首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxo-lipids, a large family of oxidized human lipoxygenase (hLOX) products, are of increasing interest to researchers due to their involvement in different inflammatory responses in the cell. Oxo-lipids are unique because they contain electrophilic sites that can potentially form covalent bonds through a Michael addition mechanism with nucleophilic residues in protein active sites and thus increase inhibitor potency. Due to the resemblance of oxo-lipids to LOX substrates, the inhibitor potency of 4 different oxo-lipids; 5-oxo-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid (5-oxo-ETE), 15-oxo-5,8,11,13-(Z,Z,Z,E)-eicosatetraenoic acid (15-oxo-ETE), 12-oxo-5,8,10,14-(Z,Z,E,Z)-eicosatetraenoic acid (12-oxo-ETE), and 13-oxo-9,11-(Z,E)-octadecadienoic acid (13-oxo-ODE) were determined against a library of LOX isozymes; leukocyte 5-lipoxygenase (h5-LOX), human reticulocyte 15-lipoxygenase-1 (h15-LOX-1), human platelet 12-lipoxygenase (h12-LOX), human epithelial 15-lipoxygenase-2 (h15-LOX-2), soybean 15-lipoxygenase-1 (s15-LOX-1), and rabbit reticulocyte 15-LOX (r15-LOX). 15-Oxo-ETE exhibited the highest potency against h12-LOX, with an IC50 = 1 ± 0.1 μM and was highly selective. Steady state inhibition kinetic experiments determined 15-oxo-ETE to be a mixed inhibitor against h12-LOX, with a Kic value of 0.087 ± 0.008 μM and a Kiu value of 2.10 ± 0.8 μM. Time-dependent studies demonstrated irreversible inhibition with 12-oxo-ETE and h15-LOX-1, however, the concentration of 12-oxo-ETE required (Ki = 36.8 ± 13.2 μM) and the time frame (k2 = 0.0019 ± 0.00032 s−1) were not biologically relevant. These data are the first observations that oxo-lipids can inhibit LOX isozymes and may be another mechanism in which LOX products regulate LOX activity.  相似文献   

2.
A series of 4,5-diaryl-1H-imidazole-2(3H)-thione was synthesized and their inhibitory potency against soybean 15-lipoxygenase and free radical scavenging activities were determined. Compound 11 showed the best IC50 for 15-LOX inhibition (IC50 = 4.7 μM) and free radical scavenging activity (IC50 = 14 μM). Methylation of SH at C2 position of imidazole has dramatically decreased the 15-LOX inhibition and radical scavenging activity as it can be observed in the inactive compound 14 (IC50 >250 μM). Structure activity similarity (SAS) showed that the most important chemical modification in this series was methylation of SH group and Docking studies revealed a proper orientation for SH group towards Fe core of the 15-LOX active site. Therefore it was concluded that iron chelating could be a possible mechanism for enzyme inhibition in this series of compounds.  相似文献   

3.
A series of 6-nitro-3-(m-tolylamino) benzo[d]isothiazole 1,1-dioxide analogues were synthesized and evaluated for their inhibition activity against 5-lipoxygenase (5-LOX) and microsomal prostaglandin E2 synthase (mPGES-1). These compounds can inhibit both enzymes with IC50 values ranging from 0.15 to 23.6 μM. One of the most potential compounds, 3g, inhibits 5-LOX and mPGES-1 with IC50 values of 0.6 μM, 2.1 μM, respectively.  相似文献   

