首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
本实验采用中文吖啶橙荧光标记技术,结合微循环观察用显微超高速摄录像装置,观察了内毒素对微血管内白细胞与微静脉血管内皮细胞的粘附性的影响。结果表明,内毒素对大鼠的血压、微血管口径和微动脉血流速度影响不大,微静脉血流速度在滴注内毒素后45和60min下降了16.67%和17.95%(P<0.05);但内毒素能迅速改变微静脉内的白细胞流态,明显增加附壁滚动的白细胞数和粘附白细胞密度指数,经测量同一微静脉内的白细胞和红细胞流速,求得白细胞与微静脉内皮细胞之间的破裂力在5min和15min时下降了25.96%和42.88%(P<0.01),下降趋势持续整个实验过程;说明内毒素能明显地增加白细胞与微静脉血管内皮细胞之间的粘附力。由此提示,研究白细胞与微静脉血管内皮细胞之间粘附力增强机制及寻找其抑制因素对改善微循环紊乱、抢救休克具有重要的临床意义。  相似文献   

2.
剪切力诱导微血管内皮细胞c-fos蛋白的表达   总被引:4,自引:2,他引:2  
利用内皮细胞流动小室方法对大鼠脑微血管内皮细胞在剪切力作用下细胞核内原癌基因c-fos蛋白的翻译水平的表达进行了初步研究,结果提示脑微血管内皮细胞在切力作用下,c-fos蛋白有明显的表达且显示了剪切力水平的非依赖性和作用时间的依赖性。流动剪切力诱导的c-fos的适度表达可以导致内皮细胞伸展,细胞骨架蛋白合成,细胞骨架重排等,以适应流动剪切力的作用 。但过度的剪切力作用可以引起内皮细胞皱缩,损伤,脱  相似文献   

3.
几种不同刺激对血管内白细胞粘附的影响   总被引:6,自引:0,他引:6  
目的:研究几种刺激引起白细胞与内皮细胞粘附的变化。方法:本实验采用脉冲电刺激、缺血再灌、内毒素和白介素-8等物理或药物的作用,观察大鼠肠系膜细静脉内白细胞粘附及白细胞和血管内皮粘附之间的差别。结果:缺血再灌、内毒素、内毒素、脉冲电刺激和白介纱-8(IL-8)作用后肠系膜细静脉白细胞粘附数量比正常组明显增多,IL-8用药后30min细静脉内白细胞粘附数量最多、缺血再灌、内毒素、脉冲电刺激后白细胞粘附数量大致相同。结论:缺血再灌、内毒素、脉冲电刺激能诱导白细胞的粘附作用。造成内皮损伤,IL-8诱导白细胞的粘附作用最强。  相似文献   

4.
利用膜片钳及内皮细胞流动小室方法对大鼠脑微血管内皮细胞在剪切力作用下内皮细胞膜K 通道的开放进行了初步研究 ,结果提示脑微血管内皮细胞膜上存在剪切力敏感的K 通道 ,剪切力作用后 ,内皮细胞膜上K 电流明显增大 ,此电流有明显的短暂延迟现象 ,也可以被胞外施加的TEA抑制 ,符合IKv特征。流动剪切力可以通过影响内皮细胞膜上的K 通道的开放引起穿细胞的离子通透性的增加 ,进而引起细胞内Ca2 的变化。在K 、Ca2 等离子浓度改变的诱导下可以促使G -Actin装配为F -Actin。同时诱导内皮细胞内钙库调节机制的激活 ,这些变化都可以进一步引起细胞信号转导机制的激活。该工作为进一步开展剪切力对微血管内皮细胞信号转导机制的影响提供了实验数据。  相似文献   

