首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 77 毫秒
1.
嗜吡啶红球菌R04的联苯降解途径的研究   总被引:3,自引:0,他引:3  
通过GC-MS测定出嗜吡啶红球菌R04菌降解联苯的中间代谢物2,3-二氢二羟基联苯、2,3-二羟基联苯和苯甲酸,并测定了该菌的2,3-二羟基联苯双加氧酶、2-羟基-6-酮基-6-苯基-2,3-己二烯酸(HOPDA)水解酶和苯甲酸双加氧酶活性。最终确定了R04菌降解联苯的途径为2,3-二羟基联苯双加氧酶途径。  相似文献   

2.
一株联苯降解菌的特性及鉴定*   总被引:2,自引:0,他引:2  
孙艳  钱世钧   《微生物学通报》2004,31(6):23-26
从华北油田污染土壤中筛选出一株能够以联苯为唯一碳源和能源生长的菌株。该菌生长的最适联苯浓度为0.2%~0.4%,在联苯浓度为0.1%的培养基中培养36h后降解率达99.8%。该菌还可以降解苯甲酸钠、邻苯二酚、间苯二酚、对苯二酚和多氯联苯Aroclorl221、Aroclorl242等芳香族化合物。通过16S rDNA基因序列分析鉴定该菌为嗜吡啶红球菌(Rhodococcus pyridinovorans)。  相似文献   

3.
【目的】研究红球菌R04细胞的分裂方式及联苯对其形态和细胞分裂的影响。【方法】以一株多氯联苯降解菌株(Rhodococcus sp.R04)为研究对象,利用荧光显微镜、扫描电子显微镜及透射电子显微镜分析红球菌R04在不同培养条件下的细胞分裂。【结果】红球菌R04细胞表现出对称分裂(约占30%)和不对称分裂(约占70%)两种分裂方式,且培养条件不影响不对称分裂细胞所占的比例。细胞分裂过程中,隔膜主要分布于细胞长度的30%–50%。在联苯的分解代谢过程中,红球菌R04细胞的生长分裂会受到联苯的抑制,但不影响红球菌R04细胞的分裂方式,在联苯胁迫下,细胞形成丝状化,表现出异常分裂,随着培养时间的延长,在细胞生长指数后期至转换期,细胞能够进行正常分裂。【结论】环境异生型化合物联苯/多氯联苯对其降解菌株——红球菌R04细胞的生长和分裂有较强影响,但是并不影响其分裂方式。  相似文献   

4.
杨秀清  杨琳 《微生物学报》2018,58(5):915-925
【目的】研究红球菌(Rhodococcus sp.)R04调控蛋白RHOGL007659的生理功能及其缺陷菌株的代谢特性,初步探究红球菌R04降解联苯的调控机制。【方法】通过基因同源重组敲除红球菌R04联苯代谢相关基因RHOGL007659。比较红球菌R04(野生型)和缺陷型菌株R04Δ7659(基因RHOGL007659缺陷型的R04)在不同碳源培养下的生长情况,HPLC分析R04和R04Δ7659转化联苯的能力。提取R04和R04Δ7659的总RNA,实时荧光定量PCR检测联苯降解关键基因的转录表达。纯化Bph B(联苯降解脱氢酶)和Bph D(联苯降解水解酶),制备多克隆抗体。Western blot分析Bph B和Bph D蛋白在R04和R04Δ7659中的表达水平。【结果】获得了RHOGL007659基因的缺陷型菌株R04Δ7659,与R04相比,R04Δ7659在联苯培养条件下的生物量趋近于零。HPLC分析表明,RHOGL007659基因的缺失使红球菌R04丧失转化联苯的能力。实时荧光定量PCR结果表明,在联苯培养条件下,缺失RHOGL007659后的R04,其联苯降解关键基因均有不同程度的下调表达。Western blot分析显示RHOGL007659缺失后,联苯降解关键酶Bph B和Bph D表达量均降低,这与实时荧光定量PCR结果相一致。【结论】RHOGL007659是红球菌R04联苯降解关键基因簇的调控蛋白,该蛋白对红球菌R04代谢联苯过程具有正调控作用。  相似文献   

