首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma concentrations of luteinizing hormone (LH), prolactin and testosterone, and pituitary content of LH and prolactin, were measured in free-living starlings, Sturnus vulgaris , from hatching until 12 weeks of age.
Plasma LH concentrations were elevated in both sexes until four days after hatching, then they decreased. Throughout the period, plasma LH levels were low compared to those in breeding adults but were comparable to levels in post-breeding photorefractory adults. Pituitary LH content increased until 12 days after hatching, but this increase was due to physical growth during this period. Plasma prolactin concentration and pituitary prolactin content increased dramatically during the nestling period. The increase in pituitary prolactin content was in excess of that accounted for by increasing size. Plasma prolactin remained high during the immediate post-fledging period, but had started to decrease by 12 weeks after hatching. Plasma testosterone concentrations were lower than those in breeding adults, but generally higher than in post-breeding photorefractory adults. The gonads of both sexes remained regressed.
These results suggest that the reproductive system of nestling and juvenile starlings is in a similar state to that of post-breeding photorefractory adult starlings. The comparatively high levels of testosterone may reflect involvement in sexual differentiation.  相似文献   

2.
Seasonal breeding is associated with sequential increases in plasma luteinizing hormone (LH) and prolactin in the short-day breeding emu, and in long-day breeding birds that terminate breeding by the development of reproductive photorefractoriness. A model of the avian neuroendocrine photoperiodic reproductive response is proposed, incorporating a role for prolactin, to account for neuroendocrine mechanisms controlling both long- and short-day breeding. The breeding season terminates after circulating concentrations of prolactin increase above a critical threshold to depress gonadotropin releasing hormone (GnRH) neuronal and gonadotrope (LH) activity. Subsequently, photorefractoriness develops for prolactin secretion and for LH secretion, independently of high plasma prolactin. The breeding season in the emu is advanced compared with long-day breeders, because after photorefractiness for both LH and prolactin secretion is dissipated, plasma concentrations of both hormones increase to maximum values while days are still short.  相似文献   

3.
The seasonal changes in testicular weight in the blue fox were associated with considerable variations in plasma concentrations of LH, prolactin, androstenedione and testosterone and in FSH-binding capacity of the testis. An increase in LH secretion and a 5-fold increase in FSH-binding capacity were observed during December and January, as testis weight increased rapidly. LH levels fell during March when testicular weight was maximal. Plasma androgen concentrations reached their peak values in the second half of March (androstenedione: 0.9 +/- 0.1 ng/ml: testosterone: 3.6 +/- 0.6 ng/ml). A small temporary increase in LH was seen in May and June after the breeding season as testicular weight declined rapidly before levels returned to the basal state (0.5-7 ng/ml) that lasted until December. There were clear seasonal variations in the androgenic response of the testis to LH challenge. Plasma prolactin concentrations (2-3 ng/ml) were basal from August until the end of March when levels rose steadily to reach peak values (up to 13 ng/ml) in May and June just before maximum daylength and temperature. The circannual variations in plasma prolactin after castration were indistinguishable from those in intact animals, but LH concentrations were higher than normal for at least 1 year after castration.  相似文献   

4.
The hypothalamic-pituitary-gonadal system was investigated in drug free young men with either mania or acute schizophrenia and in age matched controls by measuring, at frequent intervals during a 17 hour "neuroendocrine day," plasma concentrations of luteinising hormone (LH), follicle stimulating hormone, prolactin, testosterone, sex hormone binding globulin (SHBG), and cortisol. Plasma LH in mania was significantly increased compared with the control value at all time periods and increased in the morning and evening samples compared with values in the schizophrenic patients. Plasma prolactin and cortisol concentrations were significantly greater in mania and schizophrenia compared with control values at several times during the day, but there were no significant between group differences in plasma testosterone or SHBG. These results show that in young men with mania there is a major disturbance in the central mechanisms that control the release of LH, the control of prolactin and cortisol secretion is abnormal in mania and acute schizophrenia, and plasma LH concentrations may provide a useful hormonal diagnostic test for mania.  相似文献   

