首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously demonstrated that directional migration of neural crest cells (NCC) is associated with a high cell density, resulting from an active cell proliferation. It is also known that treatment with retinoic acid (RA) causes a dose-dependent inhibition of proliferation of some cell types, and that administration of RA during the early stages of embryonic development, induces cranio-facial abnormal patterns corresponding to NCC derivatives. In view of these findings, it was of interest to determine if exogenous RA is a potential modulator of the mitotic rate of NCC, and to explore the hypothesis of an inhibitory effect exerted by RA on the proliferative behaviour of NCC in vivo and in vitro. Homogenates of RA-treated chick embryos showed a low [3H]dT incorporation, indicating a generalized diminution of DNA synthesis. The labelling index (LI=number of labelled cells/total number of cells) revealed that NCC from RA-treated and control embryos had higher values of [3H]dT incorporation than neural tube cells (P < 0.0001). Autoradiographs of RA-treated chick embryos showed a significantly lower [3H]dT incorporation in NCC at the prosencephalic and mesencephalic levels, as well as in the neural tube cells at the prosencephalic, mesencephalic and rhombencephalic levels, than in control chick embryos (P < 0.0001). NCC cultures treated with 1 or 10 μm RA had a significantly lower LI than in cultures treated with 0.1 μm RA or control cultures (P < 0.04). In chick embryos, the mitotic index of NCC was 0.026 for RA-treated and 0.033 for controls, while the duration of the cell cycle was significantly longer in the NCC of RA-treated embryos (~ 40 h) than in controls (~ 25 h). The length of the cell cycle phases of NCC was similar in both experimental conditions, except for G1 phase, which was significantly longer in the RA-treated group than in controls. These results show that RA blocks DNA synthesis and lengthens the proliferative behaviour of NCC both in early chick embryos and in vitro, effects that could modify the morphogenetic patterns of NCC distribution through a decreased cell population.  相似文献   

2.
Abstract. Cell kinetic and histologic parameters of six xenografted tumours with volume doubling times ranging from 6 to 43 d were investigated in order to obtain kinetic information on a panel of tumours to be used in radiobiological studies. The six tumours covered a range of histologies and their DNA indices varied from 2–7 to 1–4. The length of the cell cycle (Tc), potential doubling time (Tpot) and labelling index (LI) were determined by continuous labelling with [3H]TdR and autoradiography in three tumours. Tc varied from 30 to 40 h. Determinations of the length of the S phase (Ts) were found to be less reliable by this method. Data on Ts and LI were also determined in all six tumours using bromodeoxyuridine (BrdU) labelling and the single sample method; values of Tpot were slightly longer than those obtained via the autoradiographic method. In addition, multiple samples were taken after BrdU labelling. Tc was determined by fitting the data obtained from mid-S, mid-G2 and mid-G1 windows to curves described by a damped oscillator. Data obtained via the mid-S window were found to be most reliable. Generally, cell cycle times obtained by the BrdU method were longer than those observed with the autoradiographic method. Differences between the two methods could be explained by inaccuracies in the determination of Ts, LI and Tc and differences in the experimental approach. We consider the BrdU labelling method to be a suitable alternative for the time-consuming autoradiography, if data on Ts or Tpot are sufficient. Due to difficulties in the reproducibility of the immunofluorescence staining and asynchronization of cells approximately 10 h after labelling, the method of windows analysis was affected by similar problems to those observed in interpretation of percentage labelled mitosis (PLM) curves. However, the method may serve as an alternative to determine cell cycle times in vitro and, if improved technically, in vivo. Careful comparison of the data obtained from mid-S, mid-G1 and mid-G2 windows may increase the reliability of the determination of cell kinetic parameters.  相似文献   