5.
由微生物介导的吡啶降解技术是解决高盐吡啶环境污染的经济有效方法之一,开发具有吡啶降解性能且能够耐受高盐分的微生物是该类研究的重要前提。本研究从山西太原钢铁公司焦化废水处理厂活性污泥中分离培养了一株耐盐吡啶降解菌,通过菌落形态和16S rDNA基因系统发育分析,鉴定其为红球菌属(Rhodococcus sp.)的细菌。耐盐性实验结果表明,菌株LV4能够在0%–6%盐度范围内生长,并完全降解初始浓度为500 mg/L的吡啶;但当盐度高于4%时,菌株LV4因其生长变缓而导致吡啶完全降解时间明显延长。扫描电镜结果显示,高盐环境会使菌株LV4的菌体细胞分裂变慢,诱导细胞表面分泌更多的颗粒状胞外聚合物(extracellular polymeric substance, EPS)。当盐度不高于4%时菌株LV4主要依靠EPS中蛋白含量的增加来响应高盐环境的冲击。单因素实验优化发现,菌株LV4在盐度为4%的高盐环境中降解吡啶的最佳条件为温度30℃、pH 7.0、转速为120 r/min (DO 10.30 mg/L)。最优条件下菌株LV4对于初始浓度为500 mg/L的吡啶,在经过12 h的适应期后,...  相似文献   

6.
联苯降解细菌的分离及其降解质粒某些特性的研究   总被引:3,自引:0,他引:3  
:通过选择性富集培养 ,从芳烃污染的土壤中分离得到 16株以联苯作唯一碳源生长的细菌。初步鉴定 ,3株均为假单孢菌属(Psedomonas) 。都含有大小 2个质粒。质粒不稳定 ,易丢失。经苯甲酸钠和口丫啶橙的消除实验 ,结果表明 ,随着质粒丢失 ,菌株利用Bp生长的能力也丧失。酶活性分析表明 ,菌株只有邻苯二酚 2 ,3—氧化酶活性 ,没有邻苯二酚1 ,2—氧化酶活性。菌株对联苯的降解率 :bp2 菌为 93%、bp2 3菌为 81%、bp2 4 菌为 99%。降解过程中产生λmax331nm和λmax4 34nm2种中间代谢物。  相似文献   

7.
摘要:【目的】研究不同碳源,特别是联苯条件下红球菌的细胞转录应答,以挖掘与多氯联苯(PCBs)转运、代谢及其调控相关的基因,为进一步全面理解PCB微生物降解的分子机制奠定基础。【方法】以一株多氯联苯降解菌红球菌(Rhodococcus sp.R04)为材料,分别提取不同碳源(乙醇、葡萄糖和联苯)培养条件下菌体的总RNA,反转录合成cDNA。采用高通量测序法分别对这三种样品进行转录组测序,分析测序数据得出全基因组表达模式,并对不同条件下的基因表达进行差示分析,进而对联苯代谢网络和红球菌中其他基因的转录调节和代谢应答反应做出相关性分析。Q-RT-PCR分析不同碳源培养条件下的基因表达情况。【结果】测序结果表明,与葡萄糖和乙醇相比,联苯培养条件下明显上调(log2 Ratio 1)基因个数分别为375和332个。与葡萄糖相比,联苯培养条件下,相关基因上调表达量与Q-RT-PCR实验结果基本一致。功能分类获得细胞组分、分子功能和生物学过程三大类别160多个细小分支的差示表达基因,部分基因参与联苯代谢转录调控、联苯转运、抗氧化应激反应以及信号传导通路系统等多种生理过程。参与联苯上游代谢途径的众多同工酶基因中,只有bphC2和bphD1在联苯中大量上调表达,其余同工酶在联苯中基本量不变或下调表达。转录组注释及差示分析推测,红球菌R04中苯甲酸的代谢主要是通过儿茶酚邻位途径、间位途径以及原儿茶酸途径三条代谢途径完成。【结论】与葡萄糖和乙醇相比,红球菌R04在联苯培养条件下基因表达差异明显,这为我们进一步解析多氯联苯代谢特征和代谢调控提供理论依据。  相似文献   

