首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The consequences of maternal linolenic acid (LNA, 18:3n-3) dietary deficiency on key dopamine (DA)-associated regulatory proteins in mesolimbic and mesocortical structures of the postnatal rat brain have been investigated. A marked (4.5-fold) decrease of the DA-synthesizing enzyme tyrosine hydroxylase accompanied by a down-regulation (approx 7.5-fold) of the vesicular monoamine transporter (VMAT-2) and a depletion of VMAT-associated vesicles in the hippocampus were observed in deficient offspring compared with adequately fed controls. The DA transporter (DAT) was not affected by the LNA deficiency indicative of a DAT/VMAT-2 ratio increase that may enhance the risk of damage of the dopaminergic (DAergic) terminal. A robust increase in DA receptor (DAR1 and DAR2) levels was noticed in the cortex and striatum structures possibly to compensate for the low levels of DA in synaptic clefts. Microglia activation characterized by enhanced levels of ED1 antibody and nuclear internalization of p65 NFκB was noticed following LNA deficiency. Diminished levels of 22:6n-3 docosahexaenoic acid ( Schiefermeier and Yavin 2002 ), the most ubiquitous metabolite generated by LNA is proposed to reduce the anti-oxidant arsenal in the developing brain and cause microglia activation and enhanced oxidative stress to increase the risk of certain DA-associated neurological disorders.  相似文献   

2.
The last period of the intrauterine life in the rat (embryonic day 17 to 21, ED17-ED21) is demarcated by an increase in brain and body weight and active neuronogenesis. During this period, a rapid accumulation of DHA (22:6 n-3), unparalleled to other fatty acids, takes place. The details of DHA rapid acquisition in the fetal brain were investigated after imposing a diet deficient in n-3 fatty acids (FA) as of ED1 and subsequently examining the distribution of DHA in major brain phospholipid (PL) classes on ED20, having added on ED15 a triglyceride (TG) mixture enriched up to 43% with DHA. The n-3 deficiency maintained for 19 days resulted at ED20 in more than 30% reduction of DHA in PL, which was counterbalanced by an increase of docosapentaenoic acid (DPA, 22:5 n-6). No effect on body weight, nor major changes in PL composition or other FA in fetal brain PL were observed. Feeding dams a DHA-TG diet on ED15 induced an immediate increase of DHA in maternal liver PL, followed by a subsequent increase of DHA in fetal liver PL, as well as in fetal brain PL.Thus the content of fetal brain DHA in n-3 deficient embryos could be restored within 48 hours. Dietary manipulation of fetal tissues is a rapid phenomenon and can be used to enrich DHA at critical periods of development in utero.  相似文献   

3.
4.
Male rat pups (21 days old) were placed on a diet deficient in n-3 polyunsaturated fatty acids (PUFAs) or on an n-3 PUFA adequate diet containing alpha-linolenic acid (alpha-LNA; 18 : 3n-3). After 15 weeks on a diet, [4,5-3H]docosahexaenoic acid (DHA; 22 : 6n-3) was injected into the right lateral cerebral ventricle, and the rats were killed at fixed times over a period of 60 days. Compared with the adequate diet, 15 weeks of n-3 PUFA deprivation reduced plasma DHA by 89% and brain DHA by 37%; these DHA concentrations did not change thereafter. In the n-3 PUFA adequate rats, DHA loss half-lives, calculated by plotting log10 (DHA radioactivity) against time after tracer injection, equaled 33 days in total brain phospholipid, 23 days in phosphatidylcholine, 32 days in phosphatidylethanolamine, 24 days in phosphatidylinositol and 58 days in phosphatidylserine; all had a decay slope significantly greater than 0 (p < 0.05). In the n-3 PUFA deprived rats, these half-lives were prolonged twofold or greater, and calculated rates of DHA loss from brain, Jout, were reduced. Mechanisms must exist in the adult rat brain to minimize DHA metabolic loss, and to do so even more effectively in the face of reduced n-3 PUFA availability for only 15 weeks.  相似文献   

