首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Suppressors of cytokine signaling (SOCS) proteins are critical regulators of cytokinemediatedresponses in diverse tissues. In the mammary gland, signal transductionpathways elicited by cytokines and hormones have been shown to control distinct stagesof development. In vivo evidence points to essential roles for Socs1 and Socs2 as keyphysiological attenuators of prolactin receptor (PRLR) signaling during pregnancy andlactogenesis. Recently, Socs3 has been shown to be a critical regulator of involution, thecoordinated process of programmed cell death and tissue remodelling that is initiatedafter the cessation of lactation. This review will predominantly focus on the antiapoptoticfunction of Socs3 during mammary gland involution in which it acts as a keyattenuator of Stat3-mediated signal transduction. Perturbation of this pathway leads to anincrease in the levels of c-myc and its likely target genes, p53, bax and E2F-1, providingevidence that c-myc is a central effector of apoptosis during involution.  相似文献   

2.
Apoptosis and mammary gland involution: reviewing the process   总被引:4,自引:0,他引:4  
Apoptosis is a process of programmed cell death. Mammary gland involution is a tissue remodelling process. Mammary epithelial cell apoptosis is an integral component of tissue remodelling but it is only one element. Equally important are the factors which degrade basement membrane and extracellular matrix. Both operations are required for completion of mammary gland involution. The primary apoptotic process occurs first and is temporally distinct from the second stage of involution typified by lobular-alveolar collapse. Local factors related to milk accumulation trigger the first stage, but loss of systemic hormonal stimulation governs the second stage. Changes in the expression patterns of cell cycle control genes and bcl-2 family member genes are found in the first stage. Proteinase gene activation dominates the second stage. These findings support a two stage model of mammary gland involution. Both mammary epithelial cell apoptosis and mammary gland remodelling advance through a process which includes both loss of survival factors and gain of death factors. This review focuses on signalling pathways and genetic controls which are activated and repressed during mammary gland involution.  相似文献   

3.
Growth and function of the mammary gland is regulated by cytokines and modulated by suppressor of cytokine signalling (SOCS) proteins. In vitro experiments demonstrated that SOCS3 can inhibit PRL induction of milk protein gene expression and STAT5 activation. We explored the SOCS3 expression pattern during mouse mammary development and its regulation by PRL and GH in wild-type and STAT5a-null mammary tissue. Our results suggest that, in vivo, PRL stimulates SOCS3 expression in stromal adipocytes, independently of STAT5a stimulation. In mammary epithelial cells, SOCS3 expression appears to be related to STAT3 activation. Together, our results are consistent with a role of SOCS3 in the mammary gland by promoting apoptosis of differentiated cells (adipocytes during gestation and epithelial cells during involution).  相似文献   

4.
5.
We have previously demonstrated that insulin-like growth factor binding protein-5 (IGFBP-5) is upregulated following treatment of the mouse mammary epithelial cell line HC11 with lactogenic hormones (dexamethasone, insulin, and prolactin-DIP). In addition, we have also shown that IGFBP-5 is upregulated in mammary epithelial cells in vivo during involution of the rodent mammary gland. We have, therefore, postulated that there may be a dual regulation of IGFBP-5 expression during the temporally separated processes of differentiation and apoptosis of mammary epithelial cells. To test this hypothesis further, we have used a phenotypically differentiated model, which comprises primary cultures of mouse mammary epithelial cells grown on a layer of EHS (Engelbreth-Holm-Swarm) extracellular matrix. We show that lactogenic hormone treatment (hydrocortisone, insulin, and prolactin-HIP) of these cultures induces the upregulation of IGFBP-5 thus replicating the results obtained with the HC11 cell line. In addition, following the induction of apoptosis in primary cultures of mammary epithelial cells by treatment with TGFbeta-3, IGFBP-5 expression is also upregulated. In parallel with this upregulation of IGFBP-5, there is also an increase in the levels of cleaved caspase-3, a well-characterized marker of cellular apoptosis. These findings confirm previous in vivo work demonstrating an increase in IGFBP-5 expression during involution of the mouse mammary gland. When HC11 cells are cultured under serum-free conditions (a well-characterized apoptotic insult in cell culture), there is also an increase in cleaved caspase-3 levels. Unexpectedly, in the presence of TGFbeta-3, caspase-3 levels are attenuated. In the presence of DIP, caspase-3 levels are also decreased in HC11 cells. As described previously, TGFbeta-3 inhibits beta-casein synthesis in HC11 cells. In the HC11 cell line (in contrast to primary cultures of mammary epithelial cells), there is no evidence for TGFbeta-3 induction of IGFBP-5 under either serum-free or DIP-supplemented conditions. We believe our data with primary cultures of mammary epithelial cells support the hypothesis of dual regulation of IGFBP-5 expression during both differentiation and apoptosis in the mammary gland and emphasizes the importance of using appropriate cell culture models to investigate such phenomena in this tissue. We discuss the possible implications of our observations in relation to the physiological processes of pregnancy, lactation, and involution in the mammary gland and the associated changes in mammary epithelial cell function.  相似文献   