5.
建立一个稳定和实时检测在不同剪切力作用下内皮细胞内一氧化氮含量的方法。利用流动小室建立内皮细胞剪切模型 ,在内皮细胞用DAF FM染色后 ,用Zeiss荧光共聚焦显微镜和ICCD摄象头检测细胞内的荧光强度。DAF FM的荧光强度可以反映一氧化氮的胞内含量。剪切力引起内皮细胞合成一氧化氮增加 ,并且这种作用是随着剪切力的增加而增加。剪切力的作用被一氧化氮合酶抑制剂L NAME全部抑制 ,被无Ca2 缓冲液部分抑制。这个方法可以实时反映一氧化氮含量的变化 ,可以用来研究剪切力引起一氧化氮变化的机制以及用来评价内皮细胞对剪切力的反应特性  相似文献   

6.
剪切力对单核细胞趋化蛋白-1的影响   总被引:2,自引:0,他引:2  
单核细胞趋化蛋白-1(MCP-1)能趋化单核细胞在内皮细胞下聚集,是动脉粥样硬化最早期的病理改变之一.从生物力学的角度对体外培养的人脐静脉内皮细胞(HUVEC)合成和分泌MCP-1的规律作了研究.通过流动小室,HUVEC给予0.4,1.0, 2.0 N/m2的剪应力,运用免疫组化,图象处理及ELISA方法测出不同时间胞浆及灌流液中MCP-1的含量,结果表明HUVEC合成和分泌MCP-1是随剪切力和时间变化而变化的.该工作为进一步理解剪切力诱导动脉粥样硬化的发生提供实验数据.  相似文献   

7.
剪切力对脑微血管内皮细胞骨架蛋白的影响   总被引:7,自引:2,他引:5  
利用自行研制的细胞流动小室对大鼠脑微血管内皮细胞在剪切力作用下细胞骨架蛋白的结构改变进行了初步研究,结果提示脑微血管内皮细胞在剪切力作用下,细胞形态学发生明显改变,细胞间隙增大、皱缩、脱落,细胞骨架蛋白的结构也有类似的变化,骨架蛋白沿流动方向重新排列,微丝中F-Actin的数量增加、变粗。这些改变的直接后果是内皮细胞通透性的增加。该工作为进一步开展剪切力对微血管内皮细胞功能、代谢等方面的影响提供了实验数据  相似文献   

8.
采用脉动平板流动腔 (flowchamber)系统 ,研究了的单水平流动剪应力加载 ,和从 5或 7.5dyne/cm2 开始的成梯度增加至 1 0或 1 5dyne cm2 的流动剪应力加载 ,在 5h、1 0h、2 4h对生长在明胶基底上的人脐静脉内皮细胞 (HUVEC)粘附性的影响 ,探讨了梯度增加的流动剪切力加载对细胞粘附能力的促进作用。实验结果表明 :与 7.5dyne cm2 的单一水平的加载相比 ,成梯度增加的流动剪切力可明显提高HUVEC在明胶基底上的粘附 ,增加HUVEC对流动剪应力的耐受程度 ,有利于引起HUVEC转变成与在体相同的形态和排列。  相似文献   

9.
流动剪切力对鼠脑微血管内皮细胞ICAM—1表达的影响   总被引:6,自引:0,他引:6  
Song XY  Zeng YJ  Li CX  Liao DH  Hu JL  Hao YL 《生理学报》2001,53(1):13-17
利用内皮细胞流动小室方法,对大鼠脑微血管内皮细胞的剪切力作用下细胞内粘附分子-1(ICAM-1,intercellular adhesion molecule-1)的表达进行了研究。图像分析结果提示,脑微血管内皮细胞在剪切力作用下ICAM-1的表达呈特异上调,且存在着时间依赖性,与一定范围内的剪切力强度无关,用对细胞施加剪切力作用后提取上清液孵育内皮细胞的方法证明:剪切力对鼠脑微血管内皮细胞ICAM-1表达的影响,是直接作用于内皮细胞引起的细胞内的直接反应,而不是剪切力导致细胞先释放细胞因子,释放的细胞因子再引起ICAM-1变化的间接反应。该工作为进一步开展剪切力对微血管内皮细胞信号转导机制的影响提供了实验数据。  相似文献   