5.
The objective of this study was to investigate if maternal dietary 20:4n-6 arachidonic acid (AA) and 22:6n-3 compared with adequate or low levels of 18:3n-3 linolenic acid (LNA) increases synaptic plasma membrane (SPM) cholesterol and phospholipid content, phospholipid 20:4n-6 and 22:6n-3 content, and Na,K-ATPase kinetics in rat pups at two and five weeks of age. At parturition, Sprague-Dawley rats were fed semi-purified diets containing either AA + docosahexaenoic acid (DHA), adequate LNA (control; 18:2n-6 : 18:3n-3 ratio of 7.1 : 1) or low LNA (18:2n-6 : 18:3n-39 ratio of 835 : 1). During the first two weeks of life, the rat pups received only their dams' milk. After weaning, pups received the same diet as their respective dams to five weeks of age. No significant difference was observed among rat pups fed the diet treatments for SPM cholesterol or total and individual phospholipid content at two and five weeks of age. Fatty acid analysis revealed that maternal dietary AA + DHA, compared with feeding the dams the control diet or the low LNA diet, increased 20:4n-6 in phosphatidylserine and 22:6n-3 content of SPM phospholipids. Rats fed dietary AA + DHA or the control diet exhibited a significantly increased Vmax for SPM Na,K-ATPase. Diet treatment did not alter the Km (affinity) of SPM Na,K-ATPase in rat pups at two and five weeks of age. It is concluded that dietary AA + DHA does not alter SPM cholesterol and phospholipid content but increases the 22:6n-3 content of SPM phospholipids modulating activity of Na,K-ATPase.  相似文献   

6.
7.
Docosahexaenoic acid (DHA), a crucial nervous system n-3 PUFA, may be obtained in the diet or synthesized in vivo from dietary alpha-linolenic acid (LNA). We addressed whether DHA synthesis is regulated by the availability of dietary DHA in artificially reared rat pups, during p8 to p28 development. Over 20 days, one group of rat pups was continuously fed deuterium-labeled LNA (d5-LNA) and no other n-3 PUFA (d5-LNA diet), and a second group of rat pups was fed a d5-LNA diet with unlabeled DHA (d5-LNA + DHA diet). The rat pups were then euthanized, and the total amount of deuterium-labeled docosahexaenoic acid (d5-DHA) (synthesized DHA) as well as other n-3 fatty acids present in various body tissues, was quantified. In the d5-LNA + DHA group, the presence of dietary DHA led to a marked decrease (3- to 5-fold) in the total amount of d5-DHA that accumulated in all tissues that we examined, except in adipose. Overall, DHA accretion from d5-DHA was generally diminished by availability of dietary preformed DHA, inasmuch as this was found to be the predominant source of tissue DHA. When preformed DHA was unavailable, d5-DHA and unlabeled DHA were preferentially accreted in some tissues along with a net loss of unlabeled DHA from other organs.  相似文献   

8.
Information on the prenatal accumulation of rat brain membrane lipids is scarce. In this study we investigated in detail the fatty acid (FA) composition of the rat brain, on each day from embryonic day 12 (E12) up to birth, and on 8 time points during the first 16 days of postnatal life, and correlated the FA changes with well-described events of neurogenesis and synaptogenesis. Between E14 and E17, there was a steep increase in the concentration of all the FAs: 16:0 increased by 136%, 18:0 by 139%, 18:1 by 92%, 20:4n-6 by 98%, 22:4n-6 by 116%, 22:5n-6 by 220%, and 22:6n-3 by 98%. After this period and up to birth, the concentration of the FAs plateaued, except that of 22:6n-3, which accumulated further, reaching an additional increase of 75%. After birth, except 22:5n-6, all FAs steadily increased at various rates. Estimation of the FA/PL molar ratios showed that prenatally the ratios of all the FAs either decreased or remained constant, but that of 22:6n-3 increased more than 2-fold; postnatally the ratios remained constant, with the exception of 22:4n-6 and 22:5n-6, which decreased. In conclusion, prenatal accumulation of brain fatty acids parallels important events in neurogenesis. 22:6n-3 is exceptional inasmuch in its steep accumulation occurs just prior to synaptogenesis.  相似文献   