6.
IGF-II is a growth factor implicated in human cancers and animal tumor models. While the mitogenic properties of IGF-II are well documented, its ability to suppress apoptosis in vivo has never been proven. We generated independent MMTV-IGF-II transgenic mice to examine the control of epithelial apoptosis at the morphological, cellular and molecular levels during the physiological event of postlactation mammary involution. Transgenic IGF-II expression was achieved in mammary epithelium and increased IGF-II bioactivity was confirmed by phosphorylation of the insulin receptor substrate-1, a signaling molecule downstream of the type I IGF receptor. IGF-II overexpression induced a delay in mammary involution, as evident by increased mammary gland to body weight ratios and persistence of both functionally intact lobulo-alveoli and mammary epithelial cellularity. The delayed mammary involution resulted from a significant reduction in mammary epithelial apoptosis, and not from increased epithelial proliferation. Recombinant IGF-II pellets implanted into involuting mammary glands of wild-type mice provided further evidence that IGF-II protein inhibited local epithelial apoptosis. At the molecular level, phosphorylated Akt/PKB, but not Erk1 or Erk2, persisted in IGF-II overexpressors and temporally correlated with reduced epithelial apoptosis. Levels of the phosphatase PTEN were unaltered in the transgenic tissue suggesting that the maintenance of Akt/PKB phosphorylation resulted from sustained phosphorylation rather than altered dephosphorylation of PIP-3. Together, this data reveal that IGF-II inhibits apoptosis in vivo and this effect correlates with prolonged phosphorylation of Akt/PKB  相似文献   

7.
8.
The epithelial cells of the mammary gland go through a cycle of growth, differentiation, and involution during pregnancy. Recently, we found that interleukin-10 (IL-10) was induced at the involution stage and contributed to apoptosis in the mammary gland. To elucidate the role of the epithelial cells in involution, we examined IL-10 expression in an in vitro model of HC11 cells, in various culture conditions. IL-10 was weakly expressed early in growth but when the cells were induced to differentiate by insulin and dexamethasone expression increased slightly. Prolactin in combination with insulin and dexamethasone caused a further increase. To mimic apoptosis the culture was deprived of serum as well as hormones, and this resulted in a gradual increase in IL-10. In contrast with its ligand, the IL-10 receptor itself was not expressed in any conditions. We speculate that release of IL-10 from the epithelial cells recruits lymphocytes, which have IL-10 receptors on their cell membranes, and they in turn secrete death factors inducing apoptosis of the epithelial cells.  相似文献   

9.
10.
To understand the molecular mechanism of mammary gland involution we identified involution-induced clones by differential screening of a mouse mammary gland cDNA library. Characterization of clones by sequencing and Northern analysis showed that expression of 24p3 was induced during involution of the mammary gland. RNA in situ hybridization showed that it was mainly expressed in the secretory epithelial cells surrounding the lumen of the mammary gland alveoli. Induction of 24p3 was also observed in apoptotic HC11 mammary epithelial cells under serum starvation. In these cells, dexamethasone increased 24p3 gene expression four-fold. Transient expression of 24p3 increased the percentage of apoptotic cells 3- to 4-fold over a period of 3 days after transfection. This study provides evidence that overexpression of 24p3 gene can induce apoptosis of mammary epithelial cells.  相似文献   