4.
3-Arylfuran-2(5H)-one, a novel antibacterial pharmacophore targeting tyrosyl-tRNA synthetase (TyrRS), was hybridized with the clinically used fluoroquinolones to give a series of novel multi-target antimicrobial agents. Thus, twenty seven 3-arylfuran-2(5H)-one-fluoroquinolone hybrids were synthesized and evaluated for their antimicrobial activities. Some of the hybrids exhibited merits from both parents, displaying a broad spectrum of activity against resistant strains including both Gram-negative and Gram-positive bacteria. The most potent compound (11) in antibacterial assay shows MIC50 of 0.11 μg/mL against Multiple drug resistant Escherichia coli, being about 51-fold more potent than ciprofloxacin. The enzyme assays reveal that 11 is a potent multi-target inhibitor with IC50 of 1.15 ± 0.07 μM against DNA gyrase and 0.12 ± 0.04 μM against TyrRS, respectively. Its excellent inhibitory activities against isolated enzymes and intact cells strongly suggest that 11 deserves to further research as a novel antibiotic.  相似文献   

5.
A new series of pyrazole-hydrazone derivatives 4a-i were designed and synthesized, their chemical structures were confirmed by IR, 1H NMR, 13C NMR, MS spectral data and elemental analysis. IC50 values for all prepared compounds to inhibit COX-1, COX-2 and 5-LOX enzymes were determined in vitro. Compounds 4a (IC50 = 0.67 μM) and 4b (IC50 = 0.58 μM) showed better COX-2 inhibitory activity than celecoxib (IC50 = 0.87 μM) with selectivity index (SI = 8.41, 10.55 in sequent) relative to celecoxib (SI = 8.85). Also, compound 4a and 4b exhibited superior inhibitory activity against 5-LOX (IC50 = 1.92, 2.31 μM) higher than zileuton (IC50 = 2.43 μM). All target pyrazoles were screened for their ability to reduce nitric oxide production in LPS stimulated peritoneal macrophages. Compounds 4a, 4b, 4f and 4i displayed concentration dependent reduction and were screened for in vivo anti-inflammatory activity using carrageenan-induced rat paw edema assay. Compound 4f showed the highest anti-inflammatory activity (% edema inhibition = 15–20%) at all doses when compared to reference drug celecoxib (% edema inhibition = 15.7–17.5%). Docking studies were carried out to investigate the interaction of target compounds with COX-2 enzyme active site.  相似文献   

6.
In continuation of our previous efforts directed towards the development of potent and selective inhibitors of aldose reductase (ALR2), and to control the diabetes mellitus (DM), a chronic metabolic disease, we synthesized novel coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids and screened for their inhibitory activity against aldose reductase (ALR2), for the selectivity against aldehyde reductase (ALR1). Compounds were also screened against ALR1. Among the newly designed compounds, 6c, 11d, and 11g were selective inhibitors of ALR2. Whereas, (E)-3-(2-(2-(2-bromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one 6c yielded the lowest IC50 value of 0.16 ± 0.06 μM for ALR2. Moreover, compounds (E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6a; IC50 = 2.94 ± 1.23 μM for ARL1 and 0.12 ± 0.05 μM for ARL2) and (E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6e; IC50 = 1.71 ± 0.01 μM for ARL1 and 0.11 ± 0.001 μM for ARL2) were confirmed as dual inhibitors. Furthermore, compounds 6i, 6k, 6m, and 11b were found to be selective inhibitors for ALR1, among which (E)-3-(2-(2-((2-amino-4-chlorophenyl)(phenyl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6m) was most potent (IC50 = 0.459 ± 0.001 μM). Docking studies performed using X-ray structures of ALR1 and ALR2 with the given synthesized inhibitors showed that coumarinyl thiazole series lacks the carboxylate function that could interact with the anionic binding site being a common ALR1/ALR2 inhibitors trait. Molecular docking study with dual inhibitor 6e also suggested plausible binding modes for the ALR1 and ALR2 enzymes. Hence, the results of this study revealed that coumarinyl thiazole and oxadiazole derivatives could act as potential ALR1/ALR2 inhibitors.  相似文献   

