首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interest in rapid bacterial detection methods for sanitary indicator bacteria in water prompted a study of the use of [U-14C]mannitol to detect fecal coliforms (FC). A simple method which used m-FC broth, membrane filtration, and two-temperature incubation (35 degrees C for 2 h followed by 44.5 degrees C for 2.5 h) was developed. [U-14C]mannitol was added to the medium, and the temperature was raised to 44.5 degrees C after 2 h at 35 degrees C. 14CO2 was collected as Ba14CO3 and assayed by liquid scintillation spectroscopy. Correlations were examined between FC cell numbers at the start of incubation (standard 24-h FC test) and Ba14CO3 counts per minute after 4.5 h. Results indicated that FC numbers ranging from 1 x 10(1) to 2.1 x 10(5) cells could be detected in 4.5 h. Within-sample reproducibility at all cell concentrations was good, but sample-to-sample reproducibility was variable. Comparisons between m-FC broth and m-FC broth modified by substituting D-mannitol for lactose indicated that the standard m-FC broth was the better test medium. Results from experiments in which dimethyl sulfoxide was used to increase permeability of FC to [U-14C]mannitol indicated no increase in 14CO2 production due to dimethyl sulfoxide. Detection of FC by this method may be useful for rapid estimation of FC levels in freshwater recreational areas, for estimating the quality of potable source water, and potentially for emergency testing of potable water, suspected of contamination due to distribution line breaks or cross-connections.  相似文献   

2.
A small-scale method has been adapted from an established procedure for the generation of [U-14C]acetylene from inexpensive and commonly available precursors. The method involves the fusing of Ba14CO3 with excess barium metal to produce Ba14C2. The BaC2 is reacted with water to generate acetylene which is then selectively dissolved into dimethyl sulfoxide (DMSO). The results presented demonstrate the effect of Ba:BaCO3 ratio on the concentrations of various gases released during the hydrolysis reaction and quantify the selectivity of the DMSO-trapping process for each gas. [U-14C]Acetylene generated by this method has been used to inactivate ammonia monooxygenase in three species of autotrophic nitrifying bacteria: Nitrosomonas europaea, Nitrosococcus oceanus, and Nitrosolobus multiformis. Our results demonstrate that acetylene inactivation of this enzyme in all three species results in the covalent incorporation of radioactive label into a polypeptide of apparent Mr of 25,000-27,000, as determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis and fluorography.  相似文献   

3.
A total of 191 Klebsiella pneumoniae isolates of human clinical, bovine mastitis, and a wide variety of environmental sources were tested for fecal coliform (FC) response with the membrane filtration and most probable number techniques. Twenty-seven Escherichia coli cultures of human clinical and environmental origins were also tested. Eighty-five percent (49/58) of known pathogenic K. pneumoniae were FC positive, compared with 16% (19/120) of the environmental strains. E. coli results indicated 93% (13/14) of the clinical and 85% (11/13) of the environmental strains as FC positive. There was no significant difference in the incidence of FC-positive cultures between pathogenic Klebsiella and E. coli. pH measurements of K. pneumoniae and E. coli cultures growing in m-FC broth at 44.5 degrees C revealed three distinct pH ranges correlating with colony morphology. beta-Galactosidase assays of Klebsiella and E. coli cultures at 44.5 degrees C indicated all were able to hydrolyze lactose, even if they were FC negative by the membrane filtration or most probable number techniques. The FC response pattern appears stable in K. pneumoniae. Three pathogenic cultures showed no change in FC responses after 270 generations of growth in sterile pulp mill effluent. Since K. pneumoniae is carried in the gastrointestinal tract of humans and animals and 85% of the tested pathogenic strains were FC positive, the isolation of FC-positive Klebsiella organisms from the environment would indicate their fecal or clinical origin or both. The added fact that K. pneumoniae is an opportunistic pathogen of increasing importance makes the occurrence of FC-positive environmental Klebsiella, particularly in large numbers, a potential human and animal health hazard.  相似文献   