3.
Direct comparison of bromodeoxyuridine (BrdUrd) and Ki-67 labelling indices was achieved by selecting similar areas from serial sections of human tumours. Fifteen patients were selected who had been administered BrdUrd in vivo and both proliferation markers were assessed by immunohistochemistry. The data show a good correlation between both BrdUrd LI and MIB-1 LI and Tpot (calculated using the flow cytometry derived duration of S phase) and MIB-1 LI. The contribution of BrdUrd LI to growth fraction varied as a function of proliferation characteristics. In tumours with a high LI, the number of DNA synthesizing cells represented half the growth fraction, whilst in tumours with lower LI's (<10%) the ratio of DNA precursor labelled cells as a function of growth fraction fell to between 10% and 20%. Tpot showed a linear correlation with MIB-1/BrdUrd ratio with a slope approaching unity. It was apparent that both intra- and interpatient variation in proliferation index was greater for BrdUrd labelling than for MIB-1 expression.  相似文献   

4.
The proliferation parameters of the Walker carcinoma were estimated from both in vivo and in vitro measurements. The transplantable Walker carcinoma 256 was grown in male inbred BD1 rats. During exponential growth, 5-6 days after transplantation, a PLM curve was performed, yielding estimates of Tc ? 18.0 hr, Ts ? 6.4 hr, TG2+M? 4.1 hr. With the double labelling technique in vitro under 2.2 atm oxygen we obtained: Tc ? 18.2hr, Ts ? 8.2 hr, TG2+M? 2.0hr. From pulse cyto-photometry DNA content histograms the fractions of cells in the cell cycle phases were calculated using a computer program: fG1? (47.6 ± 1.1)%, fs? (34.1 ± 1.0)%, fG2+M? (18.3 ± 1.5)%. These fractions remained constant between the fifth and the twelfth day after transplantation. At that time the tumour growth had already slowed down appreciably. The growth fraction determined by repetitive labelling was 0.96 on the fifth and 0.93 on the seventh and eleventh day. The cell loss factor was φ? 17% during exponential tumor growth and increased to about 100% between the tenth and twelfth day. The agreement of the cell kinetic data determined by autoradiography from solid tumours in vivo (PLM, continuous labelling) and autoradiography as well as pulse cytophotometry from in vitro experiments (excised material) was satisfactory.  相似文献   

5.
Abstract. Flow cytometry of cellular DNA content provides rapid estimates of DNA distributions, i.e. the proportions of cells in the different phases of the cell cycle. Measurements of DNA alone, however, yield no kinetic information and can make it difficult to resolve the cell cycle distributions of normal and transformed cells present in tumour biopsy specimens. The use of absorption cytophotometry of the Feulgen DNA content and [3H]TdR labelling of the same nuclei provides objective criteria to distinguish the ranges of DNA content for G0/G1, S, and G2/M cells. We now report on a study in which we combined flow and absorption cytometry to resolve the cell cycle distributions of host and tumour cells present in biopsy specimens of MCa-11 mouse mammary tumours labelled in vivo for 0.5 hr with [3H]TdR. A similar analysis of exponential monolayer cultures, labelled for 5 min with [3H]TdR under pulse-chase conditions, revealed a highly synchronous traversal of almost all cells through the different phases of the cell cycle. Combination of the flow and absorption methods also allowed us to detect G2 tumour cells in vivo and a minor tumour stem-line in vitro, to show that these two techniques are complementary and yield new information when they are combined.  相似文献   

6.
Summary Under hypoxia (10 and 5% partial oxygen tension) meristematic cells ofAllium cepa L. roots acquired new cycle kinetics, characterized by reduced but constant rates of root growth. Under these conditions, there was preferential lengthening of G1 and of the last third of the S period, S3. Since hyperoxygenation shortened S3 but not G1 in these cells, the high sensitivity of late replication to environmental oxygen is demonstrated. The preferential depression of the replication rate when those cells replicated the last third of their DNA was not associated with diminished cell size. Rather, the lower the oxygen level the larger the mean size of the cycling cells. Under anoxia (0% oxygen tension) the rate of growth slowed, accompanied by preferential accumulation of cells in G1. However, steady state kinetics of root growth was not achieved under these extreme conditions.Abbreviations Mean cell length - LI labelling index or frequency of cells with labelled nuclei after [3H]thymidine - G1, S, G2 pre-replicative, replicative, and post-replicative periods of the interphase of cycling cells - M mitosis  相似文献   

