首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When docosahexaenoic acid (DHA)-producing Moritella marina strain MP-1 was cultured in the medium containing 0.5 μ g cerulenin ml−1, an inhibitor for fatty acid biosynthesis, the cells grew normally, but the␣content of DHA in the total fatty acids increased from 5.9–19.4%. The DHA yield of M. marina strain MP-1 cells also increased from 4 to 13.7 mg l−1 by cerulenin treatment. The same effect of cerulenin was observed in eicosapentaenoic acid (EPA)-producing Shewanella marinintestina strain IK-1 grown in the medium containing 7.5 μg cerulenin ml−1, and the cerulenin treatment increased the EPA yield from 1.6 to 8 mg l−1. The use of cerulenin is, therefore, advantageous to increase the content of intracellular polyunsaturated fatty acids (PUFA) in particular PUFA-containing phospholipids in bacterial cells.An erratum to this article can be found at .  相似文献   

2.
3.
Short-term exposure to ultraviolet A (UVA) radiation can directly injure our skin through inflammatory response and indirectly through oxidative stress, triggering polyunsaturated fatty acid (PUFA) peroxidation in skin cell membrane and formation of DNA adduct, 8-hydroxy-2′-deoxyguanosine (8-OHdG). It is known that UVA exposure leads to photoaging, immunosuppression and skin cancer. However, the changes in PUFA and its oxidized metabolites, and cell cycle after short UVA exposure, are debatable. In this study, human keratinocytes (HaCaT) were exposed to low dose (5?J/cm2) and high dose (20 J/cm2) of UVA and assessed immediately, 8?h, 12?h, and 24?h post-treatment. Both doses showed a transient suppression in S-phase after 8?h of UVA exposure, and G2/M phase arrest after 12-h UVA exposure in the cell cycle but subsequently returned to normal cycle. Also, no observable DNA damage took place, where 8-OHdG levels were below par after 24-h UVA exposure. A dose of 20 J/cm2 UVA stimulated significant amount of arachidonic acid, n-3 docosapentaenoic acid, and docosahexaenoic acid (DHA) but lowered adrenic acid and eicospentaenoic acid after 24-h exposure. Among the 43 oxidized PUFA products determined, enzyme-dependent oxidized PUFAs, namely, 14-hydroxy-DHA (HDoHE) level reduced, and 8- and 13-HDoHE levels elevated significantly in a linear trend with post-treatment time. Out of the nonenzymatic oxidized PUFAs, a significant linear trend with post-treatment time was shown on the reduction of 5-F2t-Isoprostane (IsoP), 15-F2t-IsoP, Isofurans, 5-F3t-IsoP, Neurofurans, and 20-HDoHE. Our observations indicate oxidative stress through short UVA exposure on human keratinocytes did not have detrimental consequences.  相似文献   

4.
In the present study we have investigated the effect of partially purified retinal fatty acid binding protein (FABP) against nonenzymatic lipid peroxidation stimulated by hydroperoxides derived from fatty acids on rod outer segment (ROS) membranes. Linoleic acid hydroperoxide (LHP), arachidonic acid hydroperoxide (AHP) and docosahexaenoic acid hydroperoxide (DHP) were prepared from linoleic acid, arachidonic acid and docosahexaenoic acid, respectively, by means of lipoxidase. ROS membranes were peroxidized using an ascorbate-Fe(+2) experimental system. The effect on the peroxidation of ROS containing different amounts of lipid hydroperoxides (LOOH) was studied; ROS deprived of exogenously added LOOH was utilized as control. The degradative process was measured simultaneously by determining chemiluminescence and fatty acid composition of total lipids isolated from ROS. The addition of hydroperoxides to ROS produced a marked increase in light emission. This increase was hydroperoxide concentration-dependent. The highest value of activation was produced by DHP. The decrease percentage of the more polyunsaturated fatty acids (PUFAs) (20:4 n6 and 22:6 n3) was used to evaluate the fatty acid alterations observed during the process. We have compared the fatty acid composition of total lipids isolated from native ROS and peroxidized ROS that were incubated with and without hydroperoxides. The major difference in the fatty acid composition was found in the docosahexaenoic acid content, which decreased by 45.51+/-1.07% in the peroxidized group compared to native ROS; the decrease was even higher, 81.38+/-1.11%, when the lipid peroxidation was stimulated by DHP. Retinal FABP was partially purified from retinal cytosol. Afterwards, we measured its effect on the reaction of lipid peroxidation induced by LOOH. As a result, we observed a decrease of chemiluminescence (inhibition of lipid peroxidation) when adding increasing amounts (0.2 to 0.6 mg) of retinal FABP to ROS. The inhibitory effect reaches its highest value in the presence of DHP (41.81+/-10.18%). Under these conditions, bovine serum albumin (BSA) produces a smaller inhibitory effect (20.2+/-7.06%) than FABP.  相似文献   