8.
从辽河口石油污染土壤中筛选到一株能够以2-羟基吡啶作为唯一碳源、氮源和能源进行生长的菌株2PR,基于形态学观察、16S rRNA基因序列分析鉴定菌株2PR属于节杆菌属(Arthrobacter)。菌株2PR生长和降解2-羟基吡啶的最适条件是30℃,pH为7.0。当2-羟基吡啶初始浓度为6.0mg/ml时,120h菌株2PR对2-羟基吡啶的降解效率为94.48%,初始2-羟基吡啶浓度为8.0mg/ml时,156h的降解效率为89.21%。对2-羟基吡啶降解动力学过程进行模拟,结果显示菌株2PR生长和降解过程符合logisitic模型,该模型为环境中2-羟基吡啶的生物降解提供了理论参考。休止细胞反应和中间代谢产物检测表明,菌株2PR在降解2-羟基吡啶的过程中生成了蓝色化合物4,5,4',5'-tetrahydroxy-3,3'-diazadiphenoquinone-(2,2')。推测该菌株降解2-羟基吡啶的途径可能是首先由双加氧酶催化生成2,3,6-三羟基吡啶,后者会自发形成蓝色中间代谢产物,2,3,6-三羟基吡啶发生开环反应,最终被完全降解。菌株2PR是已报道菌株中2-羟基吡啶耐受能力和降解能力最强的菌株,在污染物生物修复方面具有广阔的应用前景。  相似文献   

9.
【目的】探究红球菌(Rhodococcus sp.)R04膜蛋白RHOGL009301的生理功能和突变菌株的代谢特性,确定该膜蛋白的生理功能与苯甲酸转运的关系。【方法】将RHOGL009301基因与绿色荧光蛋白基因在Rhodococcus erythropolis进行融合表达,Delta Vision观察该基因蛋白产物的定位。通过基因同源重组敲除RHOGL009301基因,并对比野生型菌株和缺陷型菌株在不同碳源培养下的生长情况。HPLC测定红球菌R04野生型菌株和缺陷型菌株代谢联苯和苯甲酸时细胞内外代谢物,分析不同生长条件下代谢物的浓度变化。【结果】RHOGL009301基因与绿色荧光蛋白基因在Rhodococcus erythropolis中实现共表达,并定位在细胞膜上。获得了RHOGL009301基因的缺陷型菌株R04ΔMP,与野生型菌株相比,缺陷型菌株在联苯和苯甲酸培养条件下的生物量明显降低,生长速度减慢。HPLC分析表明RHOGL009301基因的缺失抑制了苯甲酸的转运。【结论】膜蛋白RHOGL009301是苯甲酸代谢和转运相关的蛋白,基于序列同源性分析,该膜蛋白是一种新型的苯甲酸转运蛋白。  相似文献   

