首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an attempt to produce more powerful (effective) bombesin/GRP receptor antagonists, the D forms of Trp or Trp analog (Tpi) were introduced at position 6 in two pseudononapeptides, Leu13 psi (CH2NH)Leu14-bombesin(6-14) and Leu13 psi(CH2NH)Phe14-bombesin (6-14). These antagonists were tested for their ability to inhibit basal and gastrin releasing peptide (GRP) (14-27)-induced amylase release from rat pancreatic acini in a superfusion assay. They were also assessed for the inhibition of 125I-Tyr4-bombesin binding to Swiss 3T3 and small cell lung carcinoma cell line H-345 and the mitogenic response of Swiss 3T3 cells induced by GRP(14-27). The peptides, when given alone, did not stimulate amylase secretion, but were able to inhibit gastrin releasing peptide (14-27)-induced amylase release. All of the antagonists showed strong binding affinities for Swiss 3T3 and H-345 cells and suppressed the GRP(14-27)-induced increase of [3H]thymidine incorporation into DNA of Swiss 3T3 cells at nanomolar concentrations. Antagonist D-Tpi6,Leu13 psi (CH2NH)Leu14-bombesin (6-14)(RC-3095) was slightly more potent in these assays than D-Trp6,Leu13 psi (CH2NH)Leu14-bombesin (6-14)(RC-3125). Nevertheless, D-Trp6,Leu13 psi (CH2NH)Phe14-bombesin (6-14) showed the highest binding affinity for Swiss 3T3 and H345 cells and it was the most potent inhibitor of GRP(14-27)-induced amylase secretion. This antagonist RC-3420 was particularly effective in inhibiting the growth of Swiss 3T3 cells, exhibiting an IC50 value less than 1 nM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Seven new antagonists of bombesin (Bn)/gastrin-releasing peptide (GRP) containing C-terminal Trp or Tpi (2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-3-carboxylic acid) in a reduced peptide bond were synthesized by solid phase methods and evaluated biologically. The reduced bond in four [Leu13 psi(CH2NH)Trp14]Bn(6-14) analogs was formed by reductive alkylation at the dipeptide stage. In the case of three [Leu13 psi(CH2N)Tpi14]Bn(6-14) analogs, the Trp dipeptide with reduced bond was reacted with formaldehyde to form the corresponding Tpi derivative. These Tpi-containing analogs have a new reduced bond which is structurally more constrained. Leu13 psi(CH2N)Tpi14 analogs inhibit [125I][Tyr4]bombesin binding to Swiss 3T3 cells with IC50 values of 2-4 nM, compared to 5-10 nM for Leu13 psi(CH2NH)Trp14 analogs. Leu13 psi(CH2N)Tpi14 analogs are also more potent than Leu13 psi(CH2NH)Trp14 analogs in growth inhibition studies using Swiss 3T3 cells. The two best bombesin antagonists of this series, [D-Trp6,Leu13 psi(CH2N)Tpi14]Bn(6-14) (RC-3415) and [Tpi6,Leu13 psi(CH2N)Tpi14]Bn(6-14) (RC-3440), inhibited GRP-stimulated growth of Swiss 3T3 cells with IC50 values less than 1 nM. RC-3440 was also active in vivo, suppressing GRP(14-27)-stimulated serum gastrin secretion in rats. Bombesin/GRP antagonists, such as RC-3440, containing the new reduced bond (CH2N) reported herein are very potent.  相似文献   

3.
Bombesin (BN)-like peptides might be involved in the pathogenesis of neuropsychiatric disorders such as schizophrenia. Stereotyped behaviors induced by the dopamine receptor agonist apomorphine or the N-methyl-D-aspartate glutamate receptor antagonist dizocilpine (MK-801) in rodents have been proposed as animal models of schizophrenic psychosis. In the present study we evaluated the effects of the BN/gastrin-releasing peptide receptor (GRP) antagonist (D-Tpi6, Leu13 psi[CH2NH]-Leu14) bombesin (6-14) (RC-3095) on apomorphine and MK-801-induced stereotyped behavior in mice. An intraperitoneal (i.p.) injection of RC-3095 (1.0, 10.0 or 100.0 mg/kg) blocked apomorphine-induced stereotypy. The inhibitory effect of RC-3095 on apomorhine-induced stereotypy was similar to that induced by haloperidol (0.5 mg/kg). RC-3095 did not affect stereotyped behavior induced by MK-801 (0.5 mg/kg). The results provide the first evidence that BN/GRP receptor antagonism blocks stereotyped behavior induced by a dopamine agonist. Together with previous evidence, the present study indicates that the BN/GRP receptor can be considered a drug target in the investigation of potential new agents for treating neuropsychiatric disorders.  相似文献   

