首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The peptidic Y1 antagonist 1229U91 and the non-peptidic antagonist J-104870 have high binding affinities for the human Y1 receptor. These Y1 antagonists show anorexigenic effects on NPY-induced feeding in rats, although they have completely different structures and molecular sizes. To identify the binding sites of these ligands, we substituted amino acid residues of the human Y1 receptor with alanine and examined the abilities of the mutant receptors to bind the radio-labeled ligands. Alanine substitutions, F98A, D104A, T125A, D200A, D205A, L215A, Q219A, L279A, F282A, F286A, W288A and H298A, in the human Y1 receptor lost their affinity for the peptide agonist PYY, but not for 1229U91 and J-104870, while L303A and F173A lost affinity for 1229U91 and J-104870, respectively. N283A retained its affinity for 1229U91, but not for PYY and J-104870. Y47A and N299A retained their affinity for J-104870, but not for PYY and 1229U91. W163A and D287A showed no affinity for any of the three ligands. Taken together, these data indicate that the binding sites of 1229U91 are widely located in the shallow region of the transmembrane (TM) domain of the receptor, especially TM1, TM6 and TM7. In contrast, J-104870 recognized the pocket formed by TM4, TM5 and TM6, based on the molecular modeling of the Y1 receptor and J-104870 complex. In conclusion, 1229U91 and J-104870 have high affinities for Y1 receptors using basically different binding sites. D287 of the common binding site in the TM6 domain could be crucial for the binding of Y1 antagonists.  相似文献   

2.
The present study evaluated the effects of both intraperitoneal (i.p. ) and intracerebroventricular administration of selective Y(1) [(Leu(31), Pro(34))-NPY] and Y(2) [(Pro(13), Tyr(36))-NPY (13-36)] receptor agonists on food intake in satiated goldfish. Food intake (FI) was significantly increased by central administration of the Y(1) agonist (1 microg), but not by the Y(2) agonist, at 2 h postinjection. The feeding increase induced by (Leu(31), Pro(34))-NPY was in a similar magnitude to that obtained after ICV injection of the neuropeptide Y, and both feeding stimulations were reversed by the NPY (27-36), a general NPY antagonist. The i.p. administration of the agonists either did not significantly modify (Y(2) agonist) or decreased (Y(1) agonist) food intake in goldfish. These data indicate that it is the Y(1)-like (similar to Y(1) and/or Y(5)) receptor, and not Y(2), that is involved in the central modulation of the feeding behavior in goldfish. We also investigated the possible involvement of opioid peptides as mediators of the NPY stimulatory action on food intake in goldfish. The ICV administration of naloxone (10 microg), a general opioid antagonist, blocked the NPY-induced feeding in goldfish, suggesting that the opioidergic system is involved in feeding regulation by NPY.  相似文献   

3.
In goldfish, intracerebroventricular (ICV) administration of melanin-concentrating hormone (MCH) inhibits feeding behavior, and fasting decreases hypothalamic MCH-like immunoreactivity. However, while MCH acts as an anorexigenic factor in goldfish, in rodents MCH has an orexigenic effect. Therefore, we examined the involvement of two anorexigenic neuropeptides, alpha-melanocyte-stimulating hormone (alpha-MSH) and corticotropin-releasing hormone (CRH), in the anorexigenic action of MCH in goldfish, using an alpha-MSH receptor antagonist, HS024, and a CRH receptor antagonist, alpha-helical CRH((9-41)). ICV injection of HS024, but not alpha-helical CRH((9-41)), suppressed MCH-induced anorexigenic action for a 60-min observation period. We then examined, using a real-time PCR method, whether MCH affects the levels of mRNAs encoding various orexigenic neuropeptides, including neuropeptide Y (NPY), orexin, ghrelin and Agouti-related peptide (AgRP), in the goldfish diencephalon. ICV administration of MCH at a dose sufficient to inhibit food consumption decreased the expression of mRNAs for NPY and ghrelin, but not for orexin and AgRP. These results indicate that the anorexigenic action of MCH in the goldfish brain is mediated by the alpha-MSH signaling pathway and is accompanied by inhibition of NPY and ghrelin synthesis.  相似文献   