7.
The proliferation kinetics of cells of the line NHIK 1922 grown in vitro and as solid tumours in the athymic mutant nude mouse has been studied. In vitro, growth curves were determined for exponentially growing populations and for populations synchronized by mitotic selection. The phase durations for these populations were determined by flow cytofluorometric measurements of DNA-histograms and pulsed incorporation of [3H]TdR respectively. The generation time and the phase durations for synchronized populations were found to be about equal to those for exponentially growing populations. The duration of the phases G1, S and G2+ M was found to be 8·5–9·5, 11·0–12·0 and 6·0–6·5 hr respectively, i.e. the generation time was 26·5–27·0 hr. The proliferation kinetics in vivo were studied by flow cytofluorometry and by the technique of percentage labelled mitoses. The median duration of S-phase and (G2+ M)-phase in vivo was found to be approximately the same as that observed in vitro, while the median duration of G1-phase was found to be approximately 5 hr longer in vivo than under the present in vitro growth conditions. The growth fraction in vivo was estimated to be approximately 50%. The non-proliferative compartment of the tumour cells was found to consist mainly of cells with the DNA-content of cells in G1-phase. It is concluded that the reduced rate of proliferation of NHIK 1922 cells in vivo is correlated with alterations in the duration of G1-phase and, hence, the proportion of cells in G1-phase.  相似文献   

8.
Neonatal administration of guanethidine-sulfate results in an alteration of the cell proliferative pattern of the small intestinal epithelium of the young adult rat. Sympathectomy with guanethidine has previously been shown to depress mitotic, labelling, and total cellular migration indices while increasing the generation cycle time (TC) of small intestinal crypt cells as measured by a stathmokinetic method. The present study showed that the G1, S and G2 phases of the crypt cell cycle are altered by sympathectomy, G1 accounting for most of the increase in TC. In addition, the percentage of [3H]-thymidine labelled crypt cells is reduced and the duration of crypt cell transit is lengthened by guanethidine-induced sympathectomy.  相似文献   

9.
LABELLING INDEX OF HUMAN SQUAMOUS CELL CARCINOMAS   总被引:1,自引:0,他引:1  
In vivo and in vitro labelling has been compared in sixteen human solid squamous cell carcinomas (ENT). The median in vivo/in vitro LI ratio was 1·2, but for two-thirds of the patients it was only 1·1, suggesting a slight LI underestimation in vitro. Two factors can possibly explain the divergences: heterogeneity from one biopsy to another in the same tumour, and lower mean grain count in the deep cell layers of the in vitro labelled tumour samples. Therefore, the fact we did not find a good agreement between in vivo and in vitro data for one-third of the tumours points out that one must be cautious in considering in vitro LI as a valid result for a given patient. However, even if the in vitro LI leads to a certain underestimate, it can provide useful data.  相似文献   

10.
The mechanism of action of the alkaloid vincristine (VCR) has been investigated in vitro on HeLa cells in culture and in vivo on jejunal crypt cells of the mouse. The in vitro experiments with HeLa cells show that VCR affects not only mitotic but also interphase cells. The VCR-affected cells first continue their passage through the cell cycle undisturbed but after reaching mitosis they are arrested in metaphase. This agrees well with the results obtained by Madoc-Jones & Mauro (1968) and Madoc-Jones (1973) on synchronized cell cultures. Until now there has been no investigation of the mechanism of action of VCR in vivo. This is due to the absence of a suitable technique for synchronization in vivo. The present study is based on a method which permits the assessment of the VCR sensitivity as a function of the cell age without synchronization in the usual sense. The jejunal crypt epithelium of the normal mouse was double labelled with 3H- and 14C-thymidine (TdR) in such a way as to produce a narrow subpopulation of crypt cells with a maximum age difference of 1 hr. On autoradiographs these cells can be distinguished by their characteristic labelling from other cells. As this ‘pseudo’-synchronized subpopulation passes through the cycle the effect of VCR can be studied, i.e. one can analyse the effect in well-defined time intervals of the cycle. The results show that the effect of VCR is the same in vivo as in vitro. The crypt cells which are affected by VCR in interphase continue their passage through the cycle, but upon entering mitosis they are arrested in metaphase. VCR has, at the concentration used in the present study, no effect on the duration of the S and G2 phases. The necrotic cells seen after VCR application are formed from arrested metaphases.  相似文献   