9.
Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A(2) (cPLA(2) -IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective calcium-independent phospholipase A(2) (iPLA(2) )-VIA expression. We hypothesized that these changes are accompanied by up-regulated brain DHA metabolic rates. Using a fatty acid model, brain DHA concentrations and kinetics were measured in unanesthetized male rats fed, for 15 weeks post-weaning, an n-6 PUFA 'adequate' (31.4 wt% linoleic acid) or 'deficient' (2.7 wt% linoleic acid) diet, each lacking 20:4n-6 and DHA. [1-(14) C]DHA was infused intravenously, arterial blood was sampled, and the brain was microwaved at 5 min and analyzed. Rats fed the n-6 PUFA deficient compared with adequate diet had significantly reduced n-6 PUFA concentrations in brain phospholipids but increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid n-3 (DPAn-3, 22:5n-3), and DHA (by 9.4%) concentrations, particularly in ethanolamine glycerophospholipid (EtnGpl). Incorporation rates of unesterified DHA from plasma, which represent DHA metabolic loss from brain, were increased 45% in brain phospholipids, as was DHA turnover. Increased DHA metabolism following dietary n-6 PUFA deprivation may increase brain concentrations of antiinflammatory DHA metabolites, which with a reduced brain n-6 PUFA content, likely promotes neuroprotection and alters neurotransmission.  相似文献   

10.
Rat pups born to dams fed a diet with 3.1% of total fatty acids as alpha-linolenic acid (LNA) were fed, using an artificial rearing system, either an n-3-deficient (n-3-Def) or an n-3-adequate (n-3-Adq) diet. Both diets contained 17.1% linoleic acid, but the n-3-Adq diet also contained 3.1% LNA. The percentage of brain docosahexaenoic acid (DHA) continuously decreased (71%) with time over the 29 days of the experiment, with concomitant increases in docosapentaenoic acid (DPAn-6). In the retina, the percentage of DHA rose in the n-3-Adq group, with an apparent increased rate around the time of eye opening. However, there was a flat curve for the percentage of DHA in the n-3-Def group and a rising DPAn-6 with time. Liver DHA was highest at the time of birth in the n-3-Adq group but fell off somewhat over the course of 29 days. This decrease was more pronounced in the n-3-Def group, and the DPAn-6 rose considerably during the second half of the experiment. This method presents a first-generation model for n-3 deficiency that is more similar to the case of human nutrition than is the commonly employed two-generation model.  相似文献   

11.
Limiting dopamine beta-monooxygenase results in lower norepinephrine (NE) and higher dopamine (DA) concentrations in copper-deficient Cu- tissues compared to copper-adequate Cu+ tissues. Mice and rat offspring were compared to determine the effect of differences in dietary copper Cu deficiency started during gestation or lactation on catecholamine, NE and DA, content in brain and heart. Holtzman rat and Hsd:ICR (CD-1) outbred albino mouse dams were fed a Cu- diet and drank deionized water or Cu supplemented water. Offspring were sampled at time points between postnatal ages 12 and 27. For both rat and mouse Cu- tissue, NE and DA changes were greater at later ages. Though Cu restriction began earlier in rats than mice in the gestational model, brain NE reduction was more severe in Cu- mice than Cu- rats. Cardiac NE reduction was similar in Cu- rodents in the gestation models. In the lactation model, mouse catecholamines were altered more than rat catecholamines. Furthermore, following lactational Cu deficiency Cu- mice were anemic and exhibited cardiac hypertrophy, Cu- rats displayed neither phenotype. Within a species, changes were more severe and proportional to the length of Cu deprivation. Lactational Cu deficiency in mice had greater consequences than in rats.  相似文献   

