首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nielsen JS  Møller BL 《Plant physiology》2000,122(4):1311-1321
Two cDNA clones encoding cytochrome P450 enzymes belonging to the CYP79 family have been isolated from Triglochin maritima. The two proteins show 94% sequence identity and have been designated CYP79E1 and CYP79E2. Heterologous expression of the native and the truncated forms of the two clones in Escherichia coli demonstrated that both encode multifunctional N-hydroxylases catalyzing the conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of the two cyanogenic glucosides taxiphyllin and triglochinin in T. maritima. This renders CYP79E functionally identical to CYP79A1 from Sorghum bicolor, and unambiguously demonstrates that cyanogenic glucoside biosynthesis in T. maritima and S. bicolor is catalyzed by analogous enzyme systems with p-hydroxyphenylacetaldoxime as a free intermediate. This is in contrast to earlier reports stipulating p-hydroxyphenylacetonitrile as the only free intermediate in T. maritima. L-3,4-Dihydroxyphenyl[3-(14)C]Ala (DOPA) was not metabolized by CYP79E1, indicating that hydroxylation of the phenol ring at the meta position, as required for triglochinin formation, takes place at a later stage. In S. bicolor, CYP71E1 catalyzes the subsequent conversion of p-hydroxyphenylacetaldoxime to p-hydroxymandelonitrile. When CYP79E1 from T. maritima was reconstituted with CYP71E1 and NADPH-cytochrome P450 oxidoreductase from S. bicolor, efficient conversion of tyrosine to p-hydroxymandelonitrile was observed.  相似文献   

2.
A cDNA encoding the multifunctional cytochrome P450, CYP71E1, involved in the biosynthesis of the cyanogenic glucoside dhurrin from Sorghum bicolor (L.) Moench was isolated. A PCR approach based on three consensus sequences of A-type cytochromes P450 – (V/I)KEX(L/F)R, FXPERF, and PFGXGRRXCXG – was applied. Three novel cytochromes P450 (CYP71E1, CYP98, and CYP99) in addition to a PCR fragment encoding sorghum cinnamic acid 4-hydroxylase were obtained.Reconstitution experiments with recombinant CYP71E1 heterologously expressed in Escherichia coli and sorghum NADPH–cytochrome P450–reductase in L--dilaurylphosphatidyl choline micelles identified CYP71E1 as the cytochrome P450 that catalyses the conversion of p-hydroxyphenylacetaldoxime to p-hydroxymandelonitrile in dhurrin biosynthesis. In accordance to the proposed pathway for dhurrin biosynthesis CYP71E1 catalyses the dehydration of the oxime to the corresponding nitrile, followed by a C-hydroxylation of the nitrile to produce p-hydroxymandelonitrile. In vivo administration of oxime to E. coli cells results in the accumulation of the nitrile, which indicates that the flavodoxin/flavodoxin reductase system in E. coli is only able to support CYP71E1 in the dehydration reaction, and not in the subsequent C-hydroxylation reaction.CYP79 catalyses the conversion of tyrosine to p-hydroxyphenylacetaldoxime, the first committed step in the biosynthesis of the cyanogenic glucoside dhurrin. Reconstitution of both CYP79 and CYP71E1 in combination with sorghum NADPH-cytochrome P450–reductase resulted in the conversion of tyrosine to p-hydroxymandelonitrile, i.e. the membranous part of the biosynthetic pathway of the cyanogenic glucoside dhurrin. Isolation of the cDNA for CYP71E1 together with the previously isolated cDNA for CYP79 provide important tools necessary for tissue-specific regulation of cyanogenic glucoside levels in plants to optimize food safety and pest resistance.  相似文献   