4.
[U-14C]Sucrose and D-[1-14C]mannitol were used to determine the tritiated water space of human spermatozoa to validate these compounds as markers for the extracellular space. Calculations based on 0.03 mM-[U-14C]sucrose gave a negative water space. The water space estimated with 0.03 mM-D[1-14C]mannitol was unstable but a stable result was obtained with 0.3 mM-D-[1-14C]mannitol in incubations up to 2 h. The mean water space was 2.21 +/- 0.106 microliters/10(8) spermatozoa (mean +/- s.e.m. for 6 batches of pooled semen). The water space was decreased or abolished by Triton X-100, cold shock, sonication or hypotonic treatment. The water space responded to changes in the osmolarity of the medium by increasing in dilute media. It is concluded that mannitol is an effective extracellular marker for human spermatozoa if concentrations greater than or equal to 0.3 mM are used. When the kinetics of the uptake of 2-deoxyglucose by the spermatozoa were studied by using mannitol as an extracellular marker, the transport was saturable and was inhibited by cytochalasin B. The Km was 1.6 +/- 0.33 mM and the Vmax was 4.2 +/- 0.52 nmol/10(8) spermatozoa/10 sec (mean +/- s.e.m., n = 4).  相似文献   

5.
In the examination of stream waters for fecal coliforms, pale yellow colonies regularly appeared on m-FC broth base medium plates. The yellow colonies may comprise 70% more of the colonies of an m-FC plate. More than 80% of these colonies were identified as Escherichia coli by the API 20E identification system and by serotyping. The atypical yellow E. coli strains were not environmentally stressed E. coli since the atypical colonies continued to be yellow on m-FC medium after growth in a nonselective medium. However, 50% of the atypical E. coli strains were o-nitrophenyl-beta-D-galactopyranoside positive, and 20% produced gas in EC medium at 44.5 degrees C. Failure to consider these atypical E. coli strain in water quality analyses could lead to a significant error in the estimation of water quality in some instances.  相似文献   

6.
The metabolism of [1-14C]- and [6-14C]glucose, [1-14C]ribose, [1-14C]- and [U-14C]alanine, and [1-14C]- and [5-14C]glutamate by the promastigotes of Leishmania braziliensis panamensis was investigated in cells resuspended in Hanks' balanced salt solution supplemented with ribose, alanine, or glutamate. The ratio of 14CO2 produced from [1-14C]glucose to that from [6-14C]glucose ranged from about two to six, indicating appreciable carbon flow through the pentose phosphate pathway. A functional pentose phosphate pathway was further demonstrated by the production of 14CO2 from [1-14C]ribose although the rate of ribose oxidation was much lower than the rate of glucose oxidation. The rate of 14CO2 production from [1-14C]glucose was almost linear with time of incubation, whereas that of [6-14C]glucose accelerated, consistent with an increasing rate of flux through the Embden-Meyerhof pathway during incubation. Increasing the assay temperature from 26 degrees C to 34 degrees C had no appreciable effect on the rates or time courses of oxidation of either [1-14C]- or [6-14C]glucose or of [1-14C]ribose. Both alanine and glutamate were oxidized by L. b. panamensis, and at rates comparable to or appreciably greater than the rate of oxidation of glucose. The ratios of 14CO2 produced from [1-14C]- to [U-14C]alanine and from [1-14C]- to [5-14C]glutamate indicated that these compounds were metabolized via a functioning tricarboxylic acid cycle and that most of the label that entered the tricarboxylic acid cycle was oxidized to carbon dioxide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Previous studies of hot (>80 degrees C) microbial ecosystems have primarily relied on the study of pure cultures or analysis of 16S rDNA sequences. In order to gain more information on anaerobic metabolism by natural communities in hot environments, sediments were collected from a shallow marine hydrothermal vent system in Baia di Levante, Vulcano, Italy and incubated under strict anaerobic conditions at 90 degrees C. Sulphate reduction was the predominant terminal electron-accepting process in the sediments. The addition of molybdate inhibited sulphate reduction in the sediments and resulted in a linear accumulation of acetate and hydrogen over time. [U-14C]- acetate was completely oxidized to 14CO2, and the addition of molybdate inhibited 14CO2 production by 60%. [U-14C]-glucose was oxidized to 14CO2, and this was inhibited when molybdate was added. When the pool sizes of short-chain fatty acids were artificially increased, radiolabel from [U-14C]-glucose accumulated in the acetate pool. L-[U-14C]-glutamate, [ring-14C]-benzoate and [U-14C]-palmitate were also anaerobically oxidized to 14CO2 in the sediments, but molybdate had little effect on the oxidation of these compounds. These results demonstrate that natural microbial communities living in a hot, microbial ecosystem can oxidize acetate and a range of other organic electron donors under sulphate-reducing conditions and suggest that acetate is an important extracellular intermediate in the anaerobic degradation of organic matter in hot microbial ecosystems.  相似文献   