11.
The strong skin irritant cantharidin dissolved in benzene was applied to the back of hairless mice. Single cell suspensions of epidermal basal cells were obtained and flow microfluorometric measurements of cellular DNA content were made. Smears were made for autoradiography, and the [3H]TdR labelling index (LI) and mean grain count (MGC) were assessed up to 3 days after cantharidin application. Three successive peaks of cells with S phase DNA content accompanied by three LI peaks were observed. The first two peaks were follwed by peaks of cells in G2 phase, indicating that after the acute cell injury caused by cantharidin the cells traversed the cell cycle in partial synchrony through two subsequent cell cycles, each of 10–12 hr duration. During this phase of rapid proliferation the LI reached the proportion of cells in S phase, contrary to what is observed in untreated mouse epidermis, where the labelled cells contribute to about half the proportion of cells with S phase DNA content. The first two peaks of cells in S phase and LI coincided with an increased MGC, whereas the third peak was accompanied by a MGC significantly below control values. This indicates that this latter peak is due to a longer DNA synthesis time rather than to a partially synchronized and increased cell proliferation. The duration of the G1, S and G2 phases seems to be reduced initially in rapidly proliferating epidermis.  相似文献   

12.
In vivo experiments in mice demonstrated that 5% CO2 content in the air inhaled did not change the labelling in autoradiograms from animals injected with [3H]uridine, [3H]orotic acid, [3H]hypoxanthine, [3H]lysine or [3H]cytidine. At 20% CO2 content there was a significant decrease in labelling of brain cells with [3H]uridine and [3H]cytidine, but not following [3H]lysine; there was no labelling of nerve cells with [3H]orotic acid or [3H]hypoxanthine, but a control group was not included. The labelling of choroid plexus and hepatocytes was independent of the CO2 concentration. A comparison of in vivo and in vitro experiments at 20% CO2 content showed a similar significant decrease in labelling of brain cells with [3H]uridine and [3H]cytidine. It is concluded that a metabolic change is the most appropriate explanation of the CO2 effect.  相似文献   

13.
The model is based on the assumption that the cell cycle contains a Go-phase which cells leave randomly with a constant probability per unit time, γ. After leaving the Go-phase, the cells enter the C-phase which ends with cell division. The C-phase and its constituent phases, the‘true’G1-phase, the S-phase, the G2-phase and mitosis are assumed to have constant durations of T, T1Ts, T2 and Tm, respectively. For renewal tissue it is assumed that the probability per unit time of being lost from the population is a constant for all cells irrespective of their position in the cycle. The labelled mitosis curve and labelling index for continuous labelling are derived in terms of γ, T, and Ts. The model generates labelled mitosis curves which damp quickly and reach a constant value of twice the initial labelling index, if the mean duration of the Go-phase is sufficiently long. It is shown that the predicted labelled mitosis and continuous labelling curves agree reasonably well with the experimental curves for the hamster cheek pouch if T has a value of about 60 hr. Data are presented for the rat dorsal epidermis which support the assumption that there is a constant probability per unit time of a cell being released from the Go-phase.  相似文献   