3.
CYP83B1 from Arabidopsis thaliana has been identified as the oxime-metabolizing enzyme in the biosynthetic pathway of glucosinolates. Biosynthetically active microsomes isolated from Sinapis alba converted p-hydroxyphenylacetaldoxime and cysteine into S-alkylated p-hydroxyphenylacetothiohydroximate, S-(p-hydroxyphenylacetohydroximoyl)-l-cysteine, the next proposed intermediate in the glucosinolate pathway. The production was shown to be dependent on a cytochrome P450 monooxygenase. We searched the genome of A. thaliana for homologues of CYP71E1 (P450ox), the only known oxime-metabolizing enzyme in the biosynthetic pathway of the evolutionarily related cyanogenic glucosides. By a combined use of bioinformatics, published expression data, and knock-out phenotypes, we identified the cytochrome P450 CYP83B1 as the oxime-metabolizing enzyme in the glucosinolate pathway as evidenced by characterization of the recombinant protein expressed in Escherichia coli. The data are consistent with the hypothesis that the oxime-metabolizing enzyme in the cyanogenic pathway (P450ox) was mutated into a "P450mox" that converted oximes into toxic compounds that the plant detoxified into glucosinolates.  相似文献   

4.
R A Kahn  S Bak  I Svendsen  B A Halkier    B L Mller 《Plant physiology》1997,115(4):1661-1670
A cytochrome P450, designated P450ox, that catalyzes the conversion of (Z)-p-hydroxyphenylacetaldoxime (oxime) to p-hydroxymandelonitrile in the biosynthesis of the cyanogenic glucoside beta-D-glucopyranosyloxy-(S)-p-hydroxymandelonitrile (dhurrin), has been isolated from microsomes prepared from etiolated seedlings of sorghum (Sorghum bicolor L. Moench). P450ox was solubilized using nonionic detergents, and isolated by ion-exchange chromatography, Triton X-114 phase partitioning, and dye-column chromatography. P450ox has an apparent molecular mass of 55 kD, its N-terminal amino acid sequence is -ATTATPQLLGGSVP, and it contains the internal sequence MDRLVADLDRAAA. Reconstitution of P450ox with NADPH-P450 oxidoreductase in micelles of L-alpha-dilauroyl phosphatidylcholine identified P450ox as a multifunctional P450 catalyzing dehydration of (Z)-oxime to p-hydroxyphenylaceto-nitrile (nitrile) and C-hydroxylation of p-hydroxyphenylacetonitrile to nitrile. P450ox is extremely labile compared with the P450s previously isolated from sorghum. When P450ox is reconstituted in the presence of a soluble uridine diphosphate glucose glucosyltransferase, oxime is converted to dhurrin. In vitro reconstitution of the entire dhurrin biosynthetic pathway from tyrosine was accomplished by the insertion of CYP79 (tyrosine N-hydroxylase), P450ox, and NADPH-P450 oxidoreductase in lipid micelles in the presence of uridine diphosphate glucose glucosyltransferase. The catalysis of the conversion of Tyr into nitrile by two multifunctional P450s explains why all intermediates in this pathway except (Z)-oxime are channeled.  相似文献   

5.
Glucosinolates are natural products in cruciferous plants, including Arabidopsis thaliana. CYP79A1 is the cytochrome P450 catalysing the conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of the cyanogenic glucoside dhurrin in sorghum. Both glucosinolates and cyanogenic glucosides have oximes as intermediates. Expression of CYP79A1 in A. thaliana results in the production of high levels of the tyrosine-derived glucosinolate p-hydroxybenzylglucosinolate, which is not a natural constituent of A. thaliana. This provides further evidence that the enzymes have low substrate specificity with respect to the side chain. The ability of the cyanogenic CYP79A1 to integrate itself into the glucosinolate pathway has important implications for an evolutionary relationship between cyanogenic glucosides and glucosinolates, and for the possibility of genetic engineering of novel glucosinolates.  相似文献   