4.
The ability of bombesin-like peptides to elevate intracellular Ca2+ levels in small cell lung cancer cells was investigated using the fluorescent Ca2+ indicator Fura 2. Nanomolar concentrations of bombesin elevated cytosolic Ca2+ levels in the absence or presence of extracellular Ca2+. Potent bombesin receptor agonists, such as gastrin releasing peptide (GRP) or (GRP)14-27 elevated cytosolic Ca2+ levels whereas inactive compounds such as (D-Trp8)bombesin or (GRP)1-16 did not. Furthermore, the bombesin receptor antagonist (D-Arg1, D-Pro2, D-Trp7,9, Leu11) substance P (30 microM) had no effect on the Ca2+ levels by itself but antagonized the increase in Ca2+ caused by 10 nM or 100 nM bombesin. These data suggest that bombesin receptors may regulate the release of Ca2+ from intracellular organelles in small cell lung cancer cells.  相似文献   

5.
Prolonged exposure (40 h) of Swiss 3T3 cells to bombesin induced homologous desensitization to bombesin and structurally related peptides including mammalian gastrin releasing peptide (GRP). The ability of bombesin to mobilize intracellular Ca2+, inhibit epidermal growth factor binding, and stimulate DNA synthesis was profoundly and selectively inhibited. In contrast, Ca2+ mobilization by either vasopressin or bradykinin was unaffected, indicating that chronic desensitization is mechanistically distinct from acute desensitization of Ca2+ mobilization. Prolonged (24 or 40 h) pretreatment with bombesin also induced a 78 +/- 5% loss of bombesin receptor binding sites in both intact and plasma membrane preparations of Swiss 3T3 cells without an apparent change in receptor affinity (Kd = 1.9 +/- 0.1 x 10(-9) M and Kd = 1.8 +/- 0.2 x 10(-9) M for control and pretreated cells, respectively). Loss of 125I-GRP binding was slow and progressive with half-maximal loss of binding occurring after 7 h and maximal after approximately 14 h. Cross-linking of 125I-GRP to intact cultures and membrane preparations revealed an identical time-dependent loss of the Mr = 75,000-85,000 cross-linked band, previously identified as the bombesin receptor. Prolonged exposure of the cells to phorbol 12,13-dibutyrate, epidermal growth factor, cholera toxin, or mitogenic combinations of these agents did not alter 125I-GRP binding. Receptor down-regulation and loss of mitogenic responsiveness to bombesin were: (a) induced in a parallel dose-dependent manner by bombesin (ED50 = 1 nM), GRP (ED50 = 2 nM), and neuromedin B (ED50 = 20 nM), but not by the biologically inactive fragment GRP (1-16); (b) inhibited by the specific bombesin antagonist [Leu13-psi(CH2NH)-Leu14] bombesin, and (c) reversed upon removal of bombesin with a similar time course (full recovery after 15 h). On the basis of these observations, we propose that prolonged pretreatment of Swiss 3T3 cells with bombesin induces homologous desensitization to peptides of the bombesin family by down-regulation of cell surface bombesin receptors.  相似文献   

