 4.7 Tesla magnet and a single-turn solenoid radio frequency coil (built in-house). Some anatomical findings of the rat femorotibial joint, which have not been reported previously using MRI, are described. The separation of patellar ligament and crural fascia was feasible on MRI. This separation would not be seen on images of lower resolution and its presence on high-resolution images could be mistaken for artefact due to the magic angle effect. Band-like fibrous structures exist in the infra-patellar fat pad, which might be mistaken as ligaments within the femorotibial joint. On sagittal MRI a vessel was seen inserted on the central part of the caudal surface of the patellar ligament. Subcutaneous fascia/cutaneous muscles (panniculus carnosus) could also be demonstrated with MRI in the femorotibial joint area.  相似文献   

17.
This study presents a computational tool for auto-segmenting the distribution of brain infusions observed by magnetic resonance imaging. Clinical usage of direct infusion is increasing as physicians recognize the need to attain high drug concentrations in the target structure with minimal off-target exposure. By co-infusing a Gadolinium-based contrast agent and visualizing the distribution using real-time using magnetic resonance imaging, physicians can make informed decisions about when to stop or adjust the infusion. However, manual segmentation of the images is tedious and affected by subjective preferences for window levels, image interpolation and personal biases about where to delineate the edge of the sloped shoulder of the infusion. This study presents a computational technique that uses a Gaussian Mixture Model to efficiently classify pixels as belonging to either the high-intensity infusate or low-intensity background. The algorithm was implemented as a distributable plug-in for the widely used imaging platform OsiriX®. Four independent operators segmented fourteen anonymized datasets to validate the tool’s performance. The datasets were intra-operative magnetic resonance images of infusions into the thalamus or putamen of non-human primates. The tool effectively reproduced the manual segmentation volumes, while significantly reducing intra-operator variability by 67±18%. The tool will be used to increase efficiency and reduce variability in upcoming clinical trials in neuro-oncology and gene therapy.  相似文献   

18.
Macrophages are key-cells in the initiation, the development and the regulation of the inflammatory response to bacterial infection. Macrophages are intensively and increasingly recruited in septic joints from the early phases of infection and the infiltration is supposed to regress once efficient removal of the pathogens is obtained. The ability to identify in vivo macrophage activity in an infected joint can therefore provide two main applications: early detection of acute synovitis and monitoring of therapy.In vivo noninvasive detection of macrophages can be performed with magnetic resonance imaging using iron nanoparticles such as ultrasmall superparamagnetic iron oxide (USPIO). After intravascular or intraarticular administration, USPIO are specifically phagocytized by activated macrophages, and, due to their magnetic properties, induce signal changes in tissues presenting macrophage infiltration. A quantitative evaluation of the infiltrate is feasible, as the area with signal loss (number of dark pixels) observed on gradient echo MR images after particles injection is correlated with the amount of iron within the tissue and therefore reflects the number of USPIO-loaded cells.We present here a protocol to perform macrophage imaging using USPIO-enhanced MR imaging in an animal model of septic arthritis, allowing an initial and longitudinal in vivo noninvasive evaluation of macrophages infiltration and an assessment of therapy action.  相似文献   

19.
The diagnostic capacities of currently available radiation diagnostic techniques in imaging some anatomic structures of the hip joint (HJ) were determined on the basis of studies of 70 sectional sets of HJs in children and adolescents aged 0 to 13 years through X-ray and anatomic comparisons. Magnetic resonance imaging (MRI) is the method of choice in visualizing the cartilaginous and soft-tissue structures of HJ in children and adolescents. MR-arthrography extends the capacities of the technique in imaging the articular surfaces and intraarticular structures of the joint. Contrast enhancement of the HJ cavity during X-ray study and computed tomography may be an alternative to MRI as it makes it possible to well visualize the cartilaginous head of the femur, the cartilaginous borders of the cotyloid cavity, the limbus, etc. Double contrasting enhances the capacities of detailed imaging of the articular surfaces, intraarticular structures, capsules, and ligamentous apparatus of HJ. The studies performed have specified the time course of anatomic changes during HJ growth and defined the method of choice or an alternative procedure of radiation techniques in the diagnosis of these changes, which is of great importance for early detection of pathological changes and for choice of therapeutic and diagnostic policy.  相似文献   

20.

Aims

The consequences of high radiation dose for patient and staff demand constant improvements in X-ray dose reduction technology. This study assessed non-inferiority of image quality and quantified patient dose reduction in interventional cardiology for an anatomy-specific optimised cine acquisition chain combined with advanced real-time image noise reduction algorithms referred to as ‘study cine’, compared with conventional angiography.

Methods

Fifty patients underwent two coronary angiographic acquisitions: one with advanced image processing and optimised exposure system settings to enable dose reduction (study cine) and one with standard image processing and exposure settings (reference cine). The image sets of 39 patients (18 females, 21 males) were rated by six experienced independent reviewers, blinded to the patient and image characteristics. The image pairs were randomly presented. Overall 85 % of the study cine images were rated as better or equal quality compared with the reference cine (95 % CI 0.81–0.90). The median dose area product per frame decreased from 55 to 26 mGy.cm2/frame (53 % reduction, p < 0.001).

Conclusion

This study demonstrates that the novel X-ray imaging technology provides non-inferior image quality compared with conventional angiographic systems for interventional cardiology with a 53 % patient dose reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号