7.
Four series of phenylpicolinamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (12ae, 13af, 14af and 15ai) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, PC-3 and MCF-7) and c-Met kinase. Five selected compounds (13b, 15b, 15d, 15e and 15f) were further evaluated for the activity against HepG2 and Hela cell lines. Eighteen of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 valuables in single-digit μM to nanomole range. Seven of them are equal to more active than positive control Foretinib against one or more cell lines. The most promising compound 15f showed superior activity to Foretinib, with the IC50 values of 1.04 ± 0.11 μM, 0.02 ± 0.01 μM and 9.11 ± 0.55 μM against A549, PC-3 and MCF-7 cell lines, which were 0.62 to 19.5 times more active than Foretinib (IC50 values: 0.64 ± 0.26 μM, 0.39 ± 0.11 μM, 9.47 ± 0.22 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that replacement of quinoline nucleus of the previous active compounds with 1H-pyrrolo[2,3-b]pyridine moiety maintained even improved the potent cytotoxic activity. The results suggested that the introduction of fluoro atoms to the aminophenoxy part of target compounds or the phenyl group of pyrimidine substituted on C-4 position was benefit for the activity.  相似文献   

8.
In the present study we have discovered compound 1, a benzo[1.3.2]dithiazolium ylide-based compound, as a new prototype dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (5-LOX). Compound 1 was initially discovered as a COX-2 inhibitor, resulting indirectly from the COX-2 structure-based virtual screening that identified compound 2 as a virtual hit. Compounds 1 and 2 inhibited COX-1 and COX-2 in mouse macrophages with IC50 in the range of 1.5–18.1 μM. Both compounds 1 and 2 were also found to be potent inhibitors of human 5-LOX (IC50 = 1.22 and 0.47 μM, respectively). Interestingly, compound 1 also had an inhibitory effect on tumor necrosis factor-α (TNF-α) production (IC50 = 0.44 μM), which was not observed with compound 2. Docking studies suggested the (S)-enantiomer of 1 as the biologically active isomer that binds to COX-2. Being a cytokine-suppressive dual COX/5-LOX inhibitor, compound 1 may represent a useful lead structure for the development of advantageous new anti-inflammatory agents.  相似文献   

9.
A series of novel quinolinone–chalcone hybrids and analogues were designed, synthesized and their biological activity against the mammalian stages of Trypanosoma brucei and Leishmania infantum evaluated. Promising molecular scaffolds with significant microbicidal activity and low cytotoxicity were identified. Quinolinone–chalcone 10 exhibited anti-parasitic properties against both organisms, being the most potent anti-L. infantum agent of the entire series (IC50 value of 1.3 ± 0.1 μM). Compounds 4 and 11 showed potency toward the intracellular, amastigote stage of L. infantum (IC50 values of 2.1 ± 0.6 and 3.1 ± 1.05 μM, respectively). Promising trypanocidal compounds include 5 and 10 (IC50 values of 2.6 ± 0.1 and 3.3 ± 0.1 μM, respectively) as well as 6 and 9 (both having IC50 values of <5 μM). Chemical modifications on the quinolinone–chalcone scaffold were performed on selected compounds in order to investigate the influence of these structural features on antiparasitic activity.  相似文献   

10.
Six compounds were synthesized with piperazine in linker region and hydroxamate as Zinc Binding Group (ZBG). They were screened against three cancer cell-lines (NCIH460; HCT116; U251). Compounds 5c and 5f with GI50 value of 9.33 ± 1.3 μM and 12.03 ± 4 μM, respectively, were tested for their inhibitory potential on hHDAC8. Compound 5c had IC50 of 33.67 μM. Compounds were also screened for their anticancer activity against HL60 human promyelocytic leukemia cell line due to the presence of pharmacophoric features of RR inhibitors in them. Compound 5c had IC50 of 0.6 μM at 48 h.  相似文献   