10.
Gu ZY 《生理科学进展》2001,32(2):135-137
本文探讨过氧亚硝基阴离子(ONOO^-)在内毒素致肺血管损伤中的介导作用和八肽胆囊收缩素(CCK)的保护作用及其机制。结果发现,内毒素主要成分脂多糖(LPS)可诱导大鼠肺组织生成ONOO^-1,ONOO^-能导致肺微血管壁通透性明显增加和肺脏严重病理变化;ONOO^-可引起离体肺动脉反应性异常改变,LPS也可产生类似变化;ONOO^-有较弱的舒血管作用并受到内皮细胞的抑制性调节;LPS诱导培养的牛肺动脉内皮细胞(BPAEC)产生增多的ONOO^-参与介导内皮细胞本身的损伤;CCK能拮抗LPS对BPAEC的损伤效应,此作用由CCK受体介导,并与抑制ONOO^-生成有关。结果提示,清除ONOO^-或减少ONOO^-生成可为防治内毒素引起的急性肺损伤等病理过程提供新对策;CCK是一种有应用前景的细胞保护因子。  相似文献   

11.
Background: Rolling of leukocytes at the surface of the vascular endothelium is a prerequisite for a subsequent firm adhesion, particularly the slow rolling appearing on ELAM CD62E. Therefore, it may be considered that increasing the rolling velocities should be a precise therapeutic target in clinical situations where leukocytes accumulate, mainly venous and arterial ischaemia.Methods: Human neutrophils were allowed to flow on endothelial HUVECs, with and without 4 hours interleukin-1alpha activation, the cells having or not been incubated with INO5042 anti-inflammatory drug. Under a mean shear-stress of 2 dyn/cm(2), rollers and stickers were identified and quantified, using a video-camera and picture analysing software.Results: When the drug had been added to endothelial cells a shift of velocities was observed towards fast speeds (from 3-5 to 7-11 microm/sec). The same results was significantly found when neutrophils, alone or along with endothelium, had been submitted to the drug, the number of stickers and rollers beeing reduced as well. Finally, such a precise pharmacological method proved efficient to detect the exact mechanism of INO5042 on white cell adhesion.  相似文献   

12.
We have recently described patterns of adhesion of different types of leukocytes downstream of a backward facing step. Here the predicted fluid dynamics in channels incorporating backward facing steps are described, and related to the measured velocities of flowing cells, patterns of attachment and characteristics of rolling adhesion for neutrophils perfused over P-selectin. Deeper (upstream depth 300 microm, downstream depth 600 microm, maximum wall shear stress approximately 0.1 Pa) and shallower (upstream depth 260 microm, downstream depth 450 microm, maximum wall shear stress approximately 0.3 Pa) channels were compared. Computational fluid dynamics (CFD) predicted the presence of vortices downstream of the steps, distances to reattachment of flow, local wall shear stresses and components of velocity parallel and perpendicular to the wall. Measurements of velocities of perfused neutrophils agreed well with predictions, and suggested that adhesion to P-selectin should be possible in the regions of recirculating flow, but not downstream in re-established flow in the high shear channel. When channels were coated with a P-selectin-Fc chimaera, neutrophils were captured from flow and immobilised. Capture showed local maxima around the reattachment points, but was absent elsewhere in the high shear chamber. In the low shear chamber there was depression of adhesion just beyond the reattachment point because of expansion of flow and depletion of neutrophils near the wall. Inside the recirculation zones, adhesion decreased approaching the step because of an increasing, vertically upward velocity component. When channels were coated with P-selectin, neutrophils rolled in all regions, but lifted off the surface as they rolled backwards into low shear regions near the step. Rolling velocity in the recirculation zone was independent of shear stress, possibly because of the effects of vertical lift. We conclude that while local wall shear stress influences adhesive behavior, delivery of cells to the wall and their behavior after capture also depend on components of flow perpendicular to the wall.  相似文献   