8.
1. A method was developed for synthesizing UDP-apiose [uridine 5'-(alpha-d-apio-d-furanosyl pyrophosphate)] from UDP-glucuronic acid [uridine 5'-(alpha-d-glucopyranosyluronic acid pyrophosphate)] in 62% yield with the enzyme UDP-glucuronic acid cyclase. 2. UDP-apiose had the same mobility as uridine 5'-(alpha-d-xylopyranosyl pyrophosphate) when chromatographed on paper and when subjected to paper electrophoresis at pH5.8. When [(3)H]UDP-[U-(14)C]glucuronic acid was used as the substrate for UDP-glucuronic acid cyclase, the (3)H/(14)C ratio in the reaction product was that expected if d-apiose remained attached to the uridine. In separate experiments doubly labelled reaction product was: (a) hydrolysed at pH2 and 100 degrees C for 15min; (b) degraded at pH8.0 and 100 degrees C for 3min; (c) used as a substrate in the enzymic synthesis of [(14)C]apiin. In each type of experiment the reaction products were isolated and identified and were found to be those expected if [(3)H]UDP-[U-(14)C]apiose was the starting compound. 3. Chemical characterization established that the product containing d-[U-(14)C]apiose and phosphate formed on alkaline degradation of UDP-[U-(14)C]apiose was alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate. 4. Chemical characterization also established that the product containing d-[U-(14)C]apiose and phosphate formed on acid hydrolysis of alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate was d-[U-(14)C]apiose 2-phosphate. 5. The half-life periods for the degradation of UDP-[U-(14)C]apiose to alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate and UMP at pH8.0 and 80 degrees C, at pH8.0 and 25 degrees C and at pH8.0 and 4 degrees C were 31.6s, 97.2min and 16.5h respectively. The half-life period for the hydrolysis of UDP-[U-(14)C]-apiose to d-[U-(14)C]apiose and UDP at pH3.0 and 40 degrees C was 4.67min. After 20 days at pH6.2-6.6 and 4 degrees C, 17% of the starting UDP-[U-(14)C]apiose was degraded to alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate and UMP and 23% was hydrolysed to d-[U-(14)C]apiose and UDP. After 120 days at pH6.4 and -20 degrees C 2% of the starting UDP-[U-(14)C]apiose was degraded and 4% was hydrolysed.  相似文献   

9.
An assay is described for the determination of the radioactive purity of [14C]oxalic acid preparations and the quantity of [14C]oxalic acid in biological samples. In this method oxalate decarboxylase is used to convert oxalate to formate and CO2. The entire procedure is carried out in a scintillation vial. The 14CO2 released in the enzymic reaction is allowed to diffuse off in a fume hood following acidification. Scintillation fluid is added to reacted and unreacted vials and the radioactivity measured. The loss of radioactivity from the reacted versus the unreacted vials provides the quantity of evolved 14CO2. This value is equal to 50% of the [14C]-oxalate (dpm) present. The radioactive purity of four preparations of [U-14C]oxalic acid was 99.0% while a fifth batch had a purity of 88%. A single batch of [U-14C]oxalic acid had a radioactive purity of 99.0% following storage of an aqueous solution, at -20 degrees C for 7 years. Recovery of [14C]oxalic acid from rat fecal extracts was 101.3%. Eight replicate analyses of a [U-14C]oxalic acid preparation gave a coefficient of variation of 0.3%. Following subcutaneous infusion of [U-14C]oxalic acid to rats, 100.2 +/- 2.9%, mean +/- SD, of the 14C in fecal extracts was present as [14C]oxalic acid (n = 10). The procedure provides a rapid, sensitive, and specific method to determine [14C]oxalic acid. It avoids the time consuming and inconvenient procedure for trapping and counting the evolved 14CO2. The approach used to determine the evolved 14CO2 may find application in other radiochemical methods that require its measurement.  相似文献   