4.
The neuropeptide Y (NPY) receptor subtypes Y1 and Y5 are involved in the regulation of feeding and several other physiological functions in mammals. To increase our understanding of the origin and mechanisms of the complex NPY system, we report here the cloning and pharmacological characterization of receptors Y1 and Y5 in the first non-mammal, chicken (Gallus gallus). The receptors display 80-83% and 64-72% amino acid sequence identity, respectively, with their mammalian orthologues. The three endogenous ligands NPY, peptide YY (PYY) and pancreatic polypeptide (PP) have similar affinities as in mammals, i.e. NPY and PYY have subnanomolar affinity for both receptors whereas chicken PP bound with nanomolar affinity to Y5 but not to Y1. A notable difference to mammalian receptor subtypes is that the Y1 antagonist SR120819A does not bind chicken Y1, whereas BIBP3226 does. The Y5 antagonist CGP71863A binds to the chicken Y5 receptor. Anatomically, both Y1 and Y5 have high mRNA expression levels in the infundibular nucleus which is the homologous structure of the hypothalamic arcuate nucleus in mammals. These results suggest that some of the selective Y1 and Y5 antagonists developed in mammals can be used to study appetite regulation in chicken.  相似文献   

5.
A novel class of potent and selective non-peptide neuropeptide Y (NPY) Y1 receptor antagonists, having benzazepine nuclei, have been designed, synthesized, and evaluated for activity. Through a blind screening we found the compound 1-N-(3-(N'-(tert-butoxycarbonyl)amino)benzyl)-7-methoxy-(3-(3)-methyl ureido)-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (9: IC50 = 1.6 microM). Chemical modifications of 9 gave a potent NPY Y1 antagonist 3-(N-(4-hydroxyphenyl)-N'-methylguanidino)-1-N-(3-(N'-(tert-butoxy carbonyl)amino)benzyl)-2,3,4,5-tetrahydro-1H-1-benzazepin-2-one (14c: IC5(0=43 nM), which had no affinity for NPY Y2 and Y5 receptors.  相似文献   

6.
Aldegunde M  Mancebo M 《Peptides》2006,27(4):719-727
Neuropeptide Y (NPY) is one of the most potent stimulants of food intake in mammals, but very little is known about NPY actions in fish. The present study investigated the role of NPY in food intake in the rainbow trout (Oncorhynchus mykiss). Food intake was monitored at different times after intracerebroventricular administration of porcine NPY (4 or 8 microg). Both doses significantly increased food intake at 2 and 3 h, and this effect was dose-dependent. However, 50 h after administration of NPY, food intake was significantly lower than in control fish, and cumulative food intake had returned to levels similar to those seen in the control group. The NPY antagonist (D-Tyr27,36, D-Thr32)-NPY (10 microg) inhibited food intake 2 h after icv administration, but did not block the orexigenic effect of NPY when administered jointly with 4 microg NPY. To identify the NPY receptor subtypes involved in the effects of NPY on food intake, we studied the effects of the Y1 receptor agonist (Leu31, Pro34)-NPY (4 microg), the Y2 receptor agonist NPY(3-36) (4 microg), and the highly specific Y5 receptor agonist (cPP(1-7), NPY19-23, Ala31, Aib32, Gln34)-hPP (4 microg). Short-term (2 h) food intake was moderately stimulated by the Y1 agonist, more strongly stimulated by the Y2 agonist, and unaffected by the Y5 agonist. We found that administration of NPY (8 microg icv) had no effect on aminergic systems in several brain regions 2 and 50 h after NPY administration. These results indicate that NPY stimulates feeding in the rainbow trout, and suggest that this effect is cooperatively mediated by Y2- and Y1-like NPY receptors, not by Y5-like receptors.  相似文献   

7.
The actions of neuropeptide Y (NPY) are mediated by at least six G-protein coupled receptors denoted as Y(1), Y(2), Y(3), Y(4), Y(5), and y(6). Investigations using receptor selective ligands and receptor knock-out mice suggest that NPY effects on feeding are mediated by both Y(1) and Y(5) receptors. We have previously shown that Cys-dimers of NPY C-terminal peptides exhibit Y(1) selectivity relative to Y(2) receptors. Re-investigation of their selectivity with respect to the newly cloned receptors, has identified bis(31/31') [[Cys(31), Nva(34)]NPY(27-36)-NH(2)] (BWX-46) as a Y(5) receptor selective agonist. BWX-46 selectively bound Y(5) receptors, and inhibited cAMP synthesis by Y(5) cells with potencies comparable to that of NPY. Moreover, BWX-46 (10 microM) exhibited no significant effect on the cAMP synthesis by Y(1), Y(2), and Y(4) cells. Thus, BWX-46 constitutes the lowest molecular weight Y(5) selective agonist reported to date. Intrahypothalamic (i.h.t)-injection of 30 and 40 microg of BWX-46 stimulated the food intake by rats in a gradual manner, reaching maximal level 8 h after injection. This response was similar to that exhibited by other Y(5) selective agonists, but differed from that of NPY, which exhibited a rapid orexigenic stimulus within 1 h. It is suggested that the differences in the orexigenic stimuli of NPY and Y(5) agonists may be due to their differences in the signal transduction mechanisms.  相似文献   