5.
6.
Lipid peroxidation intensity is compared in Ehrlich Ascites Cell and in liver mitochondria, prepared from tumor bearing mice. Malondialdehyde formation is negligible in intact ascites tumour mitochondria, but it is significantly increased in permeabilised mitochondria and in isolated mitochondrial membranes. We suggest that the resistance against oxidative stress is a consequence of efficient protective mechanisms operating in the intact tumour mitochondria and the low level of polyunsaturated fatty acids under these circumstances cannot be the rate limiting factor in lipid peroxidation. Succinate, an effective inhibitor of mitochondrial lipid peroxidation in liver, cannot determine malondialdehyde formation in ascites tumour mitochondria.  相似文献   

7.
Insect blood (hemolymph) contains prophenoloxidase, a proenzyme that is activated to protective phenoloxidase when the insect is damaged or challenged with microorganisms. The Gram-negative bacterium Photorhabdus luminescens kills the lepidopteron insect Manduca sexta by using a variety of toxins. We screened P. luminescens and Photorhabdus asymbiotica cosmid libraries in an Escherichia coli host against previously activated M. sexta hemolymph phenoloxidase and identified three overlapping cosmid clones from P. luminescens and five from P. asymbiotica that suppressed the activity of the enzyme both in vitro and in vivo . Genome alignments of cosmid end sequences from both species confirmed that they contained orthologous loci. We examined one of the cosmids from P. luminescens in detail: it induced the formation of significantly fewer melanotic nodules, proliferated faster within the insect host and was significantly more virulent towards fifth-stage larvae than E. coli control bacteria. Insertional mutagenesis of this cosmid yielded 11 transposon mutants that were no longer inhibitory. All of these were insertions into a single 5.5-kb locus, which contained three ORFs and was homologous to the maltodextrin phosphorylase locus of E. coli . The implications of this novel inhibitory factor of insect phenoloxidase for Photorhabdus virulence are discussed.  相似文献   

8.
The omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) possesses potent anti-inflammatory properties and has shown therapeutic benefit in numerous inflammatory diseases. However, the molecular mechanisms of these anti-inflammatory properties are poorly understood. DHA is highly susceptible to peroxidation, which yields an array of potentially bioactive lipid species. One class of compounds are cyclopentenone neuroprostanes (A(4)/J(4)-NPs), which are highly reactive and similar in structure to anti-inflammatory cyclopentenone prostaglandins. Here we show that a synthetic A(4)/J(4)-NP, 14-A(4)-NP (A(4)-NP), potently suppresses lipopolysaccharideinduced expression of inducible nitric-oxide synthase and cyclooxygenase-2 in macrophages. Furthermore, A(4)-NP blocks lipopolysaccharide-induced NF-kappaB activation via inhibition of Ikappa kinase-mediated phosphorylation of IkappaBalpha. Mutation on Ikappa kinase beta cysteine 179 markedly diminishes the effect of A(4)-NP, suggesting that A(4)-NP acts via thiol modification at this residue. Accordingly, the effects of A(4)-NP are independent of peroxisome proliferator-activated receptor-gamma and are dependent on an intact reactive cyclopentenone ring. Interestingly, free radical-mediated oxidation of DHA greatly enhances its anti-inflammatory potency, an effect that closely parallels the formation of A(4)/J(4)-NPs. Furthermore, chemical reduction or conjugation to glutathione, both of which eliminate the bioactivity of A(4)-NP, also abrogate the anti-inflammatory effects of oxidized DHA. Thus, we have demonstrated that A(4)/J(4)-NPs, formed via the oxidation of DHA, are potent inhibitors of NF-kappaB signaling and may contribute to the anti-inflammatory actions of DHA. These findings have implications for understanding the anti-inflammatory properties of omega-3 fatty acids, and elucidate novel interactions between lipid peroxidation products and inflammation.  相似文献   