11.
Twenty terpenoids, including a new triterpenoid (1) and a new monoterpenoid (20), were isolated from the branches and leaves of Pyrus pashia. The structures of two new compounds were determined to be 2α, 3β, 27-trihydroxyolean-12-en-28-oic acid (1) and (4α)-3-(5,5-dimethyltetrahydrofuranyl)-1-buten-3-ol 3-O-β-d-glucopyranoside (20) on the basis of spectroscopic analysis (IR, HRESIMS, 1D and 2D NMR) and chemical method. Some of the isolated compounds were evaluated for their cytotoxic activity against a panel of human cancer cell lines by MTT assay, using cisplatin as a positive control. Compound 14 exhibited cytotoxic activities against A549 (IC50 = 19.18 ± 4.26 μM), Hela (IC50 = 12.56 ± 3.89 μM), SGC7901 (IC50 = 10.48 ± 1.95 μM) and NHI-1975 (IC50 = 7.38 ± 2.31 μM) cell lines as well as compound 12 displayed cytotoxic activities against A549 (IC50 = 14.71 ± 1.47 μM) and Hela (IC50 = 12.22 ± 1.88 μM) cell lines.  相似文献   

12.
Bioassay guided fractionation of the roots of Lantana montevidensis (Verbenaceae) has resulted in the isolation and identification of three new triterpenoids; 13β-hydroxy-3-oxo-olean-11-en-28-oic acid (1), 12β,13β-dihydroxyolean-3-oxo-28-oic acid (2) and 12β,13β,22β-trihydroxyolean-3-oxo-28-oic acid (3) in addition to nine known compounds: oleanonic acid (4), oleanolic acid (5), 3β,25β-dihydroxy-olean-12-en-28-oic acid (6), lantadene A (7), 19α-hydroxy-3-oxo-olean-12-en-28-oic acid (8) pomolic acid (9), camaric acid (10) together with β-sitosterol (11) and β-sitosterol-3-O-β-d-glucoside (12). The structures of the isolated metabolites were elucidated based on comprehensive 1D and 2D NMR spectroscopic data as well as HR-ESI–MS. The extracts and the isolated metabolites were evaluated for their antiprotozoal and antimicrobial activities. Compound 2 showed antibacterial activity against Staphylococcus aureus and methicillin resistant S. aureus with IC50 values against both organisms of 2.1 μM and compound 10 showed activity against same organisms with IC50 values 8.74 and 8.09 μM, respectively, compared to the positive control ciprofloxacin (IC50 = 0.3 μM against S. aureus and MRSA). Compounds 1, 4, 5, 6, and 10 showed moderate antileishmanial activity with IC50 values ranging between (2.54–14.95 μM) and IC90 values ranging between (11.90–19.47 μM), using pentamidine as a control (IC50 values 2.09  16.8 μM) and IC90 values ranging between (4.72  16.8 μM). These compounds also showed highly potent antitrypanosomal activity with IC50 values ranging between (0.39–7.12 μM) and IC90 values ranging between (1.91–10.51 μM), which are more efficient than the DFMO, the antitrypanosomal drug employed as positive control (IC50 and IC90values 11.82 and 30.82 μM).  相似文献   

13.
Two new lignans, gymnothelignans V (1) and W (2), were isolated from a methanol extraction of Gymnotheca chinensis Decne. Their structures were established on the basis of extensive 1D and 2D NMR spectroscopy. Compound 1 exhibited moderate cytotoxicity against the HCT116, HCT15, A549, MCF-7 and HepG2 cancer cell lines with IC50 values of 45.1 μM, 26.9 μM, 49.6 μM, 30.0 μM and 49.7 μM, respectively. Compound 2 exhibited weak cytotoxicity against the A549 cancer cell line with an IC50 value of 41.3 μM.  相似文献   