5.
We tested the hypothesis that adult male rufous-winged sparrows, Aimophila carpalis, exhibit relative photorefractoriness. This condition results in partial loss of sensitivity to photoperiod as a reproductive stimulus after prolonged exposure to long photoperiods and is similar to the mammalian condition called photoperiodic memory. Captive birds were exposed either to 8 h of light/16 h of dark per day (8L) or to 16L for 11 weeks and were then exposed either to 8L, 13L, 14L, or 16L. Testicular diameter, plasma luteinizing hormone (LH), and plasma prolactin (PRL) were measured to assess reproductive system activity in response to photostimulation. In free-living birds, testicular diameter, plasma LH, and PRL were compared in birds caught in September in a year when birds were breeding and in a year when birds were not breeding to further evaluate the role of PRL in the termination of seasonal breeding. Testes completely developed after transfer from 8L to 14L or to 16L and partially developed after transfer from 8L to 13L. However, after 11 weeks of 16L exposure, transfer to 14L caused partial regression and transfer to 13L caused complete regression of the testes. Plasma LH increased in all birds that were transferred from 8L to a longer photoperiod. PRL showed a weak response to longer photoperiod treatment and was elevated in birds after chronic 16L exposure in comparison to birds exposed to chronic 8L. These data indicate that male rufous-winged sparrows lose sensitivity to photoperiod after long photoperiod exposure consistent with the relative photorefractoriness and photoperiodic memory models. Lower PRL in birds that developed testes on 13L and 14L compared to birds that regressed testes on 13L and 14L are consistent with the hypothesis that PRL regulates relative photorefractoriness. However, PRL does not appear to regulate interannual differences in the timing of testicular regression.  相似文献   

6.
In a number of species of seasonally breeding marsupial, the male is fertile throughout the year but there is a marked seasonal change in weight of the accessory sexual glands. In this study, body weight, prostate, epididymis and testis weights and plasma concentrations of testosterone, LH and prolactin and pituitary content of LH and prolactin were determined in male Bennett's wallabies shot at 1–2 month intervals over a period of 17 months. There was a highly significant increase in prostate weight which was coincident with the breeding season for this species. A small but significant increase in testis weight was also observed but epididymis weight remained unchanged. Plasma testosterone concentrations were significantly increased at a time coincident with the increase in prostate weight. Plasma prolactin and LH concentrations were low in most animals and remained unchanged during the study. In contrast, pituitary prolactin and LH contents showed highly significant changes, with increasing and peak hormone content preceding maximum prostate weight and plasma testosterone concentrations by several months. While these latter results suggest a role for prolactin and LH in the seasonal control of the reproductive organs in the male wallaby, a more intensive study of the pattern of secretion of these hormones and possibly more sensitive hormone assays are required to understand their relative roles in regulating the annual cycle of prostate growth.  相似文献   

7.
Sexual behavior and the increase in plasma hormone levels of LH, prolactin, and testosterone associated with sexual behavior were examined in three age groups of sexually naive male rats. The two younger groups (5- and 11-month-old) mated normally and their behavioral latencies decreased significantly following sexual experience. Both plasma testosterone and LH concentrations increased significantly following entrance of a receptive female into the mating arena. Plasma prolactin levels rose but not significantly. However, the 27-month-old rats neither mated nor showed an increase in the three plasma hormone concentrations during exposure to a receptive female. Only basal testosterone levels were significantly lower than those of the younger animals. Low testosterone levels possibly contributed to deficiencies in both behavior and its associated hormone release. The monitoring of sexual behavior was facilitated by a computer, programmed to record, store, and analyze behavioral events.  相似文献   

8.
We investigated reproductive regulation in male Rufous-winged Sparrows, Aimophila carpalis, a Sonoran Desert passerine that breeds after irregular summer rains. Field and captive data demonstrate that increased photoperiod stimulates testicular development in March and maintains it until early September. Free-living birds caught in July and placed on captive long days (16L: 8D) maintained developed testes for up to 7 months, and free-living birds caught in September, during testicular regression, redeveloped testes when placed on captive long days, indicating that these birds were still photosensitive. Captive birds on long days maintained testicular development when exposed to temperatures mimicking those occurring during regression in free-living birds. In free-living birds, testicular development was observed during spring and summer, but unless this was associated with rainfall, breeding (indicated by juveniles) did not occur. Large increases in plasma luteinizing hormone (LH) in free-living males were correlated with heavy rainfall in July/August, when the birds bred, and in November, when they did not breed. In captive birds, plasma LH concentrations were unresponsive to photoperiodic changes, but may have responded to social cues. Plasma prolactin concentrations were directly correlated with photoperiod in free-living birds, but an effect of photoperiod on prolactin secretion was not seen in captive birds. It is concluded that male Rufous-winged Sparrows use long photoperiods to stimulate and maintain testicular development, but exposure to long photoperiods does not terminate breeding by inducing absolute photorefractoriness. The specific timing of reproductive behaviors is apparently determined by elevated plasma LH coinciding with long day stimulated gonad development.  相似文献   