9.
Although oxygen is essential for aerobic organisms, it also forms potentially harmful reactive oxygen species. For its simplicity, easy manipulation, and cultivation conditions, yeast is used as an attractive model in oxidative stress research. However, lack of polyunsaturated fatty acids in yeast membranes makes yeast unsuitable for research in the field of lipid peroxidation. Therefore, we have constructed a yeast strain expressing a Delta12 desaturase gene from the tropical rubber tree, Hevea brasiliensis. This yeast strain expresses the heterologous desaturase in an active form and, consequently, produces Delta9/Delta12 polyunsaturated fatty acids under inducing conditions. The functional expression of the heterologous desaturase did not affect cellular morphology or growth, indicating no general adverse effect on cellular physiology. However, the presence of polyunsaturated fatty acids changed the yeast's sensitivity to oxidative stress induced by addition of paraquat, tert-butylhydroperoxide, and hydrogen peroxide. This difference in sensitivity to the latter was followed by the formation of 4-hydroxy-2-nonenal, one of the end products of linoleic fatty acid peroxidation, which is known to play a role in cell growth control and signaling. Here we show that this yeast strain conditionally expressing the Delta12 desaturase gene provides a novel and well-defined eukaryotic model in lipid peroxidation research. Its potential to investigate the molecular basis of responses to oxidative stress, in particular the involvement of reactive aldehydes derived from fatty acid peroxidation, especially 4-hydroxy-2-nonenal, will be addressed.  相似文献   

10.
In marine bacteria and some thraustochytrids (marine stramenopiles) long-chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are produced de novo by PUFA synthases. These large, multi-domain enzymes carry out the multitude of individual reactions required for conversion of malonyl-CoA to the final LC-PUFA products. Here we report on the release of fatty acids from the PUFA synthase found in Schizochytrium, a thraustochytrid that has been developed as a commercial source for DHA-enriched biomass and oil. Data from in vitro activity assays indicate that the PUFAs are released from the enzyme as free fatty acids (FFAs). Addition of ATP and Mg2+ to in vitro assays facilitates appearance of radiolabel from 14C-malonyl-CoA in a triacylglycerol fraction, suggesting the involvement of acyl-CoA synthetases (ACS). Furthermore, addition of triascin C, an inhibitor of ACSs, to the assays blocks this conversion. When the Schizochytrium PUFA synthase is expressed in Escherichia coli, the products of the enzyme accumulate as FFAs, suggesting that the thioesterase activity required for fatty acid release is an integral part of the PUFA synthase.  相似文献   

11.
Inhibition of protein synthesis by products of lipid peroxidation   总被引:1,自引:0,他引:1  
Effects of lipid peroxidation products on in vivo and in vitro protein synthesis have been studied. Malondialdehyde (MDA), a product, and a routinely used index of lipid peroxidation, inhibits in vivo protein synthesis in the two mosses, Tortula ruralis and Cratoneuron filicinum, and in pea (Pisum sativum) leaf discs. When wheat germ supernatant or poly(A)-rich mRNA of T. ruralis was incubated with MDA its subsequent activity in a cell-free protein-synthesizing system was reduced. When MDA was added directly to the in vitro protein-synthesizing mixture containing moss polyribosomes, the inhibition of amino acid incorporation was small. However, when simultaneous lipid peroxidation was allowed to occur along with in vitro protein synthesis there was a strong inhibition of amino acid incorporation and MDA accumulated in the reaction mixture indicating that products of lipid peroxidation other than, and apparently more toxic than, MDA were involved. It was concluded that lipid peroxidation inhibits protein synthesis probably by releasing toxic products which may react with and inactivate some components of the protein-synthesizing complex.  相似文献   

12.
Because of their high degree of unsaturation, polyunsaturated fatty acids (PUFA) in mammals, with mainly 18, 20 and 22 carbons, can easily be autooxidized, and converted into many oxidized derivatives and degradation products. This short review reports on some of those relevant to the evaluation of oxidative stress in situ. In addition, the enzyme-dependent oxygenation by both dioxygenases and monooxygenases is briefly reviewed by functional and/or metabolic categories, pointing out the structure variety and the analytical approaches.  相似文献   