13.
Wu S  Hoxter B  Byers SW  Tozeren A 《Biorheology》1998,35(1):37-51
Recent mathematical models show that molecular events that mediate rolling interactions also have an impact on the stochastic features of rolling. In spherical cells, statistical fluctuations in cell displacement were shown to be an indication that only a few adhesion bonds are involved in rolling interactions. In this study, we investigated whether cell shape and cell deformability could also modulate the stochastic features of rolling. As an experimental model we considered the flow-initiated rolling of MCF-10 breast epithelial cells on laminin. The dynamic adhesion of MCF-10A cells to laminin, which involves integrin alpha 6 beta 4, occurs slow enough to allow for an accurate determination of the trajectories of rolling cells. The data from high-magnification videomicroscopy showed that cell shape, cell deformability, and the level of fluid shear stress were all strong determinants of the rolling velocity and the extent of fluctuations in the trajectory of rolling cells. MCF-10A cells with large surface projections rolled faster and wobbled more extensively than spherical cells under the same flow conditions. The extent of wobbling decreased and the variation of rolling velocity increased with increasing fluid shear stress. MCF-10A cells treated with cytochalasin B, which increased cell deformability and caused extensive blebbing without significantly altering surface expression of laminin integrins, reduced mean rolling velocity and increased its variance. Because leukocytes change shape as they roll in postcapillary blood venules at high shear rates, results indicate the need for further expanding the present biophysical models of rolling to the case of deformable cells.  相似文献   

14.
Influence of cell deformation on leukocyte rolling adhesion in shear flow   总被引:9,自引:0,他引:9  
Blood cell interaction with vascular endothelium is important in microcirculation, where rolling adhesion of circulating leukocytes along the surface of endothelial cells is a prerequisite for leukocyte emigration under flow conditions. HL-60 cell rolling adhesion to surface-immobilized P-selectin in shear flow was investigated using a side-view flow chamber, which permitted measurements of cell deformation and cell-substrate contact length as well as cell rolling velocity. A two-dimensional model was developed based on the assumption that fluid energy input to a rolling cell was essentially distributed into two parts: cytoplasmic viscous dissipation, and energy needed to break adhesion bonds between the rolling cell and its substrate. The flow fields of extracellular fluid and intracellular cytoplasm were solved using finite element methods with a deformable cell membrane represented by an elastic ring. The adhesion energy loss was calculated based on receptor-ligand kinetics equations. It was found that, as a result of shear-flow-induced cell deformation, cell-substrate contact area under high wall shear stresses (20 dyn/cm2) could be as much as twice of that under low stresses (0.5 dyn/cm2). An increase in contact area may cause more energy dissipation to both adhesion bonds and viscous cytoplasm, whereas the fluid energy input may decrease due to the flattened cell shape. Our model predicts that leukocyte rolling velocity will reach a plateau as shear stress increases, which agrees with both in vivo and in vitro experimental observations.  相似文献   

15.
The firm arrest of leukocytes to the endothelium during inflammation is known to be mediated by endothelial intercellular adhesion molecules (ICAMs) binding to activated integrins displayed on leukocyte surface. Selectin-ligand interactions, which mediate rolling, are believed to be important for facilitating firm adhesion, either by activating integrins or by facilitating the transition to firm adhesion by making it easier for integrins to bind. Although leukocytes employ two distinct adhesion molecules that mediate different states of adhesion, the fundamental biophysical mechanisms by which two pairs of adhesion molecules facilitate cell adhesion is not well understood. In this work, we attempt to understand the interaction between two molecular systems using a cell-free system in which polystyrene microspheres functionalized with the selectin ligand, sialyl Lewis(X) (sLe(X)), and an antibody against ICAM-1, aICAM-1, are perfused over P-selectin/ICAM-1 coated surfaces in a parallel plate flow chamber. Separately, sLe(X)/P-selectin interactions support rolling and aICAM-1/ICAM-1 interactions mediate firm adhesion. Our results show that sLe(X)/aICAM-1 microspheres will firmly adhere to P-selectin/ICAM-1 coated surfaces, and that the extent of firm adhesion of microspheres is dependent on wall shear stress within the flow chamber, sLe(X)/aICAM-1 microsphere site density, and P-selectin/ICAM-1 surface density ratio. We show that P-selectin's interaction with sLe(X) mechanistically facilitates firm adhesion mediated by antibody binding to ICAM-1: the extent of firm adhesion for the same concentration of aICAM-1/ICAM-1 interaction is greater when sLe(X)/P-selectin interactions are present. aICAM-1/ICAM-1 interactions also stabilize rolling by increasing pause times and decreasing average rolling velocities. Although aICAM-1 is a surrogate for beta(2)-integrin, the kinetics of association between aICAM-1 and ICAM-1 is within a factor of 1.5 of activated integrin binding ICAM-1, suggesting the findings from this model system may be insightful to the mechanism of leukocyte firm adhesion. In particular, these experimental results show how two molecule systems can interact to produce an effect not achievable by either system alone, a fundamental mechanism that may pervade leukocyte adhesion biology.  相似文献   