6.
N-Hydroxytyrosine, (E)- and (Z)-p-hydroxyphenyl-acetaldehyde oxime, p-hydroxyphenylacetonitrile, and p-hydroxymandelonitrile are established intermediates in the biosynthesis of the tyrosine-derived cyanogenic glucoside dhurrin (Halkier, B. A., Olsen, C. E., and M?ller, B. L. (1989) J. Biol. Chem. 264, 19487-19494. Simultaneous measurements of oxygen consumption and biosynthetic activity using a microsomal enzyme system isolated from etiolated sorghum seedlings demonstrate a requirement for three oxygen molecules in the conversion of tyrosine to p-hydroxymandelonitrile. Two oxygen molecules are consumed in the conversion of tyrosine to (E)-p-hydroxyphenylacetaldehyde oxime, indicating the existence of a previously undetected hydroxylation step in addition to that resulting in the formation of N-hydroxytyrosine. Radioactively labeled 1-nitro-2-(p-hydroxyphenyl)ethane was chemically synthesized and tested as a possible intermediate. Biosynthetic experiments demonstrate that the microsomal enzyme system metabolizes the nitro compound to the subsequent intermediates in dhurrin synthesis (Km = 0.05 mM; Vmax = 14 nmol/mg of protein/h). Low amounts of 1-nitro-2-(p-hydroxyphenyl)ethane are produced in the microsomal reaction mixtures when tyrosine is used as substrate. These data support the involvement of 1-nitro-2-(p-hydroxyphenyl)ethane or more likely its aci-nitro tautomer as an intermediate between N-hydroxytyrosine and p-hydroxyphenylacetaldehyde oxime. The conversion of (E)-p-hydroxyphenylacetaldehydeoxime to p-hydroxymandelonitrile requires a single oxygen molecule. The oxygen molecule is utilized for hydroxylation of p-hydroxyphenylacetonitrile into p-hydroxymandelonitrile. This indicates that the conversion of p-hydroxyphenylacetaldehyde oxime into p-hydroxyphenylacetonitrile proceeds by a simple dehydration reaction.  相似文献   

7.
The two multifunctional cytochrome P450 enzymes, CYP79A1 and CYP71E1, involved in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench have been characterized with respect to substrate specificity and cofactor requirements using reconstituted, recombinant enzymes and sorghum microsomes. CYP79A1 has a very high substrate specificity, tyrosine being the only substrate found. CYP71E1 has less stringent substrate requirements and metabolizes aromatic oximes efficiently, whereas aliphatic oximes are slowly metabolized. Neither CYP79A1 nor CYP71E1 catalyze the metabolism of a range of different herbicides. The reported resistance of sorghum to bentazon is therefore not linked to the presence of CYP79A1 or CYP71E1. NADPH is a much better cofactor than NADH although NADH does support the entire catalytic cycle of both P450 enzymes. Km and Vmax values for NADPH when supporting CYP71E1 activity are 0.013 mM and 111 nmol/mg protein/s. For NADH, the corresponding values are 0. 3 mM and 42 nmol/mg protein/s. CYP79A1 is a fairly stable enzyme. In contrast, CYP71E1 is labile and prone to rapid denaturation at room temperature. CYP71E1 is isolated in the low spin form. CYP71E1 catalyzes an unusual dehydration reaction of an oxime to the corresponding nitrile which subsequently is C-hydroxylated. The oxime forms a peculiar reverse Type I spectrum, whereas the nitrile forms a Type I spectrum. Several compounds which do not serve as substrates formed Type I substrate binding spectra with the two P450 enzymes.  相似文献   

