首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conformationally constrained amino acid analogs are widely used to probe the bioactive conformation of peptides. In this paper we report on the synthesis of hexafunctional allose-templated l- and d-hydroxyornithine and l- and d-hydroxyarginine analogs in which the allose-based polyol scaffold constrains the side chain of hydroxyornithine and hydroxyarginine in an extended conformation. The partially protected building blocks were selected for future use in solid-phase peptide synthesis using the Fmoc-strategy. The synthesis starts from a previously prepared C-glucosyl glycine analog. Multiple chemical protection-deprotection steps and an oxidation are used to prepare 3-keto-C-glucosyl analogs that serve as a precursor to install an amino function via reductive amination. Guanidinylation of the amino group provides access to allose-templated hydroxyarginine analogs. Both hexafunctional building blocks are further chemically modified to provide suitable protection for solid-phase peptide synthesis using the Fmoc-strategy.  相似文献   

2.
We report here a range of new sucrose derivatives obtained from '3-ketosucrose' in aqueous medium with few reaction steps. As an intermediate, 3-amino-3-deoxy-alpha-D-allopyranosyl beta-D-fructofuranoside (1) was obtained via the classical route of reductive amination with much improved yield and high stereoselectivity. Building blocks for polymerization were synthesized by introduction of acrylic-type side chains, for example, with methacrylic anhydride. Corresponding polymers were synthesized. Aminoacyl and peptide conjugates were obtained through conventional peptide synthesis with activated and protected amino acids. Deprotection yielded new glycoderivatives having an unconventional substitution pattern, namely 3-(aminoacylamino) allosaccharides. Both mono- and di-peptide conjugates of allosucrose have been synthesized.  相似文献   

3.
A method is described for isolating lectins in pure form and quantitative yield in a single step by affinity chromatography on aminoethyl polyacrylamide gels containing reductively aminated disaccharide residues. The affinity columns were prepared in two steps: (a) direct reductive amination of the disaccharide and aminoethyl gel with sodium cyanoborohydride in aqueous solution at pH 9; (b) N-acetylation of excess amino groups. Affinity columns prepared by reductive amination of lactose, melibiose, maltose, and di-N-acetylchitobiose were used to purify the following lectins: lactose, peanut, castor bean; melibiose, Bandeiraea simplicifolia; maltose, jack bean, common lentil; di-N-acetylchitobiose, wheat germ. These columns are extremely stable, have good flow rates, and high binding capacities.  相似文献   

4.
Protected Nalpha-(aminoallyloxycarbonyl) and Nalpha-(carboxyallyl) derivatives of all natural amino acids (except proline), and their chiral inverters, were synthesized using facile and efficient methods and were then used in the synthesis of Nalpha-backbone cyclic peptides. Synthetic pathways for the preparation of the amino acid building units included alkylation, reductive amination and Michael addition using alkylhalides, aldehydes and alpha,beta-unsaturated carbonyl compounds, and the corresponding amino acids. The resulting amino acid prounits were then subjected to Fmoc protection affording optically pure amino acid building units. The appropriate synthetic pathway for each amino acid was chosen according to the nature of the side-chain, resulting in fully orthogonal trifunctional building units for the solid-phase peptide synthesis of small cyclic analogs of peptide loops (SCAPELs). Nalpha-amino groups of building units were protected by Fmoc, functional side-chains were protected by t-Bu/Boc/Trt and N-alkylamino or N-alkylcarboxyl were protected by Alloc or Allyl, respectively. This facile method allows easy production of a large variety of amino acid building units in a short time, and is successfully employed in combinatorial chemistry as well as in large-scale solid-phase peptide synthesis. These building units have significant advantage in the synthesis of peptido-related drugs.  相似文献   

5.
Fourteen new functionally active amino acid and peptide derivatives of the antibiotics tylosin, desmycosin, and 5-O-mycaminosyltylonolide were synthesized in order to study the interaction of the growing polypeptide chain with the ribosomal tunnel. The conjugation of various amino acids and peptides with a macrolide aldehyde group was carried out by two methods: direct reductive amination with the isolation of the intermediate Schiff bases or through binding via oxime using the preliminarily obtained derivatives of 2-aminooxy-acetic acid.  相似文献   