9.
Effects of a xenobiotic estrogen, bisphenol A (BPA), on reproductive functions were investigated using adult male rats. BPA was dissolved into sesame oil and injected s.c. every day (1 mg/rat) for 14 days. Animals were killed by decapitation after the final administration of BPA, and the trunk blood, pituitary, and testes were collected. Plasma concentrations of prolactin were dramatically increased and pituitary contents of prolactin were slightly increased in the BPA group compared to the control group. Plasma concentrations of testosterone were decreased and plasma concentrations of LH were increased in BPA-treated rats compared to control rats. Testicular contents of inhibin were decreased in BPA-treated rats compared to control rats, although plasma concentrations of inhibin were not changed after administration of BPA. The testicular response to hCG for progesterone and testosterone release was decreased in BPA-treated rats. Administration of BPA did not change the pituitary response to luteinizing hormone-releasing hormone (LH-RH) in castrated male rats treated with testosterone. Male sexual behavior also was not changed as a result of BPA treatment. These results suggest that BPA directly inhibits testicular functions and the increased level of plasma LH is probably due to a reduction in the negative feedback regulation by testosterone. The testis is probably a more sensitive site for BPA action than the hypothalamus-pituitary axis.  相似文献   

10.
The ontogenetic changes that occur in secretory patterns of growth hormone (GH), prolactin (Prl), luteinizing hormone (LH), and testosterone (T) in rams maintained in constant photoperiod were examined. Nine ram lambs were moved to individual pens in a controlled environment (12L: 12D cycle; 18-24 degrees C temperature) at 66 days of age. Blood samples were collected via indwelling cannulae at 15-min intervals for an 8-h period at 80, 136, 192, 248, and 304 days of age. Plasma concentrations of GH, Prl, LH, and T were quantitated and parameters of the secretory patterns determined. Mean concentration of GH tended to decline with age, probably because the amplitude of secretory peaks was significantly reduced with age. There were no age-associated changes in basal concentration of GH or incidence of GH peaks. There was an increase in Prl secretion (as estimated by mean concentration) at 136 and after 248 days of age. Significant age-associated changes occurred in all parameters of LH and T secretion. At the younger ages, testosterone concentrations were low and LH concentrations were elevated. At the older ages the relationship was reversed, with LH low and testosterone high. There were no significant correlations between frequency and magnitude of LH and T peaks. The significant correlations present among parameters of LH and T secretion were between basal concentration of LH and overall mean concentration and basal concentration of T. These results suggest that LH may not be the sole tropic stimulator of acute T secretion.  相似文献   