11.
12.
Hojilla CV  Jackson HW  Khokha R 《PloS one》2011,6(10):e26718
Post-lactation mammary involution is a homeostatic process requiring epithelial apoptosis and clearance. Given that the deficiency of the extracellular metalloproteinase inhibitor TIMP3 impacts epithelial apoptosis and heightens inflammatory response, we investigated whether TIMP3 regulates these distinct processes during the phases of mammary gland involution in the mouse. Here we show that TIMP3 deficiency leads to TNF dysregulation, earlier caspase activation and onset of mitochondrial apoptosis. This accelerated first phase of involution includes faster loss of initiating signals (STAT3 activation; TGFβ3) concurrent with immediate luminal deconstruction through E-cadherin fragmentation. Epithelial apoptosis is followed by accelerated adipogenesis and a greater macrophage and T-cell infiltration in Timp3(-/-) involuting glands. Crossing in Tnf deficiency abrogates caspase 3 activation, but heightens macrophage and T-cell influx into Timp3(-/-) glands. The data indicate that TIMP3 differentially impacts apoptosis and inflammatory cell influx, based on involvement of TNF, during the process of mammary involution. An understanding of the molecular factors and wound healing microenvironment of the postpartum mammary gland may have implications for understanding pregnancy-associated breast cancer risk.  相似文献   

13.
This study demonstrated, for the first time, the following events related to p19(ARF) involvement in mammary gland development: 1) Progesterone appears to regulate p19(ARF) in normal mammary gland during pregnancy. 2) p19(ARF) expression levels increased sixfold during pregnancy, and the protein level plateaus during lactation. 3) During involution, p19(ARF) protein level remained at high levels at 2 and 8 days of involution and then, declined sharply at day 15. Absence of p19(ARF) in mammary epithelial cells leads to two major changes, 1) a delay in the early phase of involution concomitant with downregulation of p21(Cip1) and decrease in apoptosis, and 2) p19(ARF) null cells are immortal in vivo measured by serial transplantion, which is partly attributed to complete absence of p21(Cip1) compared with WT cells. Although, p19(ARF) is dispensable in mammary alveologenesis, as evidenced by normal differentiation in the mammary gland of pregnant p19(ARF) null mice, the upregulation of p19(ARF) by progesterone in the WT cells and the weakness of p21(Cip1) in mammary epithelial cells lacking p19(ARF) strongly suggest that the functional role(s) of p19(ARF) in mammary gland development is critical to sustain normal cell proliferation rate during pregnancy and normal apoptosis in involution possibly through the p53-dependent pathway.  相似文献   

14.
Mammary gland development is dependent on macrophages, as demonstrated by their requirement during the expansion phases of puberty and pregnancy. Equally dramatic tissue restructuring occurs following lactation, when the gland regresses to a state that histologically resembles pre-pregnancy through massive programmed epithelial cell death and stromal repopulation. Postpartum involution is characterized by wound healing-like events, including an influx of macrophages with M2 characteristics. Macrophage levels peak after the initial wave of epithelial cell death, suggesting that initiation and execution of cell death are macrophage independent. To address the role of macrophages during weaning-induced mammary gland involution, conditional systemic deletion of macrophages expressing colony stimulating factor 1 receptor (CSF1R) was initiated just prior to weaning in the Mafia mouse model. Depletion of CSF1R(+) macrophages resulted in delayed mammary involution as evidenced by loss of lysosomal-mediated and apoptotic epithelial cell death, lack of alveolar regression and absence of adipocyte repopulation 7 days post-weaning. Failure to execute involution occurred in the presence of milk stasis and STAT3 activation, indicating that neither is sufficient to initiate involution in the absence of CSF1R(+) macrophages. Injection of wild-type bone marrow-derived macrophages (BMDMs) or M2-differentiated macrophages into macrophage-depleted mammary glands was sufficient to rescue involution, including apoptosis, alveolar regression and adipocyte repopulation. BMDMs exposed to the postpartum mammary involution environment upregulated the M2 markers arginase 1 and mannose receptor. These data demonstrate the necessity of macrophages, and implicate M2-polarized macrophages, for epithelial cell death during normal postpartum mammary gland involution.  相似文献   