13.
Lactobacillus plantarum AKU 1009a effectively transforms linoleic acid to conjugated linoleic acids of cis-9,trans-11-octadecadienoic acid (18:2) and trans-9,trans-11–18:2. The transformation of various polyunsaturated fatty acids by washed cells of L. plantarum AKU 1009a was investigated. Besides linoleic acid, α-linolenic acid [cis-9,cis-12,cis-15-octadecatrienoic acid (18:3)], γ-linolenic acid (cis-6,cis-9,cis-12–18:3), columbinic acid (trans-5,cis-9,cis-12–18:3), and stearidonic acid [cis-6,cis-9,cis-12,cis-15-octadecatetraenoic acid (18:4)] were found to be transformed. The fatty acids transformed by the strain had the common structure of a C18 fatty acid with the cis-9,cis-12 diene system. Three major fatty acids were produced from α-linolenic acid, which were identified as cis-9,trans-11,cis-15–18:3, trans-9,trans-11,cis-15–18:3, and trans-10,cis-15–18:2. Four major fatty acids were produced from γ-linolenic acid, which were identified as cis-6,cis-9,trans-11–18:3, cis-6,trans-9,trans-11–18:3, cis-6,trans-10–18:2, and trans-10-octadecenoic acid. The strain transformed the cis-9,cis-12 diene system of C18 fatty acids into conjugated diene systems of cis-9,trans-11 and trans-9,trans-11. These conjugated dienes were further saturated into the trans-10 monoene system by the strain. The results provide valuable information for understanding the pathway of biohydrogenation by anaerobic bacteria and for establishing microbial processes for the practical production of conjugated fatty acids, especially those produced from α-linolenic acid and γ-linolenic acid. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Earlier, we described the isolation of a Crepis palaestina cDNA (Cpal2) which encoded a Delta12-epoxygenase that could catalyse the synthesis of 12,13-epoxy-cis-9-octadecenoic acid (18:1E) from linoleic acid (18:2). When the Cpal2 gene was expressed under the control of a seed-specific promoter in Arabidopsis, plants were able to accumulate small amounts 18:1E and 12,13-epoxy-cis-9,15-octadec-2-enoic acid in their seed lipids. In this report we give results obtained from a detailed analysis of transgenic Arabidopsis plants containing the Cpal2 gene. The seeds from these plants accumulate varying levels of 18:1E, but show a marked increase in 18:1 and equivalent decrease in 18:2 and 18:3. We further observed that the co-expression of a C. palaestina Delta12-desaturase in Arabidopsis appears to return the relative proportions of the C(18) seed fatty acids to normal levels and results in a 2-fold increase in total epoxy fatty acids.  相似文献   

15.
In the present study, the formation of modified proteins by methyl docosahexaenoate (DHA) peroxidation products in the presence of a metal-catalyzed oxidation system was investigated. Metal-catalyzed oxidation of mixtures containing bovine serum albumin (BSA) and DHA led to formation of two high molecular weight derivatives of BSA. One had a mass of 71.5 kDa as determined by two-dimensional electrophoresis, matrix assisted laser desorption and ionization mass spectrometer (MALDI MS) analysis. The other was estimated to be 93 kDa by SDS-PAGE electrophoresis. The exposure of BSA to DHA also led to the generation of carbonyl groups. Oxygen radical scavengers could inhibit these modifications induced by DHA peroxidation. Furthermore, there was little difference of the peptides mass fingerprinting between the two kinds of modified high-molecular-weight proteins. These results suggest that oxygen radicals formed during lipid peroxidation are involved in the formation of protein derivatives. Our study may be important in the understanding the specific role of docosahexaenoic acid in the formation of modified proteins during aging and its related diseases.  相似文献   

16.
In the present study, the reaction mixtures (lead compounds with essential unsaturated fatty acids) were preincubated at 37°C for 24 h prior to the measurement of malondialdehyde (MDA) by HPLC. The metal-catalyzed reactions were also compared in the presence of butylated hydroxytoluene (BHT), a free radical scavenger. Our results showed that according to the difference in the number of double bonds of essential unsaturated fatty acids, the kinds of lead compounds, and the concentrations of lead compounds, the extent of lipid peroxidation was different. The addition of BHT to the reaction mixtures significantly reduced the production of MDA (P<0.01). These in vitro studies support prior in vivo reports that the important mechanism of the acute toxic effects of the lead compounds is owing at least in part, to metal-catalyzed peroxidation of polyun-saturated fatty acids.  相似文献   

17.
18.
19.
20.
The antioxidative effects of grape seed proanthocyanidins (GSPC) were studied in three in-vitro models in which polyunsaturated fatty acids (PUFAs) in aqueous solution and mice liver or brain microsomes were used as oxidative substrates, and UVC irradiation as the pro-oxidant system. Analysis of UV-C induced lipid peroxidation was carried out by two methods: gas liquid chromatography of residual PUFAs and release of thiobarbituric acid-reactive substances (TBARs) measured by TBA reaction. Results indicate that PUFAs are more radiosensitive when incorporated in single component micelles than in mixed component micelles or microsomes. In every case, PUFA peroxidation was inhibited by low concentrations of GSPC (2 rng/L) while epigallocatecin (EGC) and epigallocatechin gallate (EGCG) monomers, at an equivalent level of epicatechin, exhibited no efficacy in our experimental conditions. This latter effect might be explained by a synergistic action of flavan-3-ol monomers, dimers and oligomers contained in the grape seed extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号