8.
Previous work has characterized an anorexic action for endogenous, central nervous system corticotropin-releasing factor (CRF). Central injection of CRF decreases food intake induced pharmacologically by various appetite stimulants and a CRF antagonist attenuates restraint stress anorexia. Also, stressful physiological stimuli that are relevant to ingestive regulation, such as glucoprivation and protein nutrient deficiency, activate CRF systems. The present experiments examined the effects of exogenously administered CRF and a CRF antagonist, alpha-helical CRF(9-41), on spontaneous feeding induced by neuropeptide Y (NPY) and by a tail-pinch stressor. Pretreatment with a low dose of the CRF antagonist (1 microgram ICV) enhanced the hyperphagia induced by NPY while reducing the latency to begin feeding and increasing the duration of eating during tail pinch. Higher doses of alpha-hel CRF (5 and 25 micrograms ICV) exhibited diminishing or opposite effects. In contrast, CRF pretreatment (0.02, 0.1, and 0.5 microgram ICV) blocked the acquisition of tail-pinch feeding. Hence, while CRF administration impairs intake in these and other feeding paradigms, alpha-hel CRF actually facilitated dose dependently the intensity of the feeding response to NPY and tail pinch. These results suggest that endogenous CRF systems may play a role in modulating excessive feeding under conditions of evoked appetite and that brain CRF systems regulate feeding when excessive intake threatens to compromise the performance of other noningestive behaviors.  相似文献   

9.
Neuropeptide Y (NPY) elicits eating when injected directly into the paraventricular nucleus (PVN) or perifornical hypothalamus (PFH). To identify the essential regions of the NPY molecule and the relative contributions of Y1 and Y2 receptors, the eating stimulatory potency of NPY was compared to that of its fragments, analogues, and agonists when injected into the PVN or PFH of satiated rats. Additionally, antisera to NPY was injected into the cerebral ventricles (ICV) to determine whether passive immunization suppresses the eating produced by mild food deprivation. Tests with NPY fragments revealed that NPY(2-36) was surprisingly potent, nearly three times more so than intact NPY. In contrast, fragments with further N-terminal deletions were progressively less effective or ineffective, as was the free acid form of NPY. Collectively, this suggests that both N- and C-terminal regions of NPY participate in the stimulation of eating. Tests with agonists revealed that the putative Y1 agonist [Pro34]NPY elicited a strong dose-dependent feeding response, while the putative Y2 agonist, C2-NPY, had only a small effect at the highest doses. Although this suggests mediation by Y1 receptors, the uncharacteristically high potency of NPY(2-36) may additionally suggest that the receptor subtype underlying feeding is distinct from that mediating other responses. Additional results revealed that ICV injection of antisera to NPY, which should inactivate endogenous NPY, produced a concentration-dependent suppression of eating induced by mild food deprivation. This finding, along with published work demonstrating enhanced levels of hypothalamic NPY in food-deprived rats, suggests that endogenous NPY mediates the eating produced by deprivation.  相似文献   

10.
Neuropeptide Y (NPY) inhibits cardiac adenylate cyclase activity by interacting with specific receptors coupled to a pertussis toxin-sensitive G protein. Structure-activity studies revealed that only C-terminal fragments can exhibit an NPY-like inhibitory effect on 125I-NPY binding and adenylate cyclase activity of rat cardiac ventricular membranes. Although NPY(17-36) inhibited 125I-NPY binding with high potency, it produced a biphasic effect on basal (GTP, 10 and 100 microM or guanosine 5'-gamma-O-(thio)triphosphate (GTP gamma S, 10 microM) adenylate cyclase activity. Low concentrations (less than 1 nM) of NPY(17-36) inhibited the adenylate cyclase activity whereas high concentrations (greater than 1 nM) reversed this action. GTP gamma S (100 microM) reversed the biphasic effect of NPY(17-36). NPY(17-36) exhibited only a stimulatory effect in the membranes from pertussis toxin-treated rats and an inhibitory effect with membranes from cholera toxin-treated rats. Low concentrations (less than 1 nM) of NPY(17-36) inhibited isoproterenol-stimulated adenylate cyclase activity whereas high doses (greater than 1 nM) reversed this activity. The cardiac NPY receptor antagonist, NPY(18-36) (1 microM), completely blocked the biphasic effect of NPY(17-36) on isoproterenol-stimulated activity. The inhibitory dose-response curve of NPY on isoproterenol-stimulated adenylate cyclase activity was shifted parallel to the right by NPY(17-36) (1 microM), suggesting that it is an antagonist of NPY at high concentrations. N-alpha-acetylated and C-terminally deamidated analogs of NPY(17-36) had no effect on the adenylate cyclase activity. [im-DNP-His26] NPY exhibited a more pronounced biphasic effect whereas N-alpha-myristoyl-NPY(17-36) elicited only a stimulatory effect. These investigations suggest that: 1) the inhibitory and stimulatory effects of NPY(17-36) are mediated by high affinity NPY receptors coupled to a pertussis toxin-sensitive G protein and a distinct population of low affinity receptors coupled to a cholera toxin-sensitive G protein, respectively; and 2) the stimulatory effect of NPY(17-36) is dissociable.  相似文献   