15.
A potential target of hormone action during prostate and mammary involution is the intercellular junction of adjacent secretory epithelium. This is supported by the long-standing observation that one of the first visible stages of prostate and mammary involution is the disruption of interepithelial adhesion prior to the onset of apoptosis. In a previous study addressing this aspect of involution, we acquired compelling evidence indicating that the disruption of E-cadherin-dependent adhesion initiates apoptotic programs during prostate and mammary involution. In cultured prostate and mammary epithelial cells, inhibition of E-cadherin-dependent aggregation resulted in cell death following apoptotic stimuli. Loss of cell-cell adhesion in the nonaggregated population appeared to result from the rapid truncation within the cytosolic domain of the mature, 120-kDa species of E-cadherin (E-cad(120)). Immunoprecipitations from cell culture and involuting mammary gland demonstrated that this truncation removed the beta-catenin binding domain from the cytoplasmic tail of E-cadherin, resulting in a non-beta-catenin binding, membrane-bound 97-kDa species (E-cad(97)) and a free cytoplasmic 35-kDa form (E-cad(35)) that is bound to beta-catenin. Examination of E-cadherin expression and cellular distribution during prostate and mammary involution revealed a dramatic reduction in junctional membrane staining that correlated with a similar reduction in E-cad(120) and accumulation of E-cad(97) and E-cad(35). The observation that E-cadherin was truncated during involution suggested that hormone depletion activated the same apoptotic pathway in vivo as observed in vitro. Based on these findings, we hypothesize that truncation of E-cadherin results in the loss of beta-catenin binding and cellular dissociation that may signal epithelial apoptosis during prostate and mammary involution. Thus, E-cadherin may be central to homeostatic regulation in these tissues by coordinating adhesion-dependent survival and dissociation-induced apoptosis.  相似文献   

16.
As apoptotic pathways are commonly deregulated in breast cancer, exploring how mammary gland cell death is regulated is critical for understanding human disease. We show that primary mammary epithelial cells from protein kinase C delta (PKCδ) −/− mice have a suppressed response to apoptotic agents in vitro. In the mammary gland in vivo, apoptosis is critical for ductal morphogenesis during puberty and involution following lactation. We have explored mammary gland development in the PKCδ −/− mouse during these two critical windows. Branching morphogenesis was altered in 4- to 6-week-old PKCδ −/− mice as indicated by reduced ductal branching; however, apoptosis and proliferation in the terminal end buds was unaltered. Conversely, activation of caspase-3 during involution was delayed in PKCδ −/− mice, but involution proceeded normally. The thymus also undergoes apoptosis in response to physiological signals. A dramatic suppression of caspase-3 activation was observed in the thymus of PKCδ −/− mice treated with irradiation, but not mice treated with dexamethasone, suggesting that there are both target- and tissue-dependent differences in the execution of apoptotic pathways in vivo. These findings highlight a role for PKCδ in both apoptotic and nonapoptotic processes in the mammary gland and underscore the redundancy of apoptotic pathways in vivo.  相似文献   

17.
18.
19.
After cessation of lactation, the mammary gland undergoes involution, which is characterized by a massive epithelial cell death and proteolytic degradation of the extracellular matrix. Whereas the expression patterns and also the function of TGF-beta isoforms during mammary gland branching morphogenesis and lactation are well understood, their expression during postlactational involution and therefore a possible role in this process is poorly known. In this study we show that TGF-beta3 expression is dramatically induced (>fivefold) during mouse mammary gland involution when compared to that of virgin mouse, reaching a maximal expression level at day 4 after weaning. In contrast, other TGF-beta isoforms do not display significant increase in expression during involution (TGF-beta1, 1.3-fold and TGF-beta2, <1.5-fold) when compared to that of virgin or lactating mice. During mammary gland involution, TGF-beta3 is expressed in the epithelial layer and particularly in myoepithelial cells. A comparison of the kinetics of TGF-beta3 expression to that of programmed cell death and degradation of the basement membrane suggests that TGF-beta3 functions in the remodeling events of the extracellular matrix during the second stage of involution.  相似文献   

20.
The mammary gland is a developmentally dynamic, hormone-responsive organ that undergoes proliferation and differentiation within the secretory epithelial compartment during pregnancy. The epithelia are maintained by pro-survival signals (e.g., Stat5, Akt1) during lactation, but undergo apoptosis during involution through inactivation of cell survival pathways and upregulation of pro-apoptotic proteins. To assess if the survival signals in the functionally differentiated mammary epithelial cells can override a pro-apoptotic signal, we generated transgenic mice that express Bax under the whey acidic protein (WAP) promoter. WAP-Bax females exhibited a lactation defect and were unable to nourish their offspring. Mammary glands demonstrated: (1) a reduction in epithelial content, (2) hallmark signs of mitochondria-mediated cell death, (3) an increase in apoptotic cells by TUNEL assay, and (4) precocious Stat3 activation. This suggests that upregulation of a single pro-apoptotic factor of the Bcl-2 family is sufficient to initiate apoptosis of functionally differentiated mammary epithelial cells in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号