首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Williams-Beuren syndrome (WBS) is a developmental disorder caused by haploinsufficiency for genes in a 2-cM region of chromosome band 7q11.23. With the exception of vascular stenoses due to deletion of the elastin gene, the various features of WBS have not yet been attributed to specific genes. Although >/=16 genes have been identified within the WBS deletion, completion of a physical map of the region has been difficult because of the large duplicated regions flanking the deletion. We present a physical map of the WBS deletion and flanking regions, based on assembly of a bacterial artificial chromosome/P1-derived artificial chromosome contig, analysis of high-throughput genome-sequence data, and long-range restriction mapping of genomic and cloned DNA by pulsed-field gel electrophoresis. Our map encompasses 3 Mb, including 1.6 Mb within the deletion. Two large duplicons, flanking the deletion, of >/=320 kb contain unique sequence elements from the internal border regions of the deletion, such as sequences from GTF2I (telomeric) and FKBP6 (centromeric). A third copy of this duplicon exists in inverted orientation distal to the telomeric flanking one. These duplicons show stronger sequence conservation with regard to each other than to the presumptive ancestral loci within the common deletion region. Sequence elements originating from beyond 7q11.23 are also present in these duplicons. Although the duplicons are not present in mice, the order of the single-copy genes in the conserved syntenic region of mouse chromosome 5 is inverted relative to the human map. A model is presented for a mechanism of WBS-deletion formation, based on the orientation of duplicons' components relative to each other and to the ancestral elements within the deletion region.  相似文献   

2.
Side effects of genome structural changes   总被引:2,自引:0,他引:2  
The first extensive catalog of structural human variation was recently released. It showed that large stretches of genomic DNA that vary considerably in copy number were extremely abundant. Thus it is conceivable that they play a major role in functional variation. Consistently, genomic insertions and deletions were shown to contribute to phenotypic differences by modifying not only the expression levels of genes within the aneuploid segments but also of normal copy-number neighboring genes. In this report, we review the possible mechanisms behind this latter effect.  相似文献   

3.
4.
Copy number variants (CNVs) influence the expression of genes that map not only within the rearrangement, but also to its flanks. To assess the possible mechanism(s) underlying this “neighboring effect”, we compared intrachromosomal interactions and histone modifications in cell lines of patients affected by genomic disorders and control individuals. Using chromosome conformation capture (4C-seq), we observed that a set of genes flanking the Williams-Beuren Syndrome critical region (WBSCR) were often looping together. The newly identified interacting genes include AUTS2, mutations of which are associated with autism and intellectual disabilities. Deletion of the WBSCR disrupts the expression of this group of flanking genes, as well as long-range interactions between them and the rearranged interval. We also pinpointed concomitant changes in histone modifications between samples.We conclude that large genomic rearrangements can lead to chromatin conformation changes that extend far away from the structural variant, thereby possibly modulating expression globally and modifying the phenotype.GEO Series accession number: GSE33784, GSE33867.  相似文献   

5.
Rapidly evolving proteins can aid the identification of genes underlying phenotypic adaptation across taxa, but functional and structural elements of genes can also affect evolutionary rates. In plants, the ‘edges’ of exons, flanking intron junctions, are known to contain splice enhancers and to have a higher degree of conservation compared to the remainder of the coding region. However, the extent to which these regions may be masking indicators of positive selection or account for the relationship between dN/dS and other genomic parameters is unclear. We investigate the effects of exon edge conservation on the relationship of dN/dS to various sequence characteristics and gene expression parameters in the model plant Arabidopsis thaliana. We also obtain lineage‐specific dN/dS estimates, making use of the recently sequenced genome of Thellungiella parvula, the second closest sequenced relative after the sister species Arabidopsis lyrata. Overall, we find that the effect of exon edge conservation, as well as the use of lineage‐specific substitution estimates, upon dN/dS ratios partly explains the relationship between the rates of protein evolution and expression level. Furthermore, the removal of exon edges shifts dN/dS estimates upwards, increasing the proportion of genes potentially under adaptive selection. We conclude that lineage‐specific substitutions and exon edge conservation have an important effect on dN/dS ratios and should be considered when assessing their relationship with other genomic parameters.  相似文献   

6.
The human TATA binding protein (TBP) locus consists of a functional domain of three closely linkedhousekeeping genes (TBP, PSMB1 (proteasomal C5 subunit), and PDCD2 (programmed cell death-2)) within a 50-kb interval at chromosome position 6q27. Here we demonstrate that a genomic clone spanning the 20-kb TBP gene, with 12 kb 5' and 3' flanking sequences, was fully functional in stable, transfected L-cells harboring a single copy of this transgene, including after long-term (60 day) culture in the absence of drug selective pressure. Furthermore, we were only able to detect DNaseI hypersensitive sites at the TBP and PSMB1 promoters present within this 44-kb fragment. Our data suggest that this 44-kb genomic region possesses genetic regulatory elements that not only drive ubiquitous expression of TBP but also negate chromatin and DNA methylation induced silencing, which is normally associated with transgenes stably integrated into tissue culture cells.  相似文献   