10.
孙娇  杨海燕  李力 《微生物学通报》2017,44(7):1613-1621
【目的】考察一株红球菌Rhodococcus sp.strain p52中的二噁英降解质粒pDF01(170 kb)和pDF02(242 kb)的稳定性和接合转移特性。【方法】在无选择压力的条件下对菌株p52进行连续传代培养,考察质粒pDF01、pDF02的丢失;以菌株p52为供体菌,以不同种属的菌株作受体菌,通过平板接合实验探讨质粒pDF01、pDF02接合转移的受体菌范围以及接合转移频率,利用菌落杂交、Southern杂交对质粒转移结果进行确认,利用降解实验测试转移质粒降解基因的表达。【结果】质粒pDF01和pDF02在红球菌p52中均具有较高的稳定性,在LB培养基上连续传代少于47次时pDF02可保持,连续传代少于65次时pDF01可保持。质粒pDF01和pDF02具备在同属和属间接合转移的能力,可向受体菌——紫红红球菌(Rhodococcus rhodochrous)、红串红球菌(Rhodococcus erythropolis)、大地两面神菌(Terrabacter tumescens)和节杆菌(Arthrobacter sp.)转移,其中以节杆菌作受体菌时质粒pDF01和pDF02接合转移频率最高,达到3.5×10~(-6)(接合子/受体菌);对节杆菌接合子质粒进行Southern杂交进一步确认了质粒pDF01、pDF02的存在。另外获得质粒pDF01、pDF02后的节杆菌接合子可以对二苯并呋喃高效利用,且降解能力与红球菌供体菌株p52相当。【结论】红球菌菌株p52可通过降解质粒转移强化生物修复过程,在去除环境中二噁英污染中具有良好的应用前景。  相似文献   

11.
The flux control coefficients of the four enzymes involved in the upper pathway of biphenyl degradation were determined from transient metabolite concentrations. The first enzyme was indicated as the major rate-limiting step of the pathway with a control coefficient of 0.48. The flux control coefficients of the other three enzymes were 0.03, 0.23 and 0.27, respectively. This is the first experimental evidence of the control step in the pathway of biphenyl degradation using metabolic control analysis.  相似文献   

12.
There is evidence that many plant secondary metabolites may act as signal molecules to trigger the bacterial ability to metabolize polychlorinated biphenyls (PCBs) during the rhizoremediation process. However, the bases for the PCB rhizoremediation process are still largely unknown. The rhizobacterium Rhodococcus erythropolis U23A is unable to use flavanone as a growth substrate. However, on the basis of an assay that monitors the amount of 4-chlorobenzoate produced from 4-chlorobiphenyl by cells grown co-metabolically on flavanone plus sodium acetate, this flavonoid was previously found to be a potential inducer of the U23A biphenyl catabolic pathway. In this work, and using the same assay, we identified ten other flavonoids that did not support growth, but that acted as inducers of the U23A biphenyl pathway, and we confirmed flavonoid induction of the biphenyl catabolic pathway using quantitative real-time polymerase chain reaction (RT-qPCR) on the bphA gene. We also examined the effect of the growth co-substrate on flavonoid induction. Sodium acetate was replaced by glucose, mannose, sucrose, or mannitol, which are sugars found in plant root exudates. The data showed that the level of induction of strain U23A biphenyl-degrading enzymes was significantly influenced by the nature and concentration of the flavonoid in the growth medium, as well as by the substrate used for growth. Sucrose allowed for an optimal induction response for most flavonoids. Some flavonoids, such as flavone and isoflavone, were better inducers of the biphenyl catabolic enzymes than biphenyl itself. We also found that all flavonoids tested in this work were metabolized by strain U23A during co-metabolic growth, but that the metabolite profiles, as well as the level of efficiency of degradation, differed for each flavonoid. To obtain insight into how flavonoids interact with strain U23A to promote polychlorinated biphenyl (PCB) degradation, we determined the concentration of flavanone at which optimal PCB-degrading performance of strain U23A was achieved. We showed that it corresponded to the concentration required to fully induce the biphenyl catabolic pathway of the strain. Together, our data demonstrate that optimal PCB degradation during the rhizoremediation process will require the adjustment of several parameters, including the presence of the appropriate flavonoids at the proper concentrations and the presence of proper growth substrates that positively influence the ability of flavonoids to induce the pathway.  相似文献   