8.
Metabolon formation in dhurrin biosynthesis   总被引:1,自引:0,他引:1  
Synthesis of the tyrosine derived cyanogenic glucoside dhurrin in Sorghum bicolor is catalyzed by two multifunctional, membrane bound cytochromes P450, CYP79A1 and CYP71E1, and a soluble UDPG-glucosyltransferase, UGT85B1 (Tattersall, D.B., Bak, S., Jones, P.R., Olsen, C.E., Nielsen, J.K., Hansen, M.L., H?j, P.B., M?ller, B.L., 2001. Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293, 1826-1828). All three enzymes retained enzymatic activity when expressed as fluorescent fusion proteins in planta. Transgenic Arabidopsis thaliana plants that produced dhurrin were obtained by co-expression of CYP79A1/CYP71E1-CFP/UGT85B1-YFP and of CYP79A1/CYP71E1/UGT85B1-YFP but not by co-expression of CYP79A1-YFP/CYP71E-CFP/UGT85B1. The lack of dhurrin formation upon co-expression of the two cytochromes P450 as fusion proteins indicated that tight interaction was necessary for efficient substrate channelling. Transient expression in S. bicolor epidermal cells as monitored by confocal laser scanning microscopy showed that UGT85B1-YFP accumulated in the cytoplasm in the absence of CYP79A1 or CYP71E1. In the presence of CYP79A1 and CYP71E1, the localization of UGT85B1 shifted towards the surface of the ER membrane in the periphery of biosynthetic active cells, demonstrating in planta dhurrin metabolon formation.  相似文献   

9.
Novel cyanogenic plants have been generated by the simultaneous expression of the two multifunctional sorghum (Sorghum bicolor [L.] Moench) cytochrome P450 enzymes CYP79A1 and CYP71E1 in tobacco (Nicotiana tabacum cv Xanthi) and Arabidopsis under the regulation of the constitutive 35S promoter. CYP79A1 and CYP71E1 catalyze the conversion of the parent amino acid tyrosine to p-hydroxymandelonitrile, the aglycone of the cyanogenic glucoside dhurrin. CYP79A1 catalyzes the conversion of tyrosine to p-hydroxyphenylacetaldoxime and CYP71E1, the subsequent conversion to p-hydroxymandelonitrile. p-Hydroxymandelonitrile is labile and dissociates into p-hydroxybenzaldehyde and hydrogen cyanide, the same products released from dhurrin upon cell disruption as a result of pest or herbivore attack. In transgenic plants expressing CYP79A1 as well as CYP71E1, the activity of CYP79A1 is higher than that of CYP71E1, resulting in the accumulation of several p-hydroxyphenylacetaldoxime-derived products in the addition to those derived from p-hydroxymandelonitrile. Transgenic tobacco and Arabidopsis plants expressing only CYP79A1 accumulate the same p-hydroxyphenylacetaldoxime-derived products as transgenic plants expressing both sorghum cytochrome P450 enzymes. In addition, the transgenic CYP79A1 Arabidopsis plants accumulate large amounts of p-hydroxybenzylglucosinolate. In transgenic Arabidopsis expressing CYP71E1, this enzyme and the enzymes of the pre-existing glucosinolate pathway compete for the p-hydroxyphenylacetaldoxime as substrate, resulting in the formation of small amounts of p-hydroxybenzylglucosinolate. Cyanogenic glucosides are phytoanticipins, and the present study demonstrates the feasibility of expressing cyanogenic compounds in new plant species by gene transfer technology to improve pest and disease resistance.  相似文献   

10.
A microsomal fraction from seedlings of Sorghum bicolor (Linn) Moench has been shown to catalyze the conversion of L-tyrosine to p-hydroxymandelonitrile via p-hydroxyphenylacetaldoxime. This transformation is consistent with the general pathway for cyanogenic glycoside biosynthesis proposed on the basis of in vivo experiments. When the microsomal fraction was combined with a protein fraction from the soluble portion of the cell and uridine diphosphate glucose, it was possible to demonstrate the synthesis of the cyanogenic glycoside dhurrin from L-tyrosine.  相似文献   