6.
The high inhibitory potency of the previously developed bombesin antagonist [Leu13, psi CH2NHLeu14]bombesin (analogue I) (IC50 values of 30 and 18 nM for inhibition of bombesin-stimulated amylase secretion from guinea pig acinar cells and Swiss 3T3 cell growth, respectively) diminished considerably when shorter chain lengths were examined. For instance, [Leu13, psi CH2NHLeu14]bombesin-(5-14),[Leu13, psi CH2NHLeu14] bombesin-(6-14), and [Leu9, psi CH2NHLeu10]neuromedin C had IC50 values of 150, 150, and 280 nM, respectively. Incorporation of a D-Phe residue at position 6 of [Leu13, psi CH2NHLeu14] bombesin did not significantly change the various biological parameters. However, its presence in [Leu13, psi CH2NHLeu14]bombesin-(6-14) and at position 2 of psi-neuromedin C-(2-10) resulted in about 10-fold increases in potency up to and above that of the original antagonist. For instance, [D-Phe6,Leu13,psi CH2NHLeu14]bombesin-(6-14) and des-Gly1-[D-Phe2,Leu9,psi CH2NHLeu10]neuromedin C exhibited IC50 values of 5 and 28 nM, respectively. Analogues based on the litorin sequence which contains an NH2-terminal pyroglutamic acid residue at the bombesin position 6 equivalent were also quite potent. The ability of various analogues to interact with bombesin receptors on pancreatic acini correlated reasonably well with potencies derived from inhibition of bombesin-stimulated growth of Swiss 3T3 cells. Additional studies of NH2- and COOH-terminal structure-activity relationships resulted in the synthesis of [D-Phe6,Leu13,psi CH2NHPhe14]bombesin-(6-14), which was particularly effective in inhibiting 3T3 cell growth at high picomolar concentrations (IC50 = 0.72 nM and Ki = 3.1 nM for 3T3 cells; IC50 = 7.5 nM and Ki = 9.9 nM for acini). Detailed investigations with one of the most potent antagonists, [D-Phe6,Leu13,psi CH2NHLeu14]bombesin-(6-14) (Ki = 14 nM for acini cells and 7.1 for 3T3 cells), demonstrated that this analogue was a competitive inhibitor of bombesin and that this activity was specific for the bombesin receptor. Thus, inhibitory potencies have been improved generally up to 25 times over previously reported structures; and, given that bombesin itself has a Ki of 1.2 nM for 3T3 cell binding, some of these analogues are extraordinarily high affinity receptor antagonists. They can also be synthesized more readily and offer fewer proteolytic degradation sites than the original pseudopeptide and should be excellent candidates for in vivo studies aimed at inhibition of bombesin-dependent human small cell lung carcinoma growth.  相似文献   

7.
H Houben  C Denef 《Peptides》1991,12(2):371-374
Perifusion of rat anterior pituitary cell aggregates, cultured in estrogen-supplemented serum-free medium with 1 nM of the bombesin (BBN)-like peptide, neuromedin C (NMC), significantly stimulates GH and PRL release. This effect is dose-dependently inhibited by the BBN receptor blocker L 686,095-001C002 [an N-pivaloyl-gastrin-releasing-peptide(20-25) alkylamide]. The IC50 was 0.20 nM in the case of the GH response and 0.16 nM in the case of the PRL response. The antagonist has no effect on basal PRL or GH release. [Leu13, psi CH2NH-Leu14]BBN (psi BBN) displays an IC50 of 0.41 microM for inhibiting the GH response and 0.36 microM for inhibiting the PRL response to NMC. At a concentration of 0.5 microM or 5 microM, however, the latter antagonist stimulates PRL and GH release when perifused alone. This stimulatory effect is dose dependent, augments when aggregates are cultured in 1 nM E2 (as is the case for NMC) and is abolished by 2 nM L 686,095-001C002. It is concluded that L 686,095-001C002 is a potent and pure antagonist of pituitary BBN receptors mediating PRL and GH release, whereas psi BBN is a relatively weak antagonist with considerable partial agonist activity.  相似文献   

8.
The pseudopeptide [Leu13-psi(CH2NH)Leu14]bombesin blocks bombesin-stimulated mitogenesis in Swiss 3T3 cells in a competitive and reversible manner, but not that of other mitogens. It inhibits the mobilization of intracellular Ca2+ and activation of protein kinase C by bombesin-like peptides. It acts at receptor level, as shown by inhibition of [125I]GRP binding and reduction in cross-linking of the Mr 75-85,000 receptor-associated protein. Thus [Leu13-psi(CH2NH)Leu14]bombesin is a specific bombesin receptor antagonist in Swiss 3T3 cells which blocks long-term growth promoting effects of bombesin-like peptides.  相似文献   

9.
The murine pancreatic receptor for bombesin and gastrin releasing peptide (GRP) has been characterized. Analysis of the binding of 125I-GRP to membranes indicates a single class of sites (10(-13) mol/mg protein) with Kd of 43 pM. A 70 kDa membrane protein was cross-linked to 125I-GRP by bis(sulfosuccinimidyl) suberate; labeling was blocked by GRP, GRP (14-27), AcGRP(20-27), GRP(18-27), bombesin and ranatensin, was partially blocked by [Leu13 psi (CH2NH)Leu14]bombesin and was unaffected by GRP(21-27) and GRP(1-16). The IC50 values for the competitive displacement of 125I-GRP from intact membranes by these peptides were similar to those obtained by the cross-linking experiments showing that the 70 kDa protein is the GRP receptor. The GRP receptor is G-protein coupled; divalent cations are required for high-affinity binding and nonhydrolyzable GTP analogs decrease receptor affinity. In minced pancreas, GRP caused a dose-dependent increase in inositol phosphates implicating phospholipase C in signal transduction. We suggest that the murine pancreatic receptor for bombesin/GRP is a 70 kDa membrane protein, is associated with a G-protein and stimulates phosphatidylinositol turnover.  相似文献   