16.
Leukocyte adhesion is determined by the balance between molecular adhesive forces and convective dispersive forces. A key parameter influencing leukocyte adhesion is the shear stress acting on the leukocyte. This measure is indispensable for determining the molecular bond forces and estimating cell deformation. To experimentally determine this shear stress, we used microparticle tracking velocimetry analyzing more than 24,000 images of 0.5 μm fluorescent microbeads flowing within mildly inflamed postcapillary venules of the cremaster muscle in vivo. Green fluorescent protein, expressed under the lysozyme-M promoter, made leukocytes visible. After applying stringent quality criteria, 3 of 69 recordings were fully analyzed. We show that endothelial cells, but not leukocytes, are covered by a significant surface layer. The wall shear rate is nearly zero near the adherent arc of each leukocyte and reaches a maximum at the apex. This peak shear rate is 2-6-fold higher than the wall shear rate in the absence of a leukocyte. Microbead trajectories show a systematic deviation toward and away from the microvessel axis upstream and downstream from the leukocyte, respectively. The flow field around adherent leukocytes in vivo allows more accurate estimates of bond forces in rolling and adherent leukocytes and improved modeling studies.  相似文献   

17.
Leukocyte adhesion through L-selectin to peripheral node addressin (PNAd, also known as MECA-79 antigen), an L-selectin ligand expressed on high endothelial venules, has been shown to require a minimum level of fluid shear stress to sustain rolling interactions (Finger, E.B., K.D. Puri, R. Alon, M.B. Lawrence, V.H. von Andrian, and T.A. Springer. 1996. Nature (Lond.). 379:266–269). Here, we show that fluid shear above a threshold of 0.5 dyn/cm2 wall shear stress significantly enhances HL-60 myelocyte rolling on P- and E-selectin at site densities of 200/μm2 and below. In addition, gravitational force is sufficient to detach HL60 cells from P- and E-selectin substrates in the absence, but not in the presence, of flow. It appears that fluid shear–induced torque is critical for the maintenance of leukocyte rolling. K562 cells transfected with P-selectin glycoprotein ligand-1, a ligand for P-selectin, showed a similar reduction in rolling on P-selectin as the wall shear stress was lowered below 0.5 dyn/cm2. Similarly, 300.19 cells transfected with L-selectin failed to roll on PNAd below this level of wall shear stress, indicating that the requirement for minimum levels of shear force is not cell type specific. Rolling of leukocytes mediated by the selectins could be reinitiated within seconds by increasing the level of wall shear stress, suggesting that fluid shear did not modulate receptor avidity. Intravital microscopy of cremaster muscle venules indicated that the leukocyte rolling flux fraction was reduced at blood centerline velocities less than 1 mm/s in a model in which rolling is mediated by L- and P-selectin. Similar observations were made in L-selectin–deficient mice in which leukocyte rolling is entirely P-selectin dependent. Leukocyte adhesion through all three selectins appears to be significantly enhanced by a threshold level of fluid shear stress.  相似文献   