7.
Certain genes exhibit notable diversity in their expression patterns both within and between species. One such gene is the vasopressin receptor 1a gene (Avpr1a), which exhibits striking differences in neural expression patterns that are responsible for mediating differences in vasopressin-mediated social behaviors. The genomic mechanisms that contribute to these remarkable differences in expression are not well understood. Previous work has suggested that both the proximal 5′ flanking region and a polymorphic microsatellite element within that region of the vole Avpr1a gene are associated with variation in V1a receptor (V1aR) distribution and behavior, but neither has been causally linked. Using homologous recombination in mice, we reveal the modest contribution of proximal 5′ flanking sequences to species differences in V1aR distribution, and confirm that variation in V1aR distribution impacts stress-coping in the forced swim test. We also demonstrate that the vole Avpr1a microsatellite structure contributes to Avpr1a expression in the amygdala, thalamus, and hippocampus, mirroring a subset of the inter- and intra-species differences observed in central V1aR patterns in voles. This is the first direct evidence that polymorphic microsatellite elements near behaviorally relevant genes can contribute to diversity in brain gene expression profiles, providing a mechanism for generating behavioral diversity both at the individual and species level. However, our results suggest that many features of species-specific expression patterns are mediated by elements outside of the immediate 5′ flanking region of the gene.  相似文献   

8.
9.
In contrast to other globin genes, the human and rabbit alpha-globin genes are expressed in transfected erythroid and nonerythroid cells in the absence of an enhancer. This enhancer-independent expression of the alpha-globin gene requires extensive sequences not only from the 5' flanking sequence but also from the intragenic region. However, the features of these internal sequences that are responsible for their positive effect are unclear. We tested several possible determinants of this activity. One possibility is that a previously identified array of discrete binding sites for known and potential regulatory proteins within the alpha-globin gene comprise an intragenic enhancer specific for the alpha-globin promoter, but directed rearrangements of the sequences show that this is not the case. Alternatively, the promoter may extend into the gene, with the function of the discrete binding sites being dependent on maintenance of their proper positions and orientations relative to the 5' flanking sequence. However, the positive effects observed in gene fusions do not localize to a discrete region of the alpha-globin gene and the results of internal deletions and point mutations argue against a required role of the targeted discrete binding sites. A third possibility is that the CpG island, which includes both the 5' flanking and intragenic regions associated with the positive activity, may itself have a more general effect on expression in transfected cells. Indeed, we show that the size of the CpG island in constructs correlates with the level of gene expression. Furthermore, the alpha-globin promoter is more active in the context of a previously inactive CpG island than in an A+T-rich context, showing that the CpG island provides an environment more permissive for expression. These effects are seen only after integration, suggesting a possible mechanism at the level of chromatin structure.  相似文献   

10.
11.
12.
Bivariate flow karyotyping was used to estimate the deletion sizes for a series of patients with Xp21 contiguous gene syndromes. The deletion estimates were used to develop an approximate scale for the genomic map in Xp21. The bivariate flow karyotype results were compared with clinical and molecular genetic information on the extent of the patients' deletions, and these various types of data were consistent. The resulting map spans > 15 Mb, from the telomeric interval between DXS41 (99-6) and DXS68 (L1-4) to a position centromeric to the ornithine transcarbamylase locus. The deletion sizing was considered to be accurate to +/- 1 Mb. The map provides information on the relative localization of genes and markers within this region. For example, the map suggests that the adrenal hypoplasia congenita and glycerol kinase genes are physically close to each other, are within 1-2 Mb of the telomeric end of the Duchenne muscular dystrophy (DMD) gene, and are nearer to the DMD locus than to the more distal marker DXS28 (C7). Information of this type is useful in developing genomic strategies for positional cloning in Xp21. These investigations demonstrate that the DNA from patients with Xp21 contiguous gene syndromes can be valuable reagents, not only for ordering loci and markers but also for providing an approximate scale to the map of the Xp21 region surrounding DMD.  相似文献   

13.
14.
A preliminary linkage map of the chicken genome.   总被引:17,自引:0,他引:17  
N Bumstead  J Palyga 《Genomics》1992,13(3):690-697
We have used backcross progeny from a cross between two inbred lines of chickens to construct a linkage map of the chicken. The map currently consists of 100 loci, identified using either anonymous cloned fragments of genomic DNA or sequences corresponding to cloned genes. Parent birds were derived from two lines of White Leghorn chickens, which differ in susceptibility to a number of diseases. Restriction fragment length variants were identified by comparison of the DNA of these two parent birds using a panel of seven restriction enzyme digests and the segregation pattern observed in progeny of these two birds. Restriction fragment length variants were detected for approximately 41% of the clones tested, whether these were known genes or random genomic fragments. This high level of variability was also reflected in the presence of variation within the parental lines for some clones. The overall size of the linkage groups and the progressively higher incidence of linkage as further clones were added suggests that the map covers the majority of the genome, although it is unlikely that there are marker loci on all the microchromosomes. The present map will be of use in locating genes affecting disease resistance, but also illustrates the relative ease with which such maps for the chicken can be constructed.  相似文献   