10.
Prolonged exposure of Swiss 3T3 cells to vasopressin causes heterologous mitogenic desensitization to bombesin and structurally related peptides including gastrin-releasing peptide (GRP) without down-regulation of the bombesin receptor. The number and affinity of bombesin/GRP receptor sites and modulation of 125I-GRP binding by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) are unaffected in membrane preparations from vasopressin-treated cultures. Stimulation of inositol phosphate accumulation, mobilization of intracellular calcium, production of diacylglycerol, and transmodulation of the epidermal growth factor receptor by bombesin are similarly unaffected. Thus, the heterologous mitogenic desensitization is not due to uncoupling of bombesin receptor from transducing G protein(s) or to an inability to activate phospholipase C. Bombesin, unlike vasopressin, causes a rapid dose-dependent release of [3H]arachidonic acid and prostaglandin E2 from Swiss 3T3 cells (EC50 approximately 4 nM), which is inhibited by the specific bombesin receptor antagonist [Leu13-psi(CH2NH)-Leu14]bombesin. Crucially, release of [3H]arachidonic acid and prostaglandin E2 by bombesin is completely suppressed by prolonged pretreatment with vasopressin (EC50 = 0.6 nM). The mitogenic action of bombesin is restored by adding arachidonic acid to vasopressin-treated cells. We conclude first that arachidonic acid release is an early signal in the mitogenic response to bombesin and second that pretreatment with vasopressin induces heterologous mitogenic desensitization to bombesin by a novel mechanism: inhibition of arachidonic acid release.  相似文献   

11.
Two nonapeptide analogs of the carboxyl termini of bombesin (Bn) and gastrin releasing peptide (GRP) have been synthesized. Despite the small difference in chemical composition between these peptides, one was a potent agonist and the other a potent antagonist of the Bn/GRP receptor in murine pancreas. All protons of both peptides, in dodecylphosphocholine micelles, were assigned by two-dimensional nuclear magnetic resonance spectroscopy. Interproton distance were derived from cross-peak volumes in nuclear Overhauser enhancement spectra. Conformations of both peptides were derived by distance-restrained molecular dynamics simulations using the interproton distances as constrains. The agonist conformation resembled a relaxed helix formed by three connected turns. The two N-terminal turns were similar for both peptides. The third turn of the agonist, at the carboxyl terminus, was absent in the antagonist. One interproton distance at the carboxyl terminus of the antagonist indicates that the chemical group connecting the last two residues of this peptide mimics a cis peptide bond geometry.  相似文献   

12.
The [Leu26-psi(CH2O)Leu27] derivative of N-Ac-GRP20-27-peptide amide was prepared and evaluated as a gastrin-releasing peptide antagonist. This psi(CH2O) derivative was found to be a more potent inhibitor of [3H-Phe15]GRP15-24NH2 binding and N-Ac-GRP20-27NH2 induced mitogenesis in Swiss 3T3 fibroblasts than the related nitrogen analog [Leu13-psi(CH2NH)Leu14] bombesin. Possible reasons for the improved activity of the (CH2O) insert relative to the (CH2NH) group include increased hydrophobicity and a reduced tendency of the oxygen derivative to form hydrogen bonds.  相似文献   