10.
Atypical Escherichia coli in streams.   总被引:1,自引:1,他引:0       下载免费PDF全文
In the examination of stream waters for fecal coliforms, pale yellow colonies regularly appeared on m-FC broth base medium plates. The yellow colonies may comprise 70% more of the colonies of an m-FC plate. More than 80% of these colonies were identified as Escherichia coli by the API 20E identification system and by serotyping. The atypical yellow E. coli strains were not environmentally stressed E. coli since the atypical colonies continued to be yellow on m-FC medium after growth in a nonselective medium. However, 50% of the atypical E. coli strains were o-nitrophenyl-beta-D-galactopyranoside positive, and 20% produced gas in EC medium at 44.5 degrees C. Failure to consider these atypical E. coli strain in water quality analyses could lead to a significant error in the estimation of water quality in some instances.  相似文献   

11.
T Tamura  M Wada  N Esaki    K Soda 《Journal of bacteriology》1995,177(9):2265-2269
Streptomyces cattleya produces fluoroacetate and 4-fluorothreonine from inorganic fluoride added to the culture broth. We have shown by 19F nuclear magnetic resonance (NMR) spectrometry that fluoroacetate is accumulated first in the culture broth and that accumulation of 4-fluorothreonine is next. To show precursors of the carbon skeleton of fluoroacetate, we carried out tracer experiments with various 14C- and 13C-labeled compounds. Radioactivity of [U-14C]glucose, [U-14C]glycerol, [U-14C]serine, and [U-14C]beta-hydroxypyruvate was incorporated into fluoroacetate to an extent of 0.2 to 0.4%, whereas [3-14C]pyruvate, [2,3-14C]succinate, and [U-14C]aspartate were less efficiently incorporated (0.04 to 0.08%). The addition of [2-13C]glycerol to the mycelium suspension of Streptomyces cattleya caused exclusive enrichment of the carboxyl carbon of fluoroacetate with 13C; about 40% of carboxyl carbon of fluoroacetate was labeled with 13C. We studied the radioactivity incorporation of [3-14C]-, [U-14C]-, and [1-14C]beta-hydroxypyruvates to show that C-2 and C-3 of beta-hydroxypyruvate are exclusively converted to the carbon skeleton of fluoroacetate. These results suggest that the carbon skeleton of fluoroacetate derives from C-1 and C-2 of glycerol through beta-hydroxypyruvate, whose hydroxyl group is eventually replaced by fluoride.  相似文献   

12.
Characteristics of an obligately methylotrophic coccoid methanogen (strain GS-16) previously isolated from estuarine sediment are described. Growth was demonstrated on dimethyl sulfide (DMS) or trimethylamine (TMA), but not on methane thiol, methane thiol plus hydrogen, dimethyl disulfide, or methionine. DMS-grown cells were able to metabolize DMS and TMA simultaneously when inoculated into media containing substrate levels of these compounds. However, TMA-grown cells could not metabolize [C]DMS to CH(4), although they could convert [C]methanol to CH(4). These results suggest that metabolism of DMS proceeds along a somewhat different route than that of TMA and perhaps also that of methanol. The organism exhibited doubling times of 23 and 32 h for growth (25 degrees C) in mineral media on TMA and DMS, respectively. Doubling times were more rapid ( approximately 6 h) when the organisms were grown on TMA in complex broth. In mineral media, the fastest growth on DMS occurred between pH levels of 7.0 and 8.7, at 29 degrees C, and with 0.2 to 0.4 M Na and 0.04 M Mg. Somewhat different results occurred for growth on TMA in complex broth. Cells had a moles percent G+C value of 44.5% for their DNA. Growth on DMS, TMA, and methanol yielded stable carbon isotope fractionation factors of 1.044, 1.037, and 1.063, respectively. Fractionation factors for hydrogen were 1.203 (DMS) and 1.183 (TMA).  相似文献   

13.
Dichloroacetate (an activator of pyruvate dehydrogenase) stimulates 14CO2 production from [U-14C]glucose, but not from [U-14C]glutamate, [U-14C]aspartate, [U-14C]- and [1-14C]-valine and [U-14C]- and [1-14C]-leucine. It is concluded (1) that pyruvate dehydrogenase is not rate-limiting in the oxidation to CO2 of amino acids that are metabolized to tricarboxylic acid-cycle intermediates, and (2) that carbohydrate (and not amino acids) is the main carbon precursor in alanine formation in muscle.  相似文献   