6.
To improve the assembly of backbone cyclic peptides, N-functionalized dipeptide building units were synthesized. The corresponding N-aminoalkyl or N-carboxyalkyl amino acids were formed by alkylation or reductive alkylation of amino acid benzyl or tert-butyl esters. In the case of N-aminoalkyl amino acid derivatives the aldehydes for reductive alkylation were obtained from N,O-dimethyl hydroxamates of N-protected amino acids by reduction with LiAlH4. N-carboxymethyl amino acids were synthesized by alkylation using bromoacetic acid ester and the N-carboxyethyl amino acids via reductive alkylation using aldehydes derived from formyl Meldrums acid. Removal of the carboxy protecting group leads to free N-alkyl amino acids of very low solubility in organic solvents, allowing efficient purification by extraction of the crude product. These N-alkyl amino acids were converted to their tetramethylsilane-esters by silylation with N,O-bis-(trimethylsilyl)acetamide and could thus be used for the coupling with Fmoc-protected amino acid chlorides or fluorides. To avoid racemization the tert-butyl esters of N-alkyl amino acids were coupled with the Fmoc-amino acid halides in the presence of the weak base collidine. Both the N-aminoalkyl and N-carboxyalkyl functionalized dipeptide building units could be obtained in good yield and purity. For peptide assembly on the solid support, the allyl type protection of the branching moiety turned out to be most suitable. The Fmoc-protected N-functionalized dipeptide units can be used like any amino acid derivative under the standard conditions for Fmoc-solid phase synthesis.  相似文献   

7.
陈曦  高秀珍  朱敦明 《微生物学报》2017,57(8):1249-1261
氨基酸脱氢酶催化可逆的氨基酸氧化脱氨和酮酸的不对称还原胺化反应,热力学上反应平衡倾向于生成氨基酸方向,从原子经济学和对环境影响的角度来看,是具有极大优势的氨基酸合成方法之一。本文将主要阐述近年来在?-氨基酸脱氢酶催化机理、分子改造和合成应用方面的研究进展。  相似文献   

8.
The catabolism of branched chain amino acids, especially valine, appears to play an important role in furnishing building blocks for macrolide and polyether antibiotic biosyntheses. To determine the active site residues of ValDH, we previously cloned, partially characterized, and identified the active site (lysine) of Streptomyces albus ValDH. Here we report further characterization of S. albus ValDH. The molecular weight of S. albus ValDH was determined to be 38 kDa by SDS-PAGE and 67 kDa by gel filtration chromatography indicating that the enzyme is composed of two identical subunits. Optimal pHs were 10.5 and 8.0 for dehydrogenase activity with valine and for reductive amination activity with -ketoisovaleric acid, respectively. Several chemical reagents, which modify amino-acid side chains, inhibited the enzyme activity. To examine the role played by the residue for enzyme specificity, we constructed mutant ValDH by substituting alanine for glycine at position 124 by site-directed mutagenesis. This residue was chosen because it has been considered to be important for substrate discrimination by phenylalanine dehydrogenase (PheDH) and leucine dehydrogenase (LeuDH). The Ala-124–Gly mutant enzyme displayed lower activities toward aliphatic amino acids, but higher activities toward L-phenylalanine, L-tyrosine, and L-methionine compared to the wild type enzyme suggesting that Ala-124 is involved in substrate binding in S. albus ValDH.  相似文献   

9.
A series of novel 3-substituted 2-oxobutanoic acids were prepared and incubated with leucine dehydrogenase giving in one case both a kinetic resolution at C-3 and reductive amination of the ketone. This is the first example of an amino acid dehydrogenase catalysed kinetic resolution and reductive amination.  相似文献   

10.
Amphiphilic lysine-ligated neomycin B building blocks were prepared by reductive amination of a protected C5″-modified neomycin B-based aldehyde and side chain-unprotected lysine or lysine-containing peptides. It was demonstrated that a suitably protected lysine-ligated neomycin B conjugate (NeoK) serves as a building block for peptide synthesis, enabling incorporation of aminoglycoside binding sites into peptides. Antibacterial testing of three amphiphilic lysine-ligated neomycin B conjugates against a representative panel of Gram-positive and Gram-negative strains demonstrates that C5″-modified neomycin-lysine conjugate retains antibacterial activity. However, in most cases the lysine-ligated neomycin B analogs display reduced potency against Gram-positive strains when compared to unmodified neomycin B or unligated peptide. An exception is MRSA where an eightfold enhancement was observed. When compared to unmodified neomycin B, the prepared lysine-neomycin conjugates exhibited a 4–8-fold enhanced Gram-negative activity against Pseudomonas aeruginosa and up to 12-fold enhanced activity was observed when compared to unligated reference peptides.  相似文献   

