共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vancomycin or erythromycin resistance and the stability determinants, δω and ωεζ, of Enterococci and Streptococci plasmids are genetically linked. To unravel the mechanisms that promoted the stable persistence of resistance determinants, the early stages of Streptococcus pyogenes pSM19035 partitioning were biochemically dissected. First, the homodimeric centromere-binding protein, ω2, bound parS DNA to form a short-lived partition complex 1 (PC1). The interaction of PC1 with homodimeric δ [δ2 even in the apo form (Apo-δ2)], significantly stimulated the formation of a long-lived ω2·parS complex (PC2) without spreading into neighbouring DNA sequences. In the ATP·Mg2+ bound form, δ2 bound DNA, without sequence specificity, to form a transient dynamic complex (DC). Second, parS bound ω2 interacted with and promoted δ2 redistribution to co-localize with the PC2, leading to transient segrosome complex (SC, parS·ω2·δ2) formation. Third, δ2, in the SC, interacted with a second SC and promoted formation of a bridging complex (BC). Finally, increasing ω2 concentrations stimulated the ATPase activity of δ2 and the BC was disassembled. We propose that PC, DC, SC and BC formation were dynamic processes and that the molar ω2:δ2 ratio and parS DNA control their temporal and spatial assembly during partition of pSM19035 before cell division. 相似文献
3.
4.
5.
Localization of the P1 plasmid requires two proteins, ParA and ParB, which act on the plasmid partition site, parS. ParB is a site-specific DNA-binding protein and ParA is a Walker-type ATPase with non-specific DNA-binding activity. In vivo ParA binds the bacterial nucleoid and forms dynamic patterns that are governed by the ParB-parS partition complex on the plasmid. How these interactions drive plasmid movement and localization is not well understood. Here we have identified a large protein-DNA complex in vitro that requires ParA, ParB and ATP, and have characterized its assembly by sucrose gradient sedimentation and light scattering assays. ATP binding and hydrolysis mediated the assembly and disassembly of this complex, while ADP antagonized complex formation. The complex was not dependent on, but was stabilized by, parS. The properties indicate that ParA and ParB are binding and bridging multiple DNA molecules to create a large meshwork of protein-DNA molecules that involves both specific and non-specific DNA. We propose that this complex represents a dynamic adaptor complex between the plasmid and nucleoid, and further, that this interaction drives the redistribution of partition proteins and the plasmid over the nucleoid during partition. 相似文献
6.
de la Hoz AB Pratto F Misselwitz R Speck C Weihofen W Welfle K Saenger W Welfle H Alonso JC 《Nucleic acids research》2004,32(10):3136-3147
7.
Piotr Ceglowski Alexander Boitsov Natalia Karamyan Sunghee Chai Juan C. Alonso 《Molecular genetics and genomics : MGG》1993,241(5-6):579-585
The low-copy-number and broad-host-range pSM19035-derived plasmid pBT233 is stably inherited in Bacillus subtilis cells. Two distinct regions, segA and segB, enhance the segregational stability of the plasmid. Both regions function in a replicon-independent manner. The maximization of random plasmid segregation is accomplished by the recombination proficiency of the host or the presence of the pBT233 segA region. The segA region contains two open reading frames (or?) [α and β]. Inactivation or deletion of or?β results in SegA? plasmids. Better than random segregation requires an active segB region. The segB region contains two or?s (or?? and or?ζ). Inactivation of either of the orfs does not lead to an increase in cell death, but or?ζ? plasmids are randomly segregated. These results suggest that pBT233 stabilization relies on a complex system involving resolution of plasmid oligomers (segA) and on the function(s) encoded by the segB region. 相似文献
8.