14.
After incubation of rat, pig and cattle skeletal muscle homogenates with [U-14C]leucine, 80.4%, 37.0% and 57.0% of radioactivity was found in the proteins, 9.4%, 58.7% and 40.9% in the lipids, and 10.2%, 4.3% and 2.1% in 14CO2. This suggests that along-side with utilization in protein synthesis, leucine plays an essential role in lipid synthesis in muscle tissues of agricultural animals. The contribution of [U-14C]leucine to lipogenesis with substrates is greater than that of [U-14C]acetate and [U-14C]glucose in cattle skeletal muscles in vitro and greater than that of [U-14C]acetate in pig muscle. The CO2 production during oxidation of the [U-14C]leucine carbohydrate chain is higher than that during [U-14C]glucose and [U-14C]palmitate oxidation in skeletal muscles of rat and pig. In skeletal muscles of all animal species under study [U-14C]acetate is oxidized far more intensively than the other substrates tested.  相似文献   

15.
Branched-chain amino acid metabolism in hemidiaphragms from 40 h-starved rats is influenced by the provision of glucose as co-substrate. Glucose inhibits 14CO2 production from [l-14C]valine and [U-14C]valine but stimulates 14CO2 production from [l-14C]leucine, [U-14C]leucine and [U-14C]isoleucine. In the presence of glucose, ketone bodies inhibit alanine release and 14CO2 production from [l-14C]valine, [l-14C]leucine and [U-14C]isoleucine, but inhibition is not observed in the absence of glucose as cosubstrate. Glucose-dependent inhibition by ketone bodies of branched-chain amino acid oxidation via inhibition of the branched-chain 2-oxo acid dehydrogenase complex or branched-chain amino acid aminotransferase may account in part for the reported hypoalanaemic action of ketone bodies in vivo.  相似文献   

16.
A method involving labeling to isotopic steady state and modeling of the tricarboxylic acid cycle has been used to identify the respiratory substrates in lettuce embryos during the early steps of germination. We have compared the specific radioactivities of aspartate and glutamate and of glutamate C-1 and C-5 after labeling with different substrates. Labeling with [U-14C]acetate and 14CO2 was used to verify the validity of the model for this study; the relative labeling of aspartate and glutamate was that expected from the normal operation of the tricarboxylic acid cycle. After labeling with 14CO2, the label distribution in the glutamate molecule (95% of the label at glutamate C-1) was consistent with an input of carbon via the phosphoenolpyruvate carboxylase reaction, and the relative specific radioactivities of aspartate and glutamate permitted the quantification of the apparent rate of the fumarase reaction. CO2 and intermediates related to the tricarboxylic acid cycle were labeled with [U-14C]acetate, [1-14C] hexanoate, or [U-14C]palmitic acid. The ratios of specific radioactivities of asparate to glutamate and of glutamate C-1 to C-5 indicated that the fatty acids were degraded to acetyl units, suggesting the operation of beta-oxidation, and that the acety-CoA was incorporated directly into citrate. Short-term labeling with [1-14C]hexanoate showed that citrate and glutamate were labeled earlier than malate and aspartate, showing that this fatty acid was metabolized through the tricarboxylic acid cycle rather than the glyoxylate cycle. This was in agreement with the flux into gluconeogenesis compared to efflux as respiratory CO2. The fraction of labeled substrate incorporated into carbohydrates was only about 5% of that converted to CO2; the carbon flux into gluconeogenesis was determined after labeling with 14CO2 and [1-14C]hexanoate from the specific radioactivity of aspartate C-1 and the amount of label incorporated into the carbohydrate fraction. It was only 7.4% of the efflux of respiratory CO2. The labeling of alanine indicates a low activity of either a malic enzyme or the sequence phosphoenolpyruvate carboxykinase/pyruvate kinase. After labeling with [U-14C]glucose, the ratios of specific radioactivities indicated that the labeled carbohydrates contributed less than 10% to the flux of acetyl-CoA. The model indicated that the glycolytic flux is partitioned one-third to pyruvate and two-thirds to oxalacetate and is therefore mainly anaplerotic. The possible role of fatty acids as the main source of acetyl-CoA for respiration is discussed.  相似文献   