12.
Rates of conversion of alpha-linolenic acid (alpha-LNA, 18:3n-3) to docosahexaenoic acid (DHA, 22:6n-3) by the mammalian brain and the brain's ability to upregulate these rates during dietary deprivation of n-3 polyunsaturated fatty acids (PUFAs) are unknown. To answer these questions, we measured conversion coefficients and rates in post-weaning rats fed an n-3 PUFA deficient (0.2% alpha-LNA of total fatty acids, no DHA) or adequate (4.6% alpha-LNA, no DHA) diet for 15 weeks. Unanesthetized rats in each group were infused intravenously with [1-(14)C]alpha-LNA, and their arterial plasma and microwaved brains collected at 5 minutes were analyzed. The deficient compared with adequate diet reduced brain DHA by 37% and increased brain arachidonic (20:4n-6) and docosapentaenoic (22:5n-6) acids. Only 1% of plasma [1-(14)C]alpha-LNA entering brain was converted to DHA with the adequate diet, and conversion coefficients of alpha-LNA to DHA were unchanged by the deficient diet. In summary, the brain's ability to synthesize DHA from alpha-LNA is very low and is not altered by n-3 PUFA deprivation. Because the liver's reported ability is much higher, and can be upregulated by the deficient diet, DHA converted by the liver from circulating alphaLNA is the source of the brain's DHA when DHA is not in the diet.  相似文献   

13.
Rats were fed from conception till adulthood either with normal rat chow with a linoleic (LA) to linolenic acid (LNA) ratio of 8.2:1 or a rat chow supplemented with a mixture of perilla and soy bean oil giving a ratio of LA to LNA of 4.7:1. Fat content of the feed was 5%. Fatty acid and molecular species composition of ethanolamine phosphoglyceride was determined. Effect of this diet on gene expression was also studied. There was an accumulation of docosahexaenoic (DHA) and arachidonic acids (AA) in brains of the experimental animals. Changes in the ratio sn-1 saturated, sn-2 docosahexaenoic to sn-1 monounsaturated, sn-2 docosahexaenoic were observed. Twenty genes were found overexpressed in response to the 4.7:1 mixture diet and four were found down-regulated compared to normal rat chow. Among them were the genes related to energy household, lipid metabolism and respiration. The degree of up-regulation exceeded that observed with perilla with a ratio of LA to LNA 8.2:1 [Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 2619]. It was concluded that brain sensitively reacts to the fatty acid composition of the diet. It was suggested that alteration in membrane architecture and function coupled with alterations in gene expression profiles may contribute to the observed beneficial impact of n-3 type polyunsaturated fatty acids on cognitive functions.  相似文献   

14.
Previous studies have infused radiolabeled arachidonic acid (AA) into rat brains and followed AA esterification into phospholipids for up to 24 h; however, the half-life of AA in rat brain phospholipids is unknown. Eighteen day old rats were fed either an n-3 PUFA adequate or deprived diet for 15 weeks. Following the 15 weeks, 40 µCi of [3H] AA was injected intracerebroventricularly into the right lateral ventricle using stereotaxic surgery and returned to their dietary treatment. From 4–120 days after [3H] AA administration, brains were collected for chemical analyses. The half-life of AA in rat brain phospholipids was 44 ± 4 days for the n-3 PUFA adequate group and 46 ± 4 days for the n-3 PUFA deprived group, which closely approximates the predicted half-life previously reported, based on the rate of entry from the plasma unesterified pool, suggesting the plasma unesterified pool is a major contributor to brain uptake of AA. Furthermore, unlike a previous report in which the half-life of brain phospholipid docosahexaenoic acid (DHA) was increased in n-3 PUFA deprived rats, n-3 PUFA deprivation did not significantly alter the AA half-life, suggesting different mechanisms exist to maintain brain concentrations of AA and DHA.  相似文献   