13.
Bombesin-related peptides have a large number of physiological functions as well as having an autocrine growth mechanism for the regulation of small cell lung cancer cells. In the present study we have synthesized 21 des-Met amide or alkylamide analogues of bombesin and compared their abilities to function as bombesin receptor antagonists in guinea pig pancreatic acini and Swiss 3T3 cells with those of the previously most potent antagonist described, [Leu13 psi(CH2NH)Leu14]bombesin (analogue I). All des-Met analogues functioned as antagonists. Bn(1-13)NH2 was approximately equipotent to I (Ki = 60-80 nM) whereas Bn(6-13)NH2 was 30-fold less potent (Ki = 1800 nM). Formation of an ethylamide, Bn(6-13)ethylamide, increased the potency 30-fold such that this octapeptide was equipotent to I. The addition of a D-Phe6 moiety to I did not change potency but caused a 30-fold increase in potency of Bn(6-13)NH2 and a 8-fold increase in the potency of Bn(6-13)ethylamide (Ki = 16 nM). Additional studies of both NH2- and COOH-terminal alterations in Bn(6-13)NH2 demonstrated that the most potent antagonist was [D-Phe6]Bn(6-13)propylamide (PA), having IC50's of 1.6 nM and 0.8 nM for bombesin-stimulated amylase release and Swiss 3T3 cell growth, respectively. Detailed studies of the most potent amide analogue, [D-Phe6]Bn(6-13)NH2, and alkylamide analogue, [D-Phe6]Bn(6-13)PA, demonstrated that these analogues functioned as competitive antagonists and that their action was selective for the bombesin receptor. These results demonstrate that, as with CCK- and gastrin-related peptides, the C-terminal amino acid is important for initiating a biologic response but not essential for determining receptor affinity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
To analyze the effect of bombesin on the somatostatin (SS) mechanism of action in the exocrine pancreas, male Wistar rats (250-270 g) were injected intraperitoneally with bombesin (10 microg/kg) three times daily at 8-h intervals for 7 or 14 days. Bombesin attenuated the ability of SS to inhibit forskolin-stimulated adenylyl cyclase activity in pancreatic acinar membranes. However, it did not decrease the ability of forskolin to stimulate the adenylyl cyclase catalytic subunit. The ability of 5'-guanylylimidodiphosphate [Gpp(NH)p] (a nonhydrolyzable GTP analog) to inhibit forskolin-stimulated adenylyl cyclase activity was diminished in pancreatic acinar cell membranes from bombesin-treated rats. Bombesin administration did not affect the ADP-ribosylation of a 41-kDa G protein catalyzed by pertussis toxin. The maximal SS binding capacity of pancreatic acinar membranes from bombesin-treated rats was decreased when compared with controls at the two time periods studied. The bombesin/gastrin-releasing peptide antagonist [D-Tpi6,Leu13psi(CH2NH)Leu14]bombesin (6-14) (RC-3095) (10 microg/kg i.p.), injected three times daily at 8-h intervals for 7 or 14 days, had a similar effect to that of bombesin on the SS mechanism of action. The combined administration of bombesin and its antagonist RC-3095 had a greater effect on the SS receptor-effector system than when administered separately. The present study indicates that the pancreatic SS receptor-effector system may be regulated by bombesin in vivo.  相似文献   

16.
The receptor for bombesin and the related peptide, gastrin-releasing peptide (GRP) has been induced in frog oocytes by injection of polyA+ RNA from rat brain. The primed oocytes responded to peptides of the bombesin family (GRP, neuromedin C of bombesin) by showing dose-dependent oscillations in membrane currents as recorded by the voltage-clamp method. The induced membrane changes were suppressed when oocytes were pretreated with a bombesin-receptor antagonist.  相似文献   

17.
The binding of a radiolabeled bombesin analogue to human small cell lung cancer (SCLC) cell lines was investigated. (125I-Tyr4)bombesin bound with high affinity (Kd = 0.5 nM) to a single class of sites (2,000/cell) using SCLC line NCI-H446. Binding was reversible, saturable and specific. The pharmacology of binding was investigated using NCI-H466 and SCLC line NCI-H345. Bombesin and structurally related peptides, such as gastrin releasing peptide (GRP), but not other peptides, such as substance P or vasopressin, inhibited high affinity (125I-Tyr4)BN binding activity. Finally, the putative receptor, a 78,000 dalton polypeptide, was identified by purifying radiolabeled cell lysates on bombesin or GRP affinity resins and then displaying the bound polypeptides on sodium dodecylsulfate polyacrylamide gels. Because SCLC both produces bombesin/GRP-like peptides and contains high affinity receptors for these peptides, they may function as important autocrine regulatory factors for human SCLC.  相似文献   

18.
The GRP receptor mediated growth response in Swiss 3T3 cells has been used to identify BN/GRP antagonists. Analysis of bombesin antagonism by substance P analogues and by truncated GRP analogues revealed that deletion of the C-terminal methionine residue was important for antagonism. Des-Met analogues showing potent antagonist activity in the in vitro 3T3 system (IC50 approximately 2nM) were synthesized. Further structural modification of these peptides led to the identification of (CH3)2CHCO-His-Trp-Ala-Val-D-Ala-His-Leu-NHCH3 (ICI 216140) which reduced bombesin-stimulated rat pancreatic amylase secretion to basal levels when administered subcutaneously at 2.0 mg per kg.  相似文献   