11.
12.
Dube MG  Horvath TL  Kalra PS  Kalra SP 《Peptides》2000,21(10):1557-1560
Intracerebroventricular (icv) injections of orexin A stimulate feeding in sated rats. Since neuropeptide Y is a potent orexigenic peptide and orexin-containing neurons are morphologically linked with NPY-producing neurons in the hypothalamus, we evaluated the functional relationship between the two orexigenic peptides. The results show that whereas it was ineffective on its own, a selective NPY Y5 receptor antagonist, injected icv 15 min. before orexin A significantly suppressed orexin A-induced feeding. Since previous investigations demonstrated that an NPY Y1 receptor antagonist also inhibits feeding induced by orexin A, the current results further underscore the existence of a functional link between orexin and NPY producing neurons as the orexin network appears to be capable of influencing NPYergic signaling through Y1 and Y5 receptors to stimulate feeding.  相似文献   

13.
The present study evaluated the effect of the neuropeptide Y (NPY) Y1 receptor antagonists BIBO 3304 and SR 120562A and of the Y5 receptor antagonists JCF 104, JCF 109, and CGP 71683A on feeding induced either by NPY or food deprivation. In a preliminary experiment, NPY was injected into the third cerebroventricle (3V) at doses of 0.07, 0.15, 0.3, or 0.6 nmol/rat. The dose of 0.3 nmol/rat, which produced a cumulative 2-h food intake of 11.2 +/- 1.9 g/kg body weight, was chosen for the following experiments. The antagonists were injected in the 3V 1 min before NPY. The Y1 receptor antagonist BIBO 3304 significantly inhibited NPY-induced feeding at doses of 1 or 10 nmol/rat. The Y1 receptor antagonist SR 120562A, at the dose of 10 but not of 1 nmol/rat, significantly reduced the hyperphagic effect of NPY, 0.3 nmol/rat. The Y5 receptor antagonists JCF 104 and JCF 109 (1 or 10 nmol/rat) and CGP 71683A (10 or 100 nmol/rat) did not significantly modify the effect of NPY, 0.3 nmol/rat. However, JCF 104 (10 nmol/rat) and CGP 71683A (100 nmol/rat), but not JCF 109 (10 nmol/rat), significantly reduced food intake during the interval from 2 to 4 h after injection of a higher dose, 0.6 nmol/rat, of NPY. Feeding induced by 16 h of food deprivation was significantly reduced by the Y1 receptor antagonist BIBO 3304 (10 nmol/rat), but it was not significantly modified by the same dose of SR 120562A or JCF 104. These findings support the idea that the hyperphagic effect of NPY is mainly mediated by Y1 receptors. The results obtained with JCF 104 and CGP 71683A suggest that Y5 receptors may have a modulatory role in the maintenance of feeding induced by rather high doses of NPY after the main initial feeding response.  相似文献   

14.
We have cloned the guinea pig neuropeptide Y (NPY) Y1 receptor and found it to be 92-93% identical to other cloned mammalian Y1 receptors. Porcine NPY and peptide YY (PYY) displayed affinities of 43 pM and 48 pM, respectively. NPY2-36 and NPY3-36 had 6- and 46-fold lower affinity, respectively, than intact NPY. Functional coupling was measured by using a microphysiometer. Human NPY and PYY were equipotent in causing extracellular acidification with EC50 values of 0.59 nM and 0.69 nM, respectively, whereas NPY2-36 and NPY3-36 were about 15-fold and 500-fold less potent, respectively, than NPY. The present study shows that the cloned guinea pig Y1 receptor is very similar to its orthologues in other mammals, both with respect to sequence and pharmacology. Thus, results from previous studies on guinea pig NPY receptors might imply the existence of an additional Y1-like receptor sensitive to B1BP3226.  相似文献   