Bhardwaj A Welfle K Misselwitz R Ayora S Alonso JC Welfle H 《Biological chemistry》2006,387(5):525-533
Solution properties of beta recombinase were studied by circular dichroism and fluorescence spectroscopy, size exclusion chromatography, analytical ultracentrifugation, denaturant-induced unfolding and thermal unfolding experiments. In high ionic strength buffer (1 M NaCl) beta recombinase forms mainly dimers, and strongly tends to aggregate at ionic strength lower than 0.3 M NaCl. Urea and guanidinium chloride denaturants unfold beta recombinase in a two-step process. The unfolding curves have bends at approximately 5 M and 2.2 M in urea and guanidinium chloride-containing buffers. Assuming a three-state unfolding model (N2-->2I-->2U), the total free energy change from 1 mol of native dimers to 2 mol of unfolded monomers amounts to deltaG(tot) = 17.9 kcal/mol, with deltaG(N2-->2I) = 4.2 kcal/mol for the first transition and deltaG(I-->U) = 6.9 kcal/mol for the second transition. Using sedimentation-equilibrium analytical ultracentrifugation, the presence of beta recombinase monomers was indicated at 5 M urea, and the urea dependence of the circular dichroism at 222 nm strongly suggests that folded monomers represent the unfolding intermediate. 相似文献
9.
ParB of Pseudomonas aeruginosa: interactions with its partner ParA and its target parS and specific effects on bacterial growth 下载免费PDF全文
Bartosik AA Lasocki K Mierzejewska J Thomas CM Jagura-Burdzy G 《Journal of bacteriology》2004,186(20):6983-6998
The par genes of Pseudomonas aeruginosa have been studied to increase the understanding of their mechanism of action and role in the bacterial cell. Key properties of the ParB protein have been identified and are associated with different parts of the protein. The ParB- ParB interaction domain was mapped in vivo and in vitro to the C-terminal 56 amino acids (aa); 7 aa at the C terminus play an important role. The dimerization domain of P. aeruginosa ParB is interchangeable with the dimerization domain of KorB from plasmid RK2 (IncP1 group). The C-terminal part of ParB is also involved in ParB-ParA interactions. Purified ParB binds specifically to DNA containing a putative parS sequence based on the consensus sequence found in the chromosomes of Bacillus subtilis, Pseudomonas putida, and Streptomyces coelicolor. The overproduction of ParB was shown to inhibit the function of genes placed near parS. This "silencing" was dependent on the parS sequence and its orientation. The overproduction of P. aeruginosa ParB or its N-terminal part also causes inhibition of the growth of P. aeruginosa and P. putida but not Escherichia coli cells. Since this inhibitory determinant is located well away from ParB segments required for dimerization or interaction with the ParA counterpart, this result may suggest a role for the N terminus of P. aeruginosa ParB in interactions with host cell components. 相似文献
10.
Welfle K Pratto F Misselwitz R Behlke J Alonso JC Welfle H 《Biological chemistry》2005,386(9):881-894
The dimeric regulatory protein wild-type omega (wt omega2) binds to arrays of 7-bp sequences (heptads) present in the operator DNA region of copy control and partition functions of plasmid pSM19035. Each omega2 protein probably binds with an antiparallel beta-sheet structure in the major groove of the 7-bp subsite of the operator DNA. Exchange of threonine at position 29 to alanine (T29A) drastically affects the activity of variant protein omega2T29A both in vivo and in vitro, and reduces the thermodynamic stability deltaG(o)u, but does not change the conformation. Likewise, the binding affinity to DNA is reduced and the association of the two monomeric subunits of the omega2T29A dimer is weakened, as manifested by an increase in the dissociation constant from 3.2 microM for wt omega2 to 6.3 microM for omega2T29A. Denatured dimers are formed upon thermal unfolding of wt omega2 and omega2T29A at ca. 45 microM (D(n)<-->D(u)). Removal of 8 (omega2deltaN8), or even 18 (omega2deltaN18) N-terminal amino acids has no obvious effect either on the core structure or on the activity in comparison to wt omega2. The stability of variants omega2deltaN8 and omega2deltaN18 is similar to that of wt omega2, and their binding to operator DNA is not impaired. 相似文献
11.