15.
The loss of docosahexaenoic acid (DHA) from the retina or brain has been associated with a loss in nervous-system function in experimental animals, as well as in human infants fed vegetable oil-based formulas. The reversibility of the loss of DHA and the compensation by an increase in the n-6 docosapentaenoic acid (DPAn-6) was studied in young adult rats. Long-Evans rats were subjected to a very low level of n-3 fatty acids through two generations. The F2 generation, n-3-deficient animals at 7 weeks of age were provided a repletion diet containing both alpha-linolenate and DHA. A separate group of F2 generation rats had been maintained on an n-3-adequate diet of the same composition. Tissues from the brain, retina, liver, and serum were collected on weeks 0, 1, 2, 4, and 8 from both groups of animals. The concentrations of DHA, DPAn-6, and other fatty acids were determined and the rate of recovery and length of time needed to complete DHA recovery were determined for each tissue. The DHA level in the brain at 1 and 2 weeks after diet reversal was only partially recovered, rising to approximately 20% and 35%, respectively, of the n-3-adequate group level. Full recovery was not obtained until 8 weeks after initiation of the repletion diet. Although the initial rate of retinal DHA accretion was greater than that of brain DHA, the half-time for DHA recovery was only marginally greater. On the other hand, the levels of DHA in the serum and liver were approximately 90% and 100% replaced, respectively, within 2 weeks of diet reversal. A consideration of the total amounts and time courses of DHA repleted in the nervous system compared with the liver and circulation suggests that transport-related processes may limit the rate of DHA repletion in the retina and brain.-- Moriguchi, T., J. Loewke, M. Garrison, J. N. Catalan, N. Salem, Jr. Reversal of docosahexaenoic acid deficiency in the rat brain, retina, liver, and serum. J. Lipid Res. 2001. 42: 419--427.  相似文献   

16.
Abstract: We have studied the effect of a dietary deprivation of n-3 fatty acids on the activity of the dopamine (DA)-de-pendent adenylate cyclase in the rat retina. Experiments were conducted in 6-month-old rats raised on semipurified diets containing either safflower oil (n-3 deficient diet) or soybean oil (control diet). The levels of docosahexaenoic acid [22:6 (n-3)] in retinal phospholipids were significantly decreased in n-3 deficient rats (35–42% of control levels). This was compensated by a rise in 22:5 (n-6), the total content of poly-unsaturated fatty acids (PUFA) remaining approximately constant. Adenylate cyclase activity was measured in retinal membrane preparations from dark-adapted or light-exposed rats. The enzyme activity was stimulated by DA and SKF 38393 in a light-dependent fashion. The activation was lower in rats exposed to light than in dark-adapted animals, suggesting a down-regulation of the DI DA receptors by light. The activation by guanine nucleotides and forskolin was also decreased in light-exposed rats. There was no significant effect of the dietary regimen on the various adenylate cyclase activities and their response to light. Furthermore, the guanine nucleotide- and DA-dependent adenylate cyclase activities of retinal membranes were found to be relatively resistant to changes in membrane fluidity induced in vitro by benzyl alcohol. The results indicate that in the absence of changes in total PUFA content, a decreased ratio of n-3 to n-6 fatty acids in membrane phospholipids does not significantly affect the properties of adenylate cyclase in the rat retina.  相似文献   

17.
Docosapentaenoic acid (DPAn-6, 22:5n-6) is an n-6 polyunsaturated fatty acid (PUFA) whose brain concentration can be increased in rodents by dietary n-3 PUFA deficiency, which may contribute to their behavioral dysfunction. We used our in vivo intravenous infusion method to see if brain DPAn-6 turnover and metabolism also were altered with deprivation. We studied male rats that had been fed for 15weeks post-weaning an n-3 PUFA adequate diet containing 4.6% alpha-linolenic acid (α-LNA, 18:3n-3) or a deficient diet (0.2% α-LNA), each lacking docosahexaenoic acid (22:6n-3) and arachidonic acid (AA, 20:4n-6). [1-(14)C]DPAn-6 was infused intravenously for 5min in unanesthetized rats, after which the brain underwent high-energy microwaving, and then was analyzed. The n-3 PUFA deficient compared with adequate diet increased DPAn-6 and decreased DHA concentrations in plasma and brain, while minimally changing brain AA concentration. Incorporation rates of unesterified DPAn-6 from plasma into individual brain phospholipids were increased 5.2-7.7 fold, while turnover rates were increased 2.1-4.7 fold. The observations suggest that increased metabolism and brain concentrations of DPAn-6 and its metabolites, together with a reduced brain DHA concentration, contribute to behavioral and functional abnormalities reported with dietary n-3 PUFA deprivation in rodents. (196 words).  相似文献   