15.
16.
Structure-activity studies around the urea linkage in BMS-193885 (4a) identified the cyanoguanidine moiety as an effective urea replacement in a series of dihydropyridine NPY Y(1) receptor antagonists. In comparison to urea 4a (K(i)=3.3 nM), cyanoguanidine 20 (BMS-205749) displayed similar binding potency at the Y(1) receptor (K(i)=5.1 nM) and full functional antagonism (K(b)=2.6 nM) in SK-N-MC cells. Cyanoguanidine 20 also demonstrated improved permeability properties in Caco-2 cells in comparison to urea 4a (43 vs 19 nm/s).  相似文献   

17.
Neuropeptide Y (NPY) is a 36-amino acid neuropeptide that exerts its activity by at least five different receptor subtypes that belong to the family of G-protein-coupled receptors. We isolated an aptamer directed against NPY from a nuclease-resistant RNA library. Mapping experiments with N-terminally, C-terminally, and centrally truncated analogues of NPY revealed that the aptamer recognizes the C terminus of NPY. Individual replacement of the four arginine residues at positions 19, 25, 33, and 35 by l-alanine showed that arginine 33 is essential for binding. The aptamer does not recognize pancreatic polypeptide, a highly homologous Y4 receptor-specific peptide of the gut. Furthermore, the affinity of the aptamer to the Y5 receptor-selective agonist [Ala(31),Aib(32)]NPY and the Y1/Y5 receptor-binding peptide [Leu(31),Pro(34)]NPY was considerably reduced, whereas Y2 receptor-specific NPY mutants were bound well by the aptamer. Accordingly, the NPY epitope was recognized by the Y2 receptor, and the aptamer was highly similar. This Y2 receptor mimicking effect was further confirmed by competition binding studies. Whereas the aptamer competed with the Y2 receptor for binding of [(3)H]NPY with high affinity, a low affinity displacement of [(3)H]NPY was observed at the Y1 and the Y5 receptors. Consequently, competition at the Y2 receptor occurred with a considerably lower K(i) value compared with the Y1 and Y5 receptors. These results indicate that the aptamer mimics the binding of NPY to the Y2 receptor more closely than to the Y1 and Y5 receptors.  相似文献   

18.
19.
Neuropeptide Y (NPY), a hexatriacontapeptide amide, is present in high concentrations in the mammalian heart. Specific receptors of NPY in rat cardiac ventricular membranes have been characterized recently in our laboratory. Structure-activity studies with selected partial sequences of NPY revealed that NPY(18-36) inhibited the binding of 125I-NPY to rat cardiac ventricular membranes but had no effect on the cardiac adenylate cyclase activity. NPY, as previously reported, inhibited the cardiac adenylate cyclase activity. These observations suggested that NPY (18-36) may be an antagonist of NPY in cardiac membranes. Consistent with this observation, the presence of NPY (18-36) (1 microM) shifted the inhibitory adenylate cyclase activity dose-response curve of NPY to the right in a parallel fashion. Furthermore, NPY(18-36) (1 microM) completely abolished the effect of NPY (10 nM) that alone caused 80% of the maximum inhibition of adenylate cyclase activity. These findings confirm that NPY(18-36) is a competitive antagonist of NPY in rat cardiac ventricular membranes. NPY cardiac receptor antagonist, NPY(18-36), or analogs based on this sequence may have potential clinical application, since NPY has been implicated in the pathophysiology of congestive heart failure.  相似文献   

20.
Malmström RE 《Life sciences》2001,69(17):1999-2005
The effects of the first selective, non-peptide, NPY Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamid (BIIE0246) were studied on splenic vascular responses evoked in the pig in vivo. BIIE0246 abolished the splenic vasoconstrictor response to the NPY Y2 receptor agonist N-acetyl[Leu25Leu31]NPY(24-36), but did not affect the response to the NPY Y1 receptor agonist [Leu31Pro34]NPY, which in turn was abolished by the selective NPY Y1 receptor antagonist (2R)-5-([amino(imino)methyl]amino)-2-[(2,2-diphenylacetyl)amino]-N-[(IR)-1-(4-hydroxyphenyl)ethyl]-pentanamide (H 409/22). Furthermore, the PYY-evoked splenic vasoconstrictor response was partially antagonized by BIIE0246 and subsequently almost abolished by the addition of H 409/22. It is concluded that BIIE0246 exerts selective (vs the NPY Y1 receptor) NPY Y2 receptor antagonism, and thus represents an interesting tool for classification of NPY receptors, in vivo. In addition, evidence for NPY Y2 receptor mediated vasoconstriction was presented. Furthermore, both NPY Y1 and Y2 receptors are involved in the splenic vasoconstrictor response to PYY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号