18.
Human leukaemic HL-60 cells are widely used for studying interactions involving adhesion molecules [e.g. P-selectin and PSGL-1 (P-selectin glycoprotein ligand-1)] since their rolling behaviour has been shown to mimic the dynamics of leucocyte rolling in vitro. HL-60 cells are neutrophilic promyelocytes that can undergo granulocytic differentiation upon exposure to compounds such as DMSO (dimethylsulfoxide). Using a parallel plate flow chamber functionalized with recombinant P-selectin-Fc chimaera, undifferentiated and DMSO-induced (48, 72 and 96?h) HL-60 cells were assayed for rolling behaviour. We found that depending on P-selectin incubation concentration, undifferentiated cells incurred up to a 6-fold increase in rolling velocity while subjected to an approximately 10-fold increase in biologically relevant shear stress. HL-60 cells exposed to DMSO for up to 72?h incurred up to a 3-fold increase in rolling velocity over the same shear stress range. Significantly, cells exposed for up to 96?h incurred up to a 9-fold decrease in rolling velocity, compared with undifferentiated HL-60 cells. Although cell surface and nuclear morphological changes were evident upon exposure to DMSO, flow cytometric analysis revealed that PSGL-1 expression was unchanged, irrespective of treatment duration. The results suggest that DMSO-treated HL-60 cells may be problematic as a substitute for neutrophils for trafficking studies during advanced stages of the LAC (leucocyte adhesion cascade). We suggest that remodelling of the cell surface during differentiation may affect rolling behaviour and that DMSO-treated HL-60 cells would behave differently from the normal leucocytes during inflammatory response in vivo.  相似文献   

19.
The LFA-1 integrin is crucial for the firm adhesion of circulating leukocytes to ICAM-1-expressing endothelial cells. In the present study, we demonstrate that LFA-1 can arrest unstimulated PBL subsets and lymphoblastoid Jurkat cells on immobilized ICAM-1 under subphysiological shear flow and mediate firm adhesion to ICAM-1 after short static contact. However, LFA-1 expressed in K562 cells failed to support firm adhesion to ICAM-1 but instead mediated K562 cell rolling on the endothelial ligand under physiological shear stress. LFA-1-mediated rolling required an intact LFA-1 I-domain, was enhanced by Mg2+, and was sharply dependent on ICAM-1 density. This is the first indication that LFA-1 can engage in rolling adhesions with ICAM-1 under physiological shear flow. The ability of LFA-1 to support rolling correlates with decreased avidity and impaired time-dependent adhesion strengthening. A beta2 cytoplasmic domain-deletion mutant of LFA-1, with high avidity to immobilized ICAM-1, mediated firm arrests of K562 cells interacting with ICAM-1 under shear flow. Our results suggest that restrictions in LFA-1 clustering mediated by cytoskeletal attachments may lock the integrin into low-avidity states in particular cellular environments. Although low-avidity LFA-1 states fail to undergo adhesion strengthening upon contact with ICAM-1 at stasis, these states are permissive for leukocyte rolling on ICAM-1 under physiological shear flow. Rolling mediated by low-avidity LFA-1 interactions with ICAM-1 may stabilize rolling initiated by specialized vascular rolling receptors and allow the leukocyte to arrest on vascular endothelium upon exposure to stimulatory endothelial signals.  相似文献   

20.
Estrogen increases nitric oxide (NO) production by inducing the activity of endothelial NO synthase (eNOS) (Simoncini et al. Nature 407: 538, 2000). Ischemia (30 min) and reperfusion (I/R) increased the number of adherent leukocytes and decreased their rolling velocities in mouse cremaster muscle venules with a strong dependence on wall shear rate. Minimum rolling velocity at approximately 5 min after the onset of reperfusion was accompanied by increased P-selectin expression. This preceded the peak in leukocyte adhesion (at 10-15 min). In untreated wild-type mice, I/R caused a decrease of leukocyte rolling velocity from 37 to 26 microm/s and a 2.0-fold increase in leukocyte adhesion. Both were completely abolished by 0.25 mg ip estrogen 1 h before surgery. In eNOS(-/-) mice, the decrease of leukocyte rolling velocity and increase in adhesion were similar but were only marginally improved by estrogen. We conclude that the protective effect of estrogen, as measured by leukocyte rolling and adhesion, is significantly reduced in eNOS(-/-) mice, suggesting that induction of eNOS activity is the major mechanism of vasoprotection by estrogen in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号