11.
The effect of thyroid function on regulation of seasonal reproduction was investigated in three red deer stags thyroidectomized (THX) in summer (January 1988) in comparison with five thyroid-intact controls. Responses of luteinizing hormone (LH) and testosterone to a bolus injection of 10 micrograms gonadotrophin-releasing hormone (GnRH) were tested in July, October, December, February and April. Blood samples were collected at weekly intervals from December 1987 to June 1989 for measurement of testosterone, triiodothyronine (T3) and prolactin concentrations. Testis diameters were measured every 2 weeks. In October 1988 (spring), plasma LH concentrations of control stags were less responsive (P less than 0.01) to stimulation by GnRH than those of THX stags; plasma testosterone concentrations and testis diameters were low and there was no increase in plasma testosterone concentrations after injection of GnRH in control stags during October or December (spring, early-summer). In contrast, THX stags maintained a testosterone response (P less than 0.01) in these 2 months and did not exhibit any signs of a seasonal lack of reproductive activity at this time of year. Control stags cast antlers in spring whereas THX stags maintained hard antlers throughout the study. Concentrations of plasma T3 were not detected in THX stags from June 1988 onwards, but exhibited a seasonal pattern in control stags, with low concentrations during autumn and winter (April to July) and high concentrations in spring and summer (August to February). There was no effect of thyroidectomy on the seasonal pattern of prolactin secretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The Challenge Hypothesis postulates that male vertebrates can respond to social challenges, such as simulated territorial intrusions, by rapidly increasing their concentrations of plasma androgens, such as testosterone (T). This increase may facilitate the expression of aggressive behavior and lead to persistence of this behavior even after withdrawal of the challenge, thus potentially promoting territoriality and the probability of winning future challenges. The scope of the Challenge Hypothesis was tested by exposing free-ranging male Cassin's Sparrows, Peucaea cassinii, to conspecific song playback (SPB) at the beginning of the vernal nesting season. Exposure to SPB stimulated aggressive behavior but did not influence plasma T. Furthermore, plasma T did not correlate with the duration of exposure to SPB, and the behavioral response to SPB did not differ in males that were challenged a second time shortly after the first challenge. As birds were investigated at a stage of their reproductive cycle when plasma T is presumably seasonally high due to photostimulation, the lack of hormonal response to SPB may have been due to the hypothalamus-pituitary-gonadal axis secreting hormones at maximum rates. This was not the case, however, because administration of gonadotropin-releasing hormone I rapidly stimulated the secretion of luteinizing hormone (LH) and T, and treatment with ovine LH rapidly stimulated T secretion.  相似文献   

13.
Male lambs were utilized in an experiment designed to evaluate the effects of cranial cervical ganglionectomy (GX), castration and age on hormone secretion profiles. Blood plasma samples were collected at hourly intervals for 24 hours from 24 lambs aged 101 days and 20 lambs aged 277 days, then assayed for concentrations of luteinizing hormone (LH), testosterone and prolactin. At both ages pulsatile secretion of LH and testosterone was confirmed, but no circadian rhythm of LH testosterone or prolactin secretion was detected. Castration elevated LH levels significantly at both ages. GX and its interaction with castration had no effect on LH secretion at 101 days, but at 277 days these factors were significant, largely due to elevated levels being recorded from GX castrates. GX did not affect testosterone levels in entire animals at either age, while plasma from castrates contained no detectable testosterone. GX reduced prolactin concentrations at 101 days of age (summer) but elevated them at 277 days of age (winter). Castration and the interaction of castration with GX had no significant influence on plasma prolactin levels at either age. This study confirmed that the pineal gland of sheep is involved in the regulation of prolactin secretion, and probably influences LH secretion as well.  相似文献   

14.
The reproductive endocrinology of the Wandering Albatross Diomedea exulans was studied at South Georgia to investigate the potential endocrine correlates of biennial breeding and of the acquisition of sexual maturity. Gonads of breeding birds and of known-age immature birds of both sexes were examined by laparoscopy throughout the period that they were at the nest site. Blood samples, subsequently analysed to determine concentrations of luteinizing hormone (LH), prolactin, progesterone, testosterone and oestradiol-17/i, were obtained from samples of breeding birds of both sexes at regular intervals from first arrival until the chicks fledged nearly a year later. Before laying in December, breeding birds had mature testes and ovarian follicles and high concentrations of LH, prolactin and sex steroids. Gonadal regression and a rapid drop in hormone levels (except for LH in females) occurred in early incubation (January). Testes (and follicles to a lesser extent) enlarged in mid-incubation, coinciding with high levels of LH and increases in prolactin and testosterone. Gonads finally regressed completely near hatching time. LH, prolactin and testosterone remained at low levels throughout chick rearing (April to November), but females had several periods of active progesterone and oestradiol secretion, and progesterone was detectable in males only late in the chick-rearing period. Although some changes in hormone levels are difficult to explain, the patterns are fairly typical of temperate birds. The persistence of progesterone secretion in both female breeders and non-breeding ‘immature’ birds is viewed as part of a mechanism inhibiting an ovary from becoming vitellogenic. Although testis size and testosterone concentrations increased with age in immature males (of ages 4–10 years), birds of 5 years and older are probably physiologically mature, even though breeding does not start until they are 7 years of age and only half an age group has bred by an age of 11 years. Immature females (of age 4–7 years) had undeveloped follicles, very low oestradiol concentrations but high progesterone levels, providing further support for the role of this hormone in inhibiting gonadotropin secretion. The condition of the female is therefore probably decisive in determining when a pair first attempts to breed but it is unknown what factors initiate normal ovarian development.  相似文献   