19.
We have used digitonin permeabilization to study the mechanism of bombesin-induced activation of protein kinase C in Swiss 3T3 cells. Protein kinase C-mediated phosphorylations in permeabilized cells were identified using phorbol esters and diacylglycerols. Addition of phorbol 12,13-dibutyrate (PDBu) in the presence of [gamma-32P]ATP and digitonin caused a marked and rapid time- and dose-dependent increase in the phosphorylation of an Mr 80,000 cellular protein (maximum stimulation = 12.6 +/- 1.6-fold after 1 min, EC50 = 27 nM). 1-oleoyl-2-acetylglycerol substituted for PDBu in stimulating the phosphorylation of Mr 80,000 protein (EC50 = 13 microM). Bombesin also caused a striking increase in the phosphorylation of Mr 80,000 protein with a time course similar to that observed with PDBu. This phosphorylation was mimicked by mammalian bombesin-like peptides and blocked by the bombesin antagonists [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P and [Leu13 psi (CH2NH)Leu14]bombesin. Down-regulation of protein kinase C in intact cells by prolonged exposure to PDBu prevented Mr 80,000 protein phosphorylation upon subsequent bombesin addition in digitonin-permeabilized cells. Comigration on one- and two-dimensional gel electrophoresis and phosphopeptide mapping confirmed that the Mr 80,000 protein phosphorylated in permeabilized cells was indistinguishable from the Mr 80,000 protein which is the major protein kinase C substrate in intact cells. The GDP analogue guanosine-5'-O-(2-thiodiphosphate) (GDP beta S) caused a 70% inhibition of the bombesin-induced phosphorylation of Mr 80,000 protein but had no effect on the phosphorylation induced by PDBu. Bombesin stimulated Mr 80,000 protein phosphorylation in permeabilized cells in a dose-dependent manner (EC50 = 4 nM), and GDP beta S shifted the bombesin dose response curve to higher bombesin concentrations (EC50 = 14 nM). These results demonstrate for the first time a growth factor receptor-mediated activation of protein kinase C in permeabilized cells and provide functional evidence for the involvement of a G protein in the transmembrane signaling pathway that mediates the stimulation of protein kinase C by bombesin in Swiss 3T3 cells.  相似文献   

20.
Bombesin and bombesin-related peptides such as gastrin-releasing peptide (GRP) stimulate DNA synthesis and proliferation of Swiss 3T3 cells in culture. We have used 125I-labelled [Tyr4]bombesin and 125I-labelled GRP to characterize and identify the receptors for these peptides on Swiss 3T3 cells. The binding of 125I-[Tyr4]bombesin, which retained full biological activity, was maximal between 20 and 30 min incubation at 37 degrees C, after which continued incubation led to a decline in cell-associated radioactivity. This decline was markedly slowed by the presence of lysosomal enzyme inhibitors. Specificity of the binding site was indicated by the competitive inhibition of binding by bombesin-related peptides, but not by unrelated peptides and growth factors. Scatchard analysis of binding data indicated a single class of high-affinity receptors. The calculated value for the dissociation constant (Kd) was 2.1 nM and each cell possesses approx. 240,000 receptors. Because [Tyr4]bombesin has no free amino group, 125I-GRP was used in chemical cross-linking studies. When disuccinimidyl suberate was used to covalently couple 125I-GRP to the cells, two major radiolabelled complexes were detected with molecular masses of approx. 80,000-85,000 and 140,000. The binding of 125I-[Tyr4]bombesin to the cells was pH-dependent with maximal binding at pH 6.5-7.5 and effectively no specific binding at pH values below 4.5. At 37 degrees C, cell-associated 125I-[Tyr4]bombesin quickly became resistant to removal by acidic buffers, suggesting its rapid transfer to an intracellular compartment. However, pre-incubation with unlabelled [Tyr4]bombesin did not induce down-regulation of bombesin receptors as measured by the subsequent binding of 125I-[Tyr4]bombesin. In contrast with the Swiss 3T3 cells, specific binding of 125I-[Tyr4]bombesin was not detectable in two cell lines which are biologically unresponsive to bombesin-related peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号