15.
16.
17.
Streptomyces phage phiC31 integrase is widely used to mediate the integration of exogenous genes into host genomes for gene therapy and genomic modification, as it autonomously performs efficient, unidirectional, site-specific integration into pseudo attP sites of the host genome. Although pseudo attP sites are rarely found within exons, it is necessary to map their precise locations to avoid the risk of insertion mutagenesis. High-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR) is a technique that has been developed to recover genomic sequences that flank insertion tags. We have found, however, that this technique is poorly efficient, as it amplifies many non-specific targets and frequently does not generate sufficient product for downstream analysis. Therefore, we have modified the hiTAIL-PCR procedure and re-designed the random primers. As a result, both the amount and specificity of the reaction product were enhanced for each integration site. Restriction analysis of known sequences within the integrated vector, which co-amplified with the flanking genomic sequences, validated 90% of these bands for sequencing. In contrast, only 30% of the bands produced by previous hiTAIL-PCR could be validated. Compared with the original hiTAIL-PCR, our improved hiTAIL-PCR procedure identified phiC31 integration sites more accurately and efficiently.  相似文献   

18.
Summary The constitutive expression of an antisense chalcone synthase (CHS) gene in transgenic petunia plants results with high frequency in a reduced flower pigmentation due to a reduction in the CHS mRNA steady-state level in floral tissue. Here we show that this reduction is specific for CHS mRNA; chalcone flavanone isomerase (CHI) and dihydroflavonol reductase (DFR) mRNA steady-state levels are unaffected. However, in white floral tissue a severe reduction in CHI specific activity is found, accompanied by an altered signal for CHI protein on western blots. We find no correlation between the phenotypic effect of the antisense CHS gene and its chromosomal position. For some of the antisense CHS transformants the flower phenotype is highly variable. We demonstrate that pigmentation in these plants can be influenced by gibberellic acid and light, suggesting that the variable flower phenotype is caused by changes in physiological conditions during flower development. The results not only indicate that flower pigmentation in these plants reveals the variable expression of the antisense transgene, but also show that genomic sequences flanking the transgene may render its expression extremely susceptible to physiological conditions.  相似文献   

19.
The use of autozygosity as a mapping tool in the search for autosomal recessive disease genes is well established. We hypothesized that autozygosity not only unmasks the recessiveness of disease causing variants, but can also reveal natural knockouts of genes with less obvious phenotypic consequences. To test this hypothesis, we exome sequenced 77 well phenotyped individuals born to first cousin parents in search of genes that are biallelically inactivated. Using a very conservative estimate, we show that each of these individuals carries biallelic inactivation of 22.8 genes on average. For many of the 169 genes that appear to be biallelically inactivated, available data support involvement in modulating metabolism, immunity, perception, external appearance and other phenotypic aspects, and appear therefore to contribute to human phenotypic variation. Other genes with biallelic inactivation may contribute in yet unknown mechanisms or may be on their way to conversion into pseudogenes due to true recent dispensability. We conclude that sequencing the autozygome is an efficient way to map the contribution of genes to human phenotypic variation that goes beyond the classical definition of disease.  相似文献   

20.
Lyamouri M  Enerly E  Kress H  Lambertsson A 《Gene》2002,282(1-2):199-206
In Drosophila melanogaster, the apparently unrelated genes anon-66Da, RpL14, and anon-66Db (from telomere to centromere) are located on a 5547 bp genomic fragment on chromosome arm 3L at cytological position 66D8. The three genes are tightly linked, and flanked by two relatively large genes with unknown function. We have taken a comparative genomic approach to investigate the evolutionary history of the three genes. To this end we isolated a Drosophila virilis 7.3 kb genomic fragment which is homologous to a 5.5 kb genomic region of D. melanogaster. Both fragments map to Muller's element D, namely to section 66D in D. melanogaster and to section 32E in D. virilis, and harbor the genes anon-66Da, RpL14, and anon-66Db. We demonstrate that the three genes exhibit a high conservation of gene topography in general and in detail. While most introns and intergenic regions reveal sequence divergences, there are, however, a number of interspersed conserved sequence motifs. In particular, two introns of the RpL14 gene contain a short, highly conserved 60 nt long sequence located at corresponding positions. This sequence represents a novel Drosophila small nucleolar RNA, which is homologous to human U49. Whereas DNA flanking the three genes shows no significant interspecies homologies, the 3'-flanking region in D. virilis contains sequences from the transposable element Penelope. The Penelope family of transposable elements has been shown to promote chromosomal rearrangements in the D. virilis species group. The presence of Penelope sequences in the D. virilis 7.3 kb genomic fragment may be indicative for a transposon-induced event of transposition which did not yet scramble the order of the three genes but led to the breakdown of sequence identity of the flanking DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号