Electrotransformation was used to introduce both plasmid and linear DNA into Streptococcus pyogenes. The method was optimized using strain NZ131, for which transformation frequencies up to 10(7) per micrograms of plasmid DNA were obtained. A linear fragment of DNA, containing the streptokinase gene (ska) in which an internal fragment had been replaced with an erythromycin resistance gene (erm), was transformed into strain NZ131 with a frequency of 10(3) per micrograms DNA. The introduction of linear DNA into S. pyogenes by electrotransformation should be useful for future genetic analyses as well as targeted gene replacement. 相似文献
12.
The studies of ParA and ParB dynamics reveal asymmetry of chromosome segregation in mycobacteria 下载免费PDF全文
Isabella Santi Djenet Bousbaine Jolanta Zakrzewska‐Czerwińska Dagmara Jakimowicz John McKinney 《Molecular microbiology》2017,105(3):453-468
Active segregation of bacterial chromosomes usually involves the action of ParB proteins, which bind in proximity of chromosomal origin (oriC) regions forming nucleoprotein complexes – segrosomes. Newly duplicated segrosomes are moved either uni‐ or bidirectionally by the action of ATPases – ParA proteins. In Mycobacterium smegmatis the oriC region is located in an off‐centred position and newly replicated segrosomes are segregated towards cell poles. The elimination of M. smegmatis ParA and/or ParB leads to chromosome segregation defects. Here, we took advantage of microfluidic time‐lapse fluorescent microscopy to address the question of ParA and ParB dynamics in M. smegmatis and M. tuberculosis cells. Our results reveal that ParB complexes are segregated in an asymmetrical manner. The rapid movement of segrosomes is dependent on ParA that is transiently associated with the new pole. Remarkably in M. tuberculosis, the movement of the ParB complex is much slower than in M. smegmatis, but segregation as in M. smegmatis lasts approximately 10% of the cell cycle, which suggests a correlation between segregation dynamics and the growth rate. On the basis of our results, we propose a model for the asymmetric action of segregation machinery that reflects unequal division and growth of mycobacterial cells. 相似文献
13.
14.
Characterization of a novel partition system encoded by the delta and omega genes from the streptococcal plasmid pSM19035 下载免费PDF全文
High segregational stability of the streptococcal plasmid pSM19035 is achieved by the concerted action of systems involved in plasmid copy number control, multimer resolution, and postsegregational killing. In this study, we demonstrate the role of two genes, delta and omega, in plasmid stabilization by a partition mechanism. We show that these two genes can stabilize the native pSM19035 replicon as well as other theta- and sigma-type plasmids in Bacillus subtilis. In contrast to other known partition systems, in this case the two genes are transcribed separately; however, they are coregulated by the product of the parB-like gene omega. Analysis of mutants of the parA-like gene delta showed that the Walker A ATPase motif is necessary for plasmid stabilization. The ParB-like product of the omega gene binds to three regions containing repeated WATCACW heptamers, localized in the copS (regulation of plasmid copy number), delta, and omega promoter regions. We demonstrate that all three of these regions can cause partition-mediated incompatibility. Moreover, our data suggest that each of these could play the role of a centromere-like sequence. We conclude that delta and omega constitute a novel type of plasmid stabilization system. 相似文献
15.
Molecular analysis of the replication region of the conjugative Streptococcus agalactiae plasmid pIP501 in Bacillus subtilis. Comparison with plasmids pAM beta 1 and pSM19035. 总被引:4,自引:2,他引:4 下载免费PDF全文
The large conjugative plasmid pIP501 was originally isolated from Streptococcus agalactiae. To study the molecular basis of pIP501 replication we determined the nucleotide sequence of a 2.2 kb DNA segment which is essential and sufficient for autonomous replication of pIP501 derived plasmids, in Bacillus subtilis cells. This region can be divided into two functionally discrete segments: a 496 bp region (oriR) that acts as an origin of replication, and a 1488 bp segment coding for an essential replication protein (RepR). The RepR protein, which has a molecular mass of 57.4 kDa, could complement in trans a thermosensitive replicon bearing the pIP501 origin. Chimeric Rep proteins and replicons were obtained by domain swapping between rep genes of closely related streptococcal plasmids belonging to the inc18 group (pIP501, pAM beta 1 and pSM19035). The chimeras were functional in B. subtilis. 相似文献
16.