14.
Our purpose was to validate different approaches to the study of cell proliferation in stratified squamous epithelia, using oral mucosa as a model. Dorsal and ventral tongue from the hamster were examined following in vivo labelling with tritiated thymidine and bromodeoxyuridine (BrdUrd), and in vitro labelling with BrdUrd. These were compared with direct immunolabelling of fixed tissue sections with monoclonal antibody PC10. For the former methods S phase cells were quantified following autoradiography or immunohistochemistry. We conclude that the proliferative status of simple, flat, lining mucosae such as ventral tongue can be derived by all three prelabelling methods and, on average, 18–19 cells per surface millimetre length were in DNA synthesis. On the other hand dorsal tongue epithelium, which is thicker, has an undulating morphology and a complex cell renewal pattern, gives different results with the three labelling methods. In both sites the proliferating cell nuclear antigen (PCNA) index was fourfold that obtained by nucleotide labelling. This is consistent with PCNA marking proliferative cells in other phases of the cell cycle in addition to the S phase. Thus, there are potential differences between the information on proliferative status derived by PCNA immunohistochemistry and other established cell cycle markers, which need to be taken into account in the interpretation of epithelial cell kinetic data in health and disease.  相似文献   

15.
In the present paper we propose a method of analysis of the cell kinetic characteristics of in vivo experimental tumours, that uses DNA-BrdUrd flow cytometry data at various times after the bromodeoxyuridine (BrdUrd) injection and mathematical modelling. The model of the cell population takes into account the cell-cell heterogeneity of the progression rate across cell cycle phases within the tumour, and assumes a strict correlation between the durations of S and G2M phases. The model also allows for a nonconstant DNA synthesis rate across S phase. In addition, the measurement process is modelled, considering the possibility of nonimpulsive labelling and providing a representation of the time course of the bivariate DNA-BrdUrd fluorescence distribution. Sequential DNA-BrdUrd distributions were obtained in vivo from a human ovarian carcinoma transplanted in mice and, for comparison, in vitro from a cell line of the same origin. From these data, that included the fractional density and the mean BrdUrd-fluorescence of BrdUrd-positive cells as a function of the DNA-fluorescence, kinetic parameters such as the potential doubling time (T pot) and the mean and variance of the transit times in S and G2M phases, were estimated. This study revealed the presence of a substantial heterogeneity in S and G2M phases within the in vivo cell population and of a lower heterogeneity in the in vitro population. Moreover, our analysis suggests a nonnegligible effect of the BrdUrd pharmacokinetics in the in vivo cell labelling.  相似文献   

16.
The cell proliferation of pre-implanted mouse embryos was investigated after development in vivo and in vitro. The studies were started at the pronuclear stage, 2 h post conception (p.c.) and continued until the hatching of blastocysts, 120–144 h p.c. The number of cell nuclei, the DNA content of each nucleus, the mitotic index and the labelling index were determined. From these data it was possible to calculate the length of the cell generation cycle and its various phases. With the exception of the first cell cycle the S-phase was constant. The G1- as well as the G2-phase varied in length during the different cell cycles. From 31–72 h p.c. the increase in cell number was exponential. After cultivation in vitro this increase was smaller than in vivo. At later periods the proliferation rate decreased with proceeding development. In late blastocysts most of the cells were in the G1-phase. The development of the embryos was somewhat faster in vivo than in vitro. But in principle conditions were comparable.  相似文献   

17.
Percentage labelled mitosis (PLM) measurements were initiated at four different times during a 24-hr period and continued for 24 hr in hairless mouse epidermis. Estimates of G2 and S phase durations (mean TG2 and mean TS) were calculated. A significant number of labelled mitoses (10–20%) was seen after 30 min in all four PLM measurements and the estimated mean TG2 varied from 1.4 to 2.5 hr and was in agreement with values from PLM measurements in other epithelial tissues. These mean TG2 values were much shorter than expected from [3H]TdR double labelling experiments and from a multiparameter cell kinetic study in hairless mouse epidermis and did not reflect the circadian variations seen in these studies. the differences in estimates of phase durations can be explained by postulating two G2 cell populations; one with a rapid and another with a slow rate of cell cycle progression. the cells with the higher rate are mainly registered by the PLM method, whereas those with the lower rate largely escape detection by this method. TG2 estimates from PLM measurements in mouse epidermis therefore do not reflect the phase duration of the entire G2 population. It is also concluded that circadian variations in TS can not be accurately registered by the PLM method.  相似文献   