13.
微生物降解联苯的研究进展   总被引:1,自引:0,他引:1  
联苯是一种有机污染物,在自然环境中很难分解。目前研究的降解方法中,微生物降解最有潜力。微生物法处理成本低、效果好、无二次污染,且操作简单,能够实现真正意义上的再循环。该文对国内外开展的微生物降解联苯的相关研究进行了综述,对联苯降解的菌群、代谢途径及其关键酶进行了详细的阐述,指出了微生物降解联苯存在的关键问题是修复效率低,高效菌株的筛选、基因工程菌的构建及其多种修复技术的结合是今后研究的方向。  相似文献   

14.
15.
The pathway for biodegradation of benzothiazole (BT) and 2-hydroxybenzothiazole (OBT) by Rhodococcus pyridinovorans strain PA was studied in detail. The kinetics of biodegradation were monitored by in situ (1)H nuclear magnetic resonance (NMR) in parallel with reversed-phase high-performance liquid chromatography (HPLC). Successive oxidations from BT to OBT and then from OBT to dihydroxybenzothiazole were observed. Further insight was obtained by using a mutant strain with impaired ability to grow on BT and OBT. The precise structure of another intermediate was determined by in situ two-dimensional (1)H-(13)C NMR and HPLC-electrospray ionization mass spectrometry; this intermediate was found to be a ring-opening product (a diacid structure). Detection of this metabolite, together with the results obtained by (1)H and (19)F NMR when cells were incubated with 3-fluorocatechol, demonstrated that a catechol 1,2-dioxygenase is involved in a pathway for biodegradation of BTs in this Rhodococcus strain. Our results show that catechol 1,2-dioxygenase and catechol 2,3-dioxygenase activities may both be involved in the biodegradation of BTs depending on the culture conditions.  相似文献   

16.
2-羟基-6-氧-6-苯基己-2,4-二烯酸水解酶(BphD)是一种多氯联苯微生物降解途径中的关键酶. 本文通过紫外-可见光光谱分别对突变酶S110A和H265A催化过程中酶-底物复合物进行检测,同时利用停流光谱技术对BphD及其突变酶(S110A、H265A和W266A)催化底物2-羟基-6-氧-6-苯基己-2,4-二烯酸(HOPDA)前稳态动力学进行了研究.结果表明,在BphD催化C-C断裂过程中,产物2-羟基戊-2,4-二烯酸(HPD)迅速生成,其速率常数为22 S-1. 底物的消耗(速率常数,22022 S-1和803 S-1)及酶-底物复合物的变化(速率常数,55556 S-1和664 S-1)表明该酶催化过程包括2个动力学阶段:快速底物酮基化作用和C-C键断裂过程.紫外-可见光光谱扫描结果显示,在突变酶S110A的催化过程中,酶-底物复合物在492 nm及510 nm处有最大光吸收,而在突变酶H265A催化中,却没有相似的光吸收,只是在480 nm产生1个新肩峰. BphD及其突变酶S110A、H265A和W266A动力学分析表明,Ser-110主要负责底物C-C键断裂;His-265负责底物由烯醇式向酮式转变,并且与Ser-110和Trp-266共同参与了随后的C-C键断裂过程. 结果揭示,除了传统的催化三联体(Ser-110,Asp-237,His-265)外,Trp-266在该水解酶催化反应中也发挥非常重要的作用,这一发现丰富了C-C水解酶的反应动力学机制.  相似文献   

17.
18.
Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (−)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1,2-monooxygenase activity, a cofactor-independent limonene-1,2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S,4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R,4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In the presence of coenzyme A and ATP this acid is converted further, and this finding, together with the high levels of isocitrate lyase activity in extracts of limonene-grown cells, suggests that further degradation takes place via the β-oxidation pathway.  相似文献   

19.
Abstract A Gram-positive bacterium with the ability to utilize o -toluidine as sole source of carbon and nitrogen was isolated from soil. The organism was identified as Rhodococcus rhodochrous Sb 4. 3-Methylcatechol and the meta-fission product of 3-methylcatechol were identified as metabolites. A pathway for the degradation of o -toluidine is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号