14.
Recently, many natural products, especially some plant-derived polyphenols have been found to exert antiviral effects against influenza virus and show inhibitory activities on neuraminidases (NAs). In our research, we took caffeic acid which contained two phenolic hydroxyl groups as the basic fragment to build a small compound library with various structures. The enzyme inhibition result indicated that some compounds exhibited moderate activities against NA and compound 15d was the best with IC50 = 7.2 μM and 8.5 μM against N2 and N1 NAs, respectively. The 3,4-dihydroxyphenyl group from caffeic acid was important for the activity according to the docking analysis. Besides, compound 15d was found to be a non-competitive inhibitor with Ki = 11.5 ± 0.25 μM by the kinetic study and also presented anti-influenza virus activity in chicken embryo fibroblast cells. It seemed promising to discover more potent NA inhibitors from caffeic acid derivatives to cope with influenza virus.  相似文献   

15.
Four series of phenylpyrimidine-carboxamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (14ae, 15ag, 16ae and 17ag) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, PC-3 and MCF-7). Four selected compounds (15e, 16ab and 17a) were further evaluated for the activity against c-Met kinase, HepG2 and Hela cell lines. Most of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 valuables in single-digit μM to nanomole range. Eleven of them are equal to more active than positive control Foretinib against one or more cell lines. The most promising compound 15e showed superior activity to Foretinib against A549, PC-3 and MCF-7 cell lines, with the IC50 values of 0.14 ± 0.08 μM, 0.24 ± 0.07 μM and 0.02 ± 0.01 μM, which were 4.6, 1.6 and 473.5 times more active than Foretinib (0.64 ± 0.26 μM, 0.39 ± 0.11 μM, 9.47 ± 0.22 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that the replacement of phenylpicolinamide scaffold with phenylpyrimidine fragment of the target compounds was benefit for the activity. What’s more, the introduction of fluoro atom to the aminophenoxy part played no significant impact on the activity and any substituent group on aryl group is unfavourable for the activity.  相似文献   

16.
Three series of homologous dendritic amphiphiles—RCONHC(CH2CH2COOH)3, 1(n); ROCONHC(CH2CH2COOH)3, 2(n); RNHCONHC(CH2CH2COOH)3, 3(n), where R = n-CnH2n+1 and n = 13–22 carbon atoms—were assayed for their potential to serve as antimicrobial components in a topical vaginal formulation. Comparing epithelial cytotoxicities to the ability of these homologues to inhibit HIV, Neisseria gonorrhoeae, and Candida albicans provided a measure of their prophylactic/therapeutic potential. Measurements of the ability to inhibit Lactobacillus plantarum, a beneficial bacterium in the vagina, and critical micelle concentrations (CMCs), an indicator of the potential detergency of these amphiphiles, provided additional assessments of safety. Several amphiphiles from each homologous series had modest anti-HIV activity (EC50 = 110–130 μM). Amphiphile 2(18) had the best anti-Neisseria activity (MIC = 65 μM), while 1(19) and 1(21) had MICs against C. albicans of 16 and 7.7 μM, respectively. Two measures of safety showed promise as all compounds had relatively low cytotoxic activity (EC50 = 210–940 μM) against epithelial cells and low activity against L. plantarum, 1(n), 2(n), and 3(n) had MICs ? 490, 1300, and 940 μM, respectively. CMCs measured in aqueous triethanolamine and in aqueous potassium hydroxide showed linear dependences on chain length. As expected, the longest chain in each series had the lowest CMC—in triethanolamine: 1(21), 1500 μM; 2(22), 320 μM; 3(22), 340 μM, and in potassium hydroxide: 1(21), 130 μM; 3(22), 40 μM. The CMC in triethanolamine adjusted to pH 7.4 was 400 μM for 1(21) and 3900 μM for 3(16). The promising antifungal activity, low activity against L. plantarum, relatively high CMCs, and modest epithelial cytotoxicity in addition to their anti-Neisseria properties warrant further design studies with dendritic amphiphiles to improve their safety indices to produce suitable candidates for antimicrobial vaginal products.  相似文献   