17.
In theory, the complete oxidation to CO2 of amino acids that are metabolized by conversion into tricarboxylic acid-cycle intermediates may proceed via their conversion into acetyl-CoA. The possible adrenergic modulation of this oxidative pathway was investigated in isolated hemidiaphragms from 40 h-starved rats. Adrenaline (5.5 microM), phenylephrine (0.49 mM) and dibutyryl cyclic AMP (10 microM) inhibited 14CO2 production from 3 mM-[U-14C]valine by 35%, 28% and 19% respectively. At the same time, these agents stimulated glycogen mobilization (measured as a decrease in glycogen content) and glycolysis (measured as lactate release). Adrenaline, phenylephrine and dibutyryl cyclic AMP did not inhibit 14CO2 production from 3 mM-[U-14C]aspartate or 3 mM-[U-14C]glutamate, although, as in the presence of valine, the agents stimulated glycogen mobilization and glycolysis. The rate of proteolysis (measured as tyrosine release in the presence of cycloheximide) was not changed by adrenaline. The data indicate that the adrenergic inhibition of 14CO2 production from [U-14C]valine was not a consequence of radiolabel dilution. Inhibition was apparently specific for branched-chain amino acid metabolism in that the adrenergic agonists also inhibited 14CO2 production from [1-14C]valine, [1-14C]leucine and [U-14C]isoleucine. Since 14CO2 production from the 1-14C-labelled substrates is a specific measure of decarboxylation in the reaction catalysed by the branched-chain 2-oxo acid dehydrogenase complex, it is at this site that the adrenergic agents are concluded to act.  相似文献   

18.
Studies have been carried out on the incorporation of [U-(14)C]glucose, [2-(14)C]pyruvate, [2-(14)C]acetate, and [1-(14)C]-palmitate into the phospholipids of the isolated perfused rat lung in the presence of either 6 or 45 mm total CO(2) concentration in the perfusion medium. Incorporation of [U-(14)C]glucose into total phospholipid and into the phosphatidylcholine fraction was increased 19-53% over the 2-hr perfusion period in lungs perfused with medium containing 45 as compared with 6 mm CO(2). The incorporation of [2-(14)C]acetate, [2-(14)C]-pyruvate, and [1-(14)C]palmitate was not affected by the change in medium CO(2) concentration. Increased incorporation of [U-(14)C]glucose combined with a shift toward greater incorporation into the fatty acids of the phosphatidylcholine fraction produced a maximum increase of 90% in [U-(14)C]glucose incorporation into the fatty acids of phosphatidylcholine after 2 hr of perfusion in the presence of medium containing 45 mm CO(2) as compared with 6 mm CO(2). The increase in medium CO(2) concentration produced as much as a 150% increase in [U-(14)C]glucose incorporation into palmitate derived from the phosphatidylcholine fraction. The results provide evidence that glucose functions as an important precursor of palmitate in the phosphatidylcholine fraction of lung phospholipids and that the CO(2) concentration of the perfusion medium affects the incorporation of glucose into palmitate.  相似文献   

19.
Paracoccus denitrificans was grown on either unlabelled glucose, [1-13C]glucose or [6-13C]glucose as the sole carbon source for growth. The cells were then incubated with a range of 14C-glucose substrates to compare the 14CO2-evolution rates between cells grown on the glucose and the 13C-labelled glucose. Cells grown on 13C-glucose had significantly faster rates of 14CO2-evolution than those grown on unlabelled glucose. The % yields of 14CO2, per [1-14C]-, [6-14C]- and [U-14C]glucose supplied were also substantially greater than those measured for cells grown on unlabelled glucose. The data indicated that growth of Paracoccus on 13C-enriched glucose substrates resulted in cells with notably different 14C-glucose oxidation metabolism compared to that observed in cells grown on unlabelled glucose.  相似文献   

20.
Dorsal root ganglia, excised from the lumbar roots of the sciatic nerve of white Leghorn chicken embryos 6-13 days of age, were incubated usually for 5 h, at 36 degrees C in 20 microliters of a bicarbonate-buffered physiological salt solution containing 5.5 mM glucose. [U-14C]Glucose, [1-14C]glucose, [6-14C]glucose, or [5-3H]uridine was also added. Lipid synthesis and lactate output were measured by incorporation of 3H from [5-3H]uridine. Glucose uptake and labeled lactate output declined rapidly from 6 to 8-9 days of age, more slowly thereafter. Synthesis of lipids was relatively constant throughout the ages studied, without the increased rate at intermediate ages seen previously in sympathetic ganglia of the same species. RNA synthesis declined progressively throughout the ages studied. The output of C-6 of glucose to CO2 was about the same at all ages, whereas that of C-1 declined rapidly from 6 to 7 days of age and then more slowly, but always remained higher than that of C-6 and thus indicated that much glucose was metabolized via the hexosemonophosphate shunt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号