11.
Summary The possibility of amino acids biosynthesis from sucrose, metabolites of Krebs cycle or glyoxylate and ammonium by intact bacteroids has been studied. The suspension of intact Rhizobium lupini bacteroids in phosphate buffer solution pH 7.8 was shown to catalyse the biosynthesis from sucrose and ammonium of some amino acids, such as alanine, aspartic and glutamic acids, glycine and serine. The yield of alanine and aspartic acid was 2.5–3 times higher than that of other amino acids, which were formed in almost equal quantities. Intact bacteroids were also found to catalyse the biosynthesis of aspartic and glutamic acids, alanine and glycine from ammonium and Krebs cycle metabolites such as fumaric acid (FA), oxaloacetic acid (OAA), pyruvic acid (PA), a-ketoglutaric acid (a-KGA), malic acid (MA), as well as from glyoxylic acid (GOA). The biosynthesis of aspartic acid from fumaric acid was dominant. Besides that, the suspension of intact bacteroids catalysed transamination of aspartic and glutamic acids, the transamination of aspartic acid being especially intense with -KGA and GOA. Aspartic acid was synthesized most efficiently through the amination of fumaric acid, while glutamic acid was better synthesized through the transamination of aspartic acid with -KGA than through reductive amination of -KGA.The experimental data proved that intact bacteroids posess Krebs cycle enzymes and primary ammonia assimilation enzymes. This enzyme complex permits bacteroids to detoxify ammonia, which they produce using sucrose and metabolites of Krebs cycle as the sources of carbon.The data obtained are of great interest as they prove the importance of bacteroids in the synthesis of amino acids from ammonium which is formed in the course of N2-fixation, and sucrose available from leaves.  相似文献   

12.
Synthetic glycoproteins can be prepared by reductive amination of protein and reducing disaccharide in the presence of sodium cyanoborohydride. The reaction proceeds readily in aqueous solutions over a broad pH range to give high degrees of substitution. The degree of substitution can be determined by amino acid analysis, as the secondary amine linkage formed by reductive amination in stable to acid-catalyzed protein hydrolysis conditions. In order to demonstrate that coupling occurs to lysine residues, synthetic α-N-1-(1-deoxyglucitol)-lysine and ?-N-1-(1-deoxyglucitol)-lysine were prepared and compared with bovine serum albumin conjugates of maltose, cellobiose, lactose, and melibiose by amino acid analysis after acid hydrolysis. These studies demonstrate that the expected secondary amine linkages are formed with the ?-amino groups of lysine.  相似文献   

13.
A short and highly efficient route to the α-anomer of a furanoid sugar-aza-crown ether was developed by a one-pot reductive amination of an α-anomer C-ribosyl azido aldehyde. In addition, the β-anomer furanoid sugar-aza-crown ether was synthesized from a linear disaccharide precursor via amidation and then followed by microwave-assisted amide reduction.  相似文献   

14.
Acylphosphonic acids, R-CO-PO(OH)2, have been synthesized by the steps [formula: see text] of which the last is new and provides a mild method for de-esterifying acylphosphonic acids. Their reductive amination gives a simple way of making 1-aminoalkylphosphonic acids. Acetylphosphonic acid inhibited NAD+ reduction by pyruvate with the pyruvate dehydrogenases from Escherichia coli and Bacillus stearothermophilus. The inhibition was competitive with pyruvate, with Ki of 6 microM for the E. coli enzyme (pyruvate Km 0.5 mM) and one of 0.4 mM of the B. stearothermophilus enzyme (pyruvate Km 0.1 mM). Acetylphosphonate and its monomethyl ester are substates for pig heart lactate dehydrogenase, with Km values of 15 mM and 10 mM respectively (pyruvate Km 0.05 mM) and specificity constants one thousandth that for pyruvate.  相似文献   