11.
Japanese apricot, Prunus mume Sieb. et Zucc., belonging to the Rosaceae family, produces as defensive agents the cyanogenic glycosides prunasin and amygdalin, which are presumably derived from l-phenylalanine. In this study, we identified and characterized cytochrome P450s catalyzing the conversion of l-phenylalanine into mandelonitrile via phenylacetaldoxime. Full-length cDNAs encoding CYP79D16, CYP79A68, CYP71AN24, CYP71AP13, CYP71AU50, and CYP736A117 were cloned from P. mume ‘Nanko’ using publicly available P. mume RNA-sequencing data, followed by 5′- and 3′-RACE. CYP79D16 was expressed in seedlings, whereas CYP71AN24 was expressed in seedlings and leaves. Enzyme activity of these cytochrome P450s expressed in Saccharomyces cerevisiae was evaluated by liquid and gas chromatography–mass spectrometry. CYP79D16, but not CYP79A68, catalyzed the conversion of l-phenylalanine into phenylacetaldoxime. CYP79D16 showed no activity toward other amino acids. CYP71AN24, but not CYP71AP13, CYP71AU50, and CYP736A117, catalyzed the conversion of phenylacetaldoxime into mandelonitrile. CYP71AN24 also showed lower conversions of various aromatic aldoximes and nitriles. The K m value and turnover rate of CYP71AN24 for phenylacetaldoxime were 3.9 µM and 46.3 min?1, respectively. The K m value and turnover of CYP71AN24 may cause the efficient metabolism of phenylacetaldoxime, avoiding the release of the toxic intermediate to the cytosol. These results suggest that cyanogenic glycoside biosynthesis in P. mume is regulated in concert with catalysis by CYP79D16 in the parental and sequential reaction of CYP71AN24 in the seedling.  相似文献   

12.
CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis   总被引:1,自引:0,他引:1       下载免费PDF全文
Camalexin represents the main phytoalexin in Arabidopsis (Arabidopsis thaliana). The camalexin-deficient phytoalexin deficient 3 (pad3) mutant has been widely used to assess the biological role of camalexin, although the exact substrate of the cytochrome P450 enzyme 71B15 encoded by PAD3 remained elusive. 2-(Indol-3-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid (dihydrocamalexic acid) was identified as likely intermediate in camalexin biosynthesis downstream of indole-3-acetaldoxime, as it accumulated in leaves of silver nitrate-induced pad3 mutant plants and it complemented the camalexin-deficient phenotype of a cyp79b2/cyp79b3 double-knockout mutant. Recombinant CYP71B15 heterologously expressed in yeast catalyzed the conversion of dihydrocamalexic acid to camalexin with preference of the (S)-enantiomer. Arabidopsis microsomes isolated from leaves of CYP71B15-overexpressing and induced wild-type plants were capable of the same reaction but not microsomes from induced leaves of pad3 mutants. In conclusion, CYP71B15 catalyzes the final step in camalexin biosynthesis.  相似文献   

13.
14.
Phenobarbital, 3-methylcholanthrene, acetone and pyrazole were used as inducers of cytochrome P450 and the NADPH-dependent oxidase activity (O-2 production) of pulmonary and hepatic microsomes was determined. Oxidase activity of microsomes from 3-methylcholanthrene-treated rats was significantly decreased as compared to that of controls when expressed on the basis of cytochrome P450 content (30% decrease for liver, 60% decrease for lung). The oxidase activity of liver microsomes from pyrazole-treated rats showed a significant increase, whereas phenobarbital treated microsomes had average superoxide-generating activity. The contribution of cytochromes CYP 1A, CYP 2B and CYP 2E1 to superoxide-generating activity was investigated using monoclonal antibodies. Monoclonal antibody 1-91-3 against CYP 2E1 inhibited superoxide generation by 58% in liver microsomes from pyrazole-treated rats. Monoclonal antibodies 1-7-1 and 2-66-3 against CYP 1A and CYP2B, respectively, had no effect on superoxide generation. These results indicate that different cytochrome P450 isoforms are mainly responsible for differential superoxide generating activities of microsomes and complement the reconstitution study of Morehouse and Aust. Furthermore, our study indicates that CYP 1A1, induced by 3-MC, demonstrates an unusually low oxidase activity.  相似文献   