18.
The fatty acid (FA) docosahexaenoic acid (DHA, 22: 6n-3) is highly enriched in membrane phospholipids of the central nervous system and retina. Loss of DHA because of n-3 FA deficiency leads to suboptimal function in learning, memory, olfactory-based discrimination, spatial learning, and visual acuity. G protein-coupled receptor (GPCR) signal transduction is a common signaling motif in these neuronal pathways. Here we investigated the effect of n-3 FA deficiency on GPCR signaling in retinal rod outer segment (ROS) membranes isolated from rats raised on n-3-adequate or -deficient diets. ROS membranes of second generation n-3 FA-deficient rats had approximately 80% less DHA than n-3-adequate rats. DHA was replaced by docosapentaenoic acid (22:5n-6), an n-6 FA. This replacement correlated with desensitization of visual signaling in n-3 FA-deficient ROS, as evidenced by reduced rhodopsin activation, rhodopsin-transducin (G(t)) coupling, cGMP phosphodiesterase activity, and slower formation of metarhodopsin II (MII) and the MII-G(t) complex relative to n-3 FA-adequate ROS. ROS membranes from n-3 FA-deficient rats exhibited a higher degree of phospholipid acyl chain order relative to n-3 FA-adequate rats. These findings reported here provide an explanation for the reduced amplitude and delayed response of the electroretinogram a-wave observed in n-3 FA deficiency in rodents and nonhuman primates. Because members of the GPCR family are widespread in signaling pathways in the nervous system, the effect of reduced GPCR signaling due to the loss of membrane DHA may serve as an explanation for the suboptimal neural signaling observed in n-3 FA deficiency.  相似文献   

19.
To determine how the level of dietary n-6 PUFA affects the rate of loss of arachidonic acid (ARA) and DHA in brain phospholipids, male rats were fed either a deprived or adequate n-6 PUFA diet for 15 weeks postweaning, and then subjected to an intracerebroventricular infusion of 3H-ARA or 3H-DHA. Brains were collected at fixed times over 128 days to determine half-lives and the rates of loss from brain phospholipids (Jout). Compared with the adequate n-6 PUFA rats, the deprived n-6-PUFA rats had a 15% lower concentration of ARA and an 18% higher concentration of DHA in their brain total phospholipids. Loss half-lives of ARA in brain total phospholipids and fractions (except phosphatidylserine) were longer in the deprived n-6 PUFA rats, whereas the Jout was decreased. In the deprived versus adequate n-6 PUFA rats, the Jout of DHA was higher. In conclusion, chronic n-6 PUFA deprivation decreases the rate of loss of ARA and increases the rate of loss of DHA in brain phospholipids. Thus, a low n-6 PUFA diet can be used to target brain ARA and DHA metabolism.  相似文献   

20.
The extent to which the heart can convert alpha-linolenic acid (alpha-LNA, 18:3n-3) to longer chain n-3 PUFAs is not known. Conversion rates can be measured in vivo using radiolabeled alpha-LNA and a kinetic fatty acid model. [1-(14)C]alpha-LNA was infused intravenously for 5 min in unanesthetized rats that had been fed an n-3 PUFA-adequate [4.6% alpha-LNA, no docosahexaenoic acid (DHA, 22:6n-3)] or n-3 PUFA-deficient diet (0.2% alpha-LNA, nor DHA) for 15 weeks after weaning. Arterial plasma was sampled, as was the heart after high-energy microwaving. Rates of conversion of alpha-LNA to longer chain n-3 PUFAs were low, and DHA was not synthesized at all in the heart. Most alpha-LNA within the heart had been beta-oxidized. In deprived compared with adequate rats, DHA concentrations in plasma and heart were both reduced by >90%, whereas heart and plasma levels of docosapentaenoic acid (DPAn-6, 22:5n-6) were elevated. Dietary deprivation did not affect cardiac mRNA levels of elongase-5 or desaturases Delta6 and Delta5, but elongase-2 mRNA could not be detected. In summary, the rat heart does not synthesize DHA from alpha-LNA, owing to the absence of elongase-2, but must obtain its DHA entirely from plasma. Dietary n-3 PUFA deprivation markedly reduces heart DHA and increases heart DPAn-6, which may make the heart vulnerable to different insults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号