Plasmid pCXC100 from the Gram-positive bacterium Leifsonia xyli subsp. cynodontis uses a type Ib partition system that includes a centromere region, a Walker-type ATPase ParA and a centromere-binding protein ParB for stable segregation. However, ParB shows no detectable sequence homology to any DNA-binding motif. Here, we study the ParB centromere interaction by structural and biochemical approaches. The crystal structure of the C-terminal DNA-binding domain of ParB at 1.4 Å resolution reveals a dimeric ribbon–helix–helix (RHH) motif, supporting the prevalence of RHH motif in centromere binding. Using hydroxyl radical footprinting and quantitative binding assays, we show that the centromere core comprises nine uninterrupted 9-nt direct repeats that can be successively bound by ParB dimers in a cooperative manner. However, the interaction of ParB with a single subsite requires 18 base pairs covering one immediate repeat as well as two halves of flanking repeats. Through mutagenesis, sequence specificity was determined for each position of an 18-bp subsite. These data suggest an unique centromere recognition mechanism by which the repeat sequence is jointly specified by adjacent ParB dimers bound to an overlapped region. 相似文献
17.
James A. Taylor Cesar L. Pastrana Annika Butterer Christian Pernstich Emma J. Gwynn Frank Sobott Fernando Moreno-Herrero Mark S. Dillingham 《Nucleic acids research》2015,43(2):719-731
The segregation of many bacterial chromosomes is dependent on the interactions of ParB proteins with centromere-like DNA sequences called parS that are located close to the origin of replication. In this work, we have investigated the binding of Bacillus subtilis ParB to DNA in vitro using a variety of biochemical and biophysical techniques. We observe tight and specific binding of a ParB homodimer to the parS sequence. Binding of ParB to non-specific DNA is more complex and displays apparent positive co-operativity that is associated with the formation of larger, poorly defined, nucleoprotein complexes. Experiments with magnetic tweezers demonstrate that non-specific binding leads to DNA condensation that is reversible by protein unbinding or force. The condensed DNA structure is not well ordered and we infer that it is formed by many looping interactions between neighbouring DNA segments. Consistent with this view, ParB is also able to stabilize writhe in single supercoiled DNA molecules and to bridge segments from two different DNA molecules in trans. The experiments provide no evidence for the promotion of non-specific DNA binding and/or condensation events by the presence of parS sequences. The implications of these observations for chromosome segregation are discussed. 相似文献
18.
Prokaryotic plasmids encode partitioning (par) loci involved in segregation of DNA to daughter cells at cell division. A functional fusion protein consisting of Walker-type ParA ATPase and green fluorescent protein (Gfp) oscillates back and forth within nucleoid regions with a wave period of about 20 minutes. A model is discussed which is based on cooperative non-specific binding of ParA to the nucleoid, and local ParB initiated generation of ParA oligomer degradation products, which act autocatalytically on the degradation reaction. The model yields self-initiated spontaneous pattern formation, based on Turing's mechanism, and these patterns are destroyed by the degradation products, only to initiate a new pattern at the opposite nucleoid region. A recurrent wave thus emerges. This may be a particular example of a more general class of pattern forming mechanisms, based on protein oligomerization upon a template (membranes, DNA a.o.) with resulting enhanced NTPase function in the oligomer state, which may bring the oligomer into an unstable internal state. An effector initializes destabilization of the oligomer to yield degradation products, which act as seeds for further degradation in an autocatalytic process. We discuss this mechanism in relation to recent models for MinDE oscillations in E.coli and to microtubule degradation in mitosis. The study points to an ancestral role for the presented pattern types in generating bipolarity in prokaryotes and eukaryotes. 相似文献
19.