15.
A cDNA encoding a cytochrome P450 (CYP76B9) was isolated from Petunia hybrida. Northern blot analysis revealed preferential expression of the gene in flowers and leaves. The recombinant yeast microsomes expressing CYP76B9 was allowed to react with capric acid and lauric acid as substrates. One major metabolite was produced from each fatty acid after incubation with yeast microsomes expressing CYP76B9. The metabolites were identified by gas chromatography-mass spectrometry (GC-MS) as omega-hydroxy capric acid and omega-hydroxy lauric acid. The kinetic parameters of the reactions were Km=9.4 microM and Vmax=13.6 mol min(-1) per mol of P450 for capric acid, and Km=5.7 microM and Vmax=19.1 mol min(-1) per mol of P450 for lauric acid. We found that the omega-hydroxy metabolites of capric acid and lauric acid can affect the plant growth of Arabidopsis thaliana. Plants grown in the presence of omega-hydroxy fatty acids exhibited shorter root length than control plants with the corresponding non-hydroxylated fatty acids.  相似文献   

16.
A full length cDNA encoding a new cytochrome P450-dependent fatty acid hydroxylase (CYP94A5) was isolated from a tobacco cDNA library. CYP94A5 was expressed in S. cerevisiae strain WAT11 containing a P450 reductase from Arabidopsis thaliana necessary for catalytic activity of cytochrome P450 enzymes. When incubated for 10 min in presence of NADPH with microsomes of recombinant yeast, 9,10-epoxystearic acid was converted into one major metabolite identified by GC/MS as 18-hydroxy-9,10-epoxystearic acid. The kinetic parameters of the reaction were Km,app = 0.9 +/- 0.2 microM and Vmax,app = 27 +/- 1 nmol x min(-1) x nmol(-1) P450. Increasing the incubation time to 1 h led to the formation of a compound identified by GC/MS as 9,10-epoxy-octadecan-1,18-dioic acid. The diacid was also produced in microsomal incubations of 18-hydroxy-9,10-epoxystearic acid. Metabolites were not produced in incubations with microsomes of yeast transformed with a control plasmid lacking CYP94A5 and their production was inhibited by antibodies raised against the P450 reductase, demonstrating the involvement of CYP94A5 in the reactions. The present study describes a cytochrome P450 able to catalyze the complete set of reactions oxidizing a terminal methyl group to the corresponding carboxyl. This new fatty acid hydroxylase is enantioselective: after incubation of a synthetic racemic mixture of 9,10-epoxystearic acid, the chirality of the residual epoxide was 40/60 in favor of 9R,10S enantiomer. CYP94A5 also catalyzed the omega-hydroxylation of saturated and unsaturated fatty acids with aliphatic chain ranging from C12 to C18.  相似文献   

17.
A highly sensitive method for the determination of coumarin 7-hydroxylation and 7-ethoxycoumarin O-deethylation by human cytochrome P450 (P450 or CYP) enzymes was developed using high-performance liquid chromatography (HPLC). The newly developed HPLC method was found to be about 100-fold more sensitive than the previous spectrofluorimetric method in detecting the metabolite 7-hydroxycoumarin (umbelliferone). With this high sensitivity, the kinetics of coumarin 7-hydroxylation and 7-ethoxycoumarin O-deethylation catalyzed by human liver microsomal and recombinant P450 enzymes were determined more precisely. With 36 different substrate concentrations in these two reactions, coumarin 7-hydroxylation was found to be catalyzed mainly by a single enzyme CYP2A6 and 7-ethoxycoumarin was oxidized by at least two enzymes CYP2E1 and CYP1A2 in human liver microsomes.  相似文献   