18.
Rat C-6 glioma cells were grown on a sponge foam matrix in an organ culture system and the cell cycle parameters, including the growth fraction (GF), were assessed after autoradiography. the zones of growth consisted of a compact upper layer (UL) at the gaseous interface, a central necrotic layer and a deeper lower layer (LL) which invaded the matrix. the fraction of continuously labeled mitoses (FCLM) was similar in both the UL and LL cells. the derivatives of the FCLM curves obtained in three experiments gave an average modal TG2 of 5 hr. A mathematical model relating GF, TG2, TC and labeling index as a function of time, LI(t), was devised for cells in a steady state exposed continuously to tritiated thymidine and was applied to data obtained from UL cells. A mean GF of 9% (range: 8–10%) and a mean cell cycle time (TC') of 27 hr (range: 13–47 hr) were obtained. the mean TS was calculated to be 11 hr (range: 8–16 hr) by the method of grain counts per mitotic figure or grain index (GI). Knowledge of TS permitted alternative calculation of the cell cycle time from the equation TS/TC= LI(0)/GF: this gave a mean cell cycle time (TC) of 29 hr (range: 20–45 hr). Except for the GF, the cell kinetics were comparable to those of the same cell line grown in monolayer culture. the GF in the in vitro system described is in the lower range reported in some human malignant gliomas in vivo.  相似文献   

19.
Abstract. Chinese hamster ovary cells in vitro were pulse-labelled with bromodeoxyuridine (BrdUrd and were then allowed to progress through the cell cycle. Every half hour after labelling, cells were harvested and prepared for simultaneous flow cytometric determination of DNA content and incorporated BrdUrd, with the intercalating dye propidium iodide and with a monoclonal antibody against incorporated BrdUrd, respectively. The relative movement (RM), i.e. the relative mean DNA content of the moving cohort of BrdUrd-labelled cells in relation to that of G1 and G2 cells, was calculated. RM was then used to calculate DNA synthesis time (TS), at all post-labelling times (t). Since labelled cells in G2 and mitosis (M) in addition to S phase cells, are included in the cohort of moving labelled cells, and since the time of G2 and M (Tg2+M) phases is finite, a non-linear relationship exists between RM and post-labelling time. Because of this, the use of a linear formula in the calculation of TS yields results that are affected by t. We found that RM data can be corrected with regard to TG2+M resulting in the derivation of a non-linear TS formula. This non-linear TS formula gave results that were nearly independent of t. Moreover, windows were set in the mid DNA distributions for G1, S and G2+ M cells in the bivariate DNA v. BrdUrd cytograms, to estimate the fraction of BrdUrd-labelled cells in each window at every post-labelling time. Plots of the fraction of BrdUrd-labelled cells v. post-labelling time were then made for each window. TS obtained in this way was in agreement with TS obtained with the corrected RM method. In conclusion, we present a method to calculate Ts which theoretically first makes the determination of RM independent of TG2+M, and secondly compensates for the non-linear function of RM with post-labelling time caused by accumulation of BrdUrd-labelled cells in G2+ M.  相似文献   

20.
Pig Epidermis: A Cell Kinetic Study   总被引:1,自引:0,他引:1  
The basal cell density (BCD), labelling index (LI), duration of DNA synthesis (Ts) and cell cycle time (Tc) have been calculated for the epidermis of pigs in the age range 4–27 months. the BCD declined progressively from 143.4 ± 6.5 cells/mm at 4 months to 128.8 ± 8.3 cells/mm at 15 months, whereafter the values showed little change. There was a small decrease in LI with increasing age, from 7.9 ± 1.5% at 4 months to 5.9 ± 1.0% at 27 months. However, the change to housing animals outdoors as compared with indoors had a greater effect on the LI (~10%). Severe weathering in the skin of animals housed outdoors resulted in a very high LI (~20%). Neither Ts or Tc varied significantly with age. Ts was within the range 8.8–9.2 hr and Tc 127–161 hr. In animals housed outdoors Tc was reduced relative to animals housed indoors. the BCD and Ts were not affected by housing conditions. the kinetic parameters investigated in the pig were similar to those reported for man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号