17.
In our previous study, we designed a series of pyrazole derivatives as novel COX-2 inhibitors. In order to obtain novel dual inhibitors of COX-2 and 5-LOX, herein we designed and synthesized 20 compounds by hybridizing pyrazole with substituted coumarin who was reported to exhibit 5-LOX inhibition to select potent compounds using adequate biological trials sequentially including selective inhibition of COX-2 and 5-LOX, anti-proliferation in vitro, cells apoptosis and cell cycle. Among them, the most potent compound 11g (IC50 = 0.23 ± 0.16 μM for COX-2, IC50 = 0.87 ± 0.07 μM for 5-LOX, IC50 = 4.48 ± 0.57 μM against A549) showed preliminary superiority compared with the positive controls Celecoxib (IC50 = 0.41 ± 0.28 μM for COX-2, IC50 = 7.68 ± 0.55 μM against A549) and Zileuton (IC50 = 1.35 ± 0.24 μM for 5-LOX). Further investigation confirmed that 11g could induce human non-small cell lung cancer A549 cells apoptosis and arrest the cell cycle at G2 phase in a dose-dependent manner. Our study might contribute to COX-2, 5-LOX dual inhibitors thus exploit promising novel cancer prevention agents.  相似文献   

18.
A new pterocarpan glycoside, glycinol-3-O-β-d-glucopyranoside (1), and a new dihydrochalcone glycoside, ismaeloside A (2), were isolated together with 13 known compounds, including several flavonoids (38), lignans (911), and phenolic compounds (1215), from the methanol extract of the aerial parts of Ducrosia ismaelis. The chemical structures of these compounds were elucidated from spectroscopic data and by comparison of these data with previously published results. The anti-osteoporotic and antioxidant activities of the isolated compounds were assessed using tartrate-resistant acid phosphatase (TRAP), oxygen radical absorbance capacity (ORAC), and reducing capacity assays. Compound 15 exhibited a dose-dependent inhibition of osteoclastic TRAP activity with a TRAP value of 86.05 ± 6.55% of the control at a concentration of 10 μM. Compounds 1, 35, and 8 showed potent peroxyl radical-scavenging capacities with ORAC values of 22.79 ± 0.90, 25.57 ± 0.49, 20.41 ± 0.63, 26.55 ± 0.42, and 24.83 ± 0.12 μM Trolox equivalents (TE) at 10 μM, respectively. Only compound 9 was able to significantly reduce Cu(I) with 23.44 μM TE at a concentration of 10 μM. All of the aforementioned compounds were isolated for the first time from a Ducrosia species.  相似文献   

19.
A series of bis-aromatic amides was designed, synthesized, and evaluated as a new class of inhibitors with IC50 values in the micromolar range against protein tyrosine phosphatase 1B (PTP1B). Among them, compound 15 displayed an IC50 value of 2.34 ± 0.08 μM with 5-fold preference over TCPTP. More importantly, the treatment of CHO/HIR cells with compound 15 resulted in increased phosphorylation of insulin receptor (IR), which suggested extensive cellular activity of compound 15. These results provided novel lead compounds for the design of inhibitors of PTP1B as well as other PTPs.  相似文献   

20.
A novel series of 2-(3-phenethyl-4(3H)quinazolin-2-ylthio)-N-substituted anilide and substituted phenyl 2-(3-phenethyl-4(3H) quinazolin-2-ylthio)acetate were designed, synthesized and evaluated for their in-vitro antitumor activity. Compound 15 possessed remarkable broad-spectrum antitumor activity which almost sevenfold more active than the known drug 5-FU with GI50 values of 3.16 and 22.60 μM, respectively. Compound 15 exhibited remarkable growth inhibitory activity pattern against renal cancer (GI50 = 1.77 μM), colon cancer (GI50 = 2.02 μM), non-small cell lung cancer (GI50 = 2.04 μM), breast cancer (GI50 = 2.77 μM), ovarian cancer (GI50 = 2.55 μM) and melanoma cancer (GI50 = 3.30 μM). Docking study was performed for compound 15 into ATP binding site of EGFR-TK which showed similar binding mode to erlotinib.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号