18.
One of the mRNAs that accumulates during the ripening of avocado (Persea americana Mill. cv Hass) has been previously identified as a cytochrome P450 (P450) monooxygenase and the corresponding gene designated CYP71A1. In this report we demonstrate that during ripening the accumulation of antigenically detected CYP71A1 gene product (CYP71A1) correlates with increases in total P450 and two P450-dependent enzyme activities: para-chloro-N-methylaniline demethylase, and trans-cinnamic acid hydroxylase (tCAH). To determine whether both of these activities are derived from CYP71A1, we have expressed this protein in yeast (Saccharomyces cerevisiae) using a galactose-inducible yeast promoter. Following induction, the microsomal fraction of transformed yeast cells undergoes a large increase in P450 level, attributable almost exclusively to the plant CYP71A1 protein. These membranes exhibit NADPH-dependent para-chloro-N-methylaniline demethylase activity at a rate comparable to that in avocado microsomes but have no detectable tCAH. These results demonstrate both that the CYP71A1 protein is not a tCAH and that a plant P450 is fully functional upon heterologous expression in yeast. These findings also indicate that the heterologous P450 protein can interact with the yeast NADPH:P450 reductase to produce a functional complex.  相似文献   

19.
Plants produce a plethora of structurally diverse natural products. The final step in their biosynthesis is often a glycosylation step catalyzed by a family 1 glycosyltransferase (GT). In biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor, the UDP-glucosyltransferase UGT85B1 catalyzes the conversion of p-hydroxymandelonitrile into dhurrin. A structural model of UGT85B1 was built based on hydrophobic cluster analysis and the crystal structures of two bacterial GTs, GtfA and GtfB, which each showed approximately 15% overall amino acid sequence identity to UGT85B1. The model enabled predictions about amino acid residues important for catalysis and sugar donor specificity. p-Hydroxymandelonitrile and UDP-glucose (Glc) were predicted to be positioned within hydrogen-bonding distance to a glutamic acid residue in position 410 facilitating sugar transfer. The acceptor was packed within van der Waals distance to histidine H23. Serine S391 and arginine R201 form hydrogen bonds to the pyrophosphate part of UDP-Glc and hence stabilize binding of the sugar donor. Docking of UDP sugars predicted that UDP-Glc would serve as the sole donor sugar in UGT85B1. This was substantiated by biochemical analyses. The predictive power of the model was validated by site-directed mutagenesis of selected residues and using enzyme assays. The modeling approach has provided a tool to design GTs with new desired substrate specificities for use in biotechnological applications. The modeling identified a hypervariable loop (amino acid residues 156-188) that contained a hydrophobic patch. The involvement of this loop in mediating binding of UGT85B1 to cytochromes P450, CYP79A1, and CYP71E1 within a dhurrin metabolon is discussed.  相似文献   

20.
Using a PCR-based approach, two novel cytochrome P450 cDNAs were isolated from a catmint (Nepeta racemosa) leaf cDNA library. The cDNAs (pBSK3C7 and pBSK4C3) were 76.9% identical in their nucleotide sequences, indicating that they are the products of two closely-related genes. A comparison of the sequence of these cDNAs with database sequences indicated that they represent new members of the CYP71 gene family of plant cytochrome P450s. Clone pBSK3C7 contains the full-length coding sequence of a cytochrome P450, whilst pBSK4C3 lacks ca. 6 codons at the 5' end. The cytochromes P450 encoded by these clones were designated CYP71A5 and CYP71A6 (pBSK3C7 and pBSK4C3, respectively). Southern blot analysis indicated that the corresponding genes were present as single copies in the genome of N. racemosa. Northern blot analysis showed that a gene homologous with CYP71A5 was expressed in the related species N. cataria, but no homologue of CYP71A6 was detected in this species. Expression of CYP71A5 in N. racemosa was maximal in flowers, tissues within the apical bud, and young expanded leaves. That of CYP71A6 was maximal in older leaves. Expression of CYP71A5 occurred exclusively in trichomes present on the leaf surfaces, in contrast to that of CYP71A6, which occurred predominantly within the leaf blade tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号