15.
Reductive amination via Schiff's base formation is a widely used reaction for laboratory and industrial applications ranging from protein immobilization to nanoparticle synthesis. One major limitation of this reaction is the slow kinetics and hence, it can take several days for the reaction to reach completion. Here we demonstrate that electromagnetic microwave can be used to accelerate the rate of reduction amination. To demonstrate proof of concept, we utilized the reductive amination between reducing end of dextran and primary amine from N-Boc-ethylenediamine as a model reaction. The reaction was conducted at room temperature to demonstrate that the enhancement was mainly due to electromagnetic effects of the microwave rather than thermal effects. We show that reductive amination reaction time was reduced from 72 h to 4 h using microwave irradiation. These results indicate non-thermal microwave effects to expedite reductive amination for synthesizing copolymers. The efficient conjugation of dextran using reductive amination provides an important tool for developing biocompatible copolymers using carbohydrates.  相似文献   

16.
Diamino acids are commonly found in bioactive compounds, yet only few are commercially available as building blocks for solid-phase peptide synthesis. In the present work a convenient, inexpensive route to multiple-charged amino acid building blocks with varying degree of hydrophobicity was developed. A versatile solid-phase protocol leading to selectively protected amino alcohol intermediates was followed by oxidation to yield the desired di- or polycationic amino acid building blocks in gram-scale amounts. The synthetic sequence comprises loading of (S)-1-(p-nosyl)aziridine-2-methanol onto a freshly prepared trityl bromide resin, followed by ring opening with an appropriate primary amine, on-resin N(β)-Boc protection of the resulting secondary amine, exchange of the N(α)-protecting group, cleavage from the resin, and finally oxidation in solution to yield the target γ-aza substituted building blocks having an Fmoc/Boc protection scheme. This strategy facilitates incorporation of multiple positive charges into the building blocks provided that the corresponding partially protected di- or polyamines are available. An array of compounds covering a wide variety of γ-aza substituted analogs of simple neutral amino acids as well as analogs displaying high bulkiness or polycationic side chains was prepared. Two building blocks were incorporated into peptide sequences using microwave-assisted solid-phase peptide synthesis confirming their general utility.  相似文献   

17.
Amino acids and peptides have been attached to the C-6 hydroxyls of the galactose and the N-acetylgalactosamine by first oxidizing the C-6 hydroxyls to the aldehydes by galactose oxidase in the presence of small amounts of catalase, followed by reductive amination (α-amino group) in the presence of cyanoborohydride. The activity of oxidized antifreeze glycoprotein was >70% of the original, and considerable activity has been retained with some substitutions on reductive amination using cyanoborohydride. The following were some activities retained (as compared with the oxidized antifreeze glycoprotein): Gly, 64; (Gly)2, 88; (Gly)3, 82; (Gly)4, 70; Gly-Gly-NH2, 44, Gly-Glu, 13; Gly-Leu, 40; Gly-Tyr, 57; Gly-Gly-Leu, 50; Gly-Gly-Phe, 30; and Gly-Gly-Val, 35. On amino acid analysis of acid hydrolysates, some release of the amino acid attached by amination occurred; e.g., Gly-Tyr gave 0.26 Gly and 0.49 Tyr per disaccharide.  相似文献   

18.
19.
Reductive amination of 3-deoxy-D-manno-octulosonic acid (Kdo) with allylamine (AllN) or 2-(4-aminophenyl)ethylamine (APEA) yields epimer pairs of 2-N-allylamino and 2-N-[2-(4-aminophenyl)ethylamino]-2,3-dideoxy-D-glycero-D-galacto- and-2,3-dideoxy-D-glycero-D-talo-octonic acid. The yields were 50–60% due to reduction of Kdo to the respective polyols as side reaction products. Mass spectrometric analyses proved the amination derivatives to be the expected glycamines. Nuclear magnetic resonance (NMR) studies were performed on 2-N-allylamino-2,3-dideoxyoctonic acid which represents the chain terminus of allylaminated oligosaccharides derived from bacterial lipopolysaccharides (LPS) after acid hydrolysis and reductive allylamination.  相似文献   

20.
Schizophyllan having folate-appendages was synthesized from native schizophyllan through NaIO(4)-oxidation and the subsequent reductive amination in aqueous ammonia followed by amido-coupling with folic acid. The resulting folate-appended schizophyllan can form stable complex with poly(dA), show specific affinity toward folate binding protein, and mediate effective antisense activity in cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号