15.
The effect of prolactin (Prl) on gonadotropin secretion, testicular luteinizing hormone (LH)/human chorionic gonadotropin (hCG) receptors, and testosterone (T) production by isolated Leydig cells has been studied in 60-day-old rats treated for 4 days, 4 and 8 weeks with sulpiride (SLP), a dopaminergic antagonist, or for 4 days and 4 weeks with bromocriptine (CB), a dopaminergic agonist. Plasma Prl concentrations were significantly greater in the SLP groups (204 +/- 6 ng/ml) and lower in the CB groups (3.0 +/- 0.2 ng/ml) than those measured in the control groups (54 +/- 6 ng/ml). The plasma concentrations of gonadotropin were not affected by a 4-day treatment with SLP or CB, nor were they after a 4-week treatment with CB. However, the hyperprolactinemia induced by an 8-week treatment with SLP was associated with a reduced secretion of gonadotropin (LH, 16 +/- 4 vs. 35 +/- 6 ng/ml; FSH, 166 +/- 12 vs. 307 +/- 14 ng/ml). In SLP-induced hyperprolactinemia, a 30% increase in the density of the LH/hCG testicular binding sites was observed (178 +/- 12 fmol/mg protein), whereas a 60% decrease was measured in hypoprolactinemia (55 +/- 5 vs. control 133 +/- 5 fmol/mg protein). Plasma T levels were increased in 4-day and 4-week hyperprolactinemic animals (4.3 +/- 0.4 and 3.9 +/- 0.4 ng/ml, respectively), but returned to normal levels in the 8-week group (3.0 +/- 0.5 vs. C: 2.3 +/- 0.2 ng/ml). No T modifications were observed in hypoprolactinemic animals. Two distinct populations of Leydig cells (I and II) were obtained by centrifugation of dispersed testicular cells on a 0-45% continuous Metrizamide gradient. Both possess LH/hCG binding sites. However, the T production from Leydig cells of population II increased in the presence of hCG, whereas that of cell population I which also contain immature germinal cells did not respond. The basal and stimulated T secretions from cell populations I and II obtained from CB-treated animals were similar to controls, whereas from 4 days to 8 weeks of hyperprolactinemia, basal and hCG induced T productions from cell population II decreased progressively. These data show that hyperprolactinemia causes, in a time-dependent manner, a trophic effect on the density of LH/hCG testicular receptors; reduces basal and hCG-stimulated T production from isolated Leydig cells type II; and results in an elevated plasma T concentration which decreases with time. The latter suggests a slower T catabolism and/or an impaired peripheral conversion of T into 5 alpha-dihydrotestosterone (DHT). Although hypoprolactinemia is associated with a marked reduction in testicular LH receptors, it does not affect T production.  相似文献   

16.
Four groups of 10 male starlings were transferred from short daylengths (8 h light/day) to long daylengths (18 h light/day), which caused the tests to develop rapidly to maximum size and then to decrease to minimal size as birds became photorefractory. Birds were surgically thyroidectomized at 8, 16 or 28 weeks. A fourth group was left intact. Testicular volume and plasma FSH and prolactin concentrations were measured. After 42 weeks all birds were castrated and plasma FSH was measured during the next 6 weeks. Testicular growth began in all thyroidectomized birds between 4 and 8 weeks after thyroidectomy. By 42 weeks, the testes of all thyroidectomized birds were large, whereas those of intact birds were still of minimal size. Plasma FSH concentrations remained low in all birds and plasma prolactin values, originally elevated by long daylengths, decreased at a similar rate in thyroidectomized and intact birds. After castration at 42 weeks, plasma FSH values increased rapidly in all thyroidectomized birds but remained low in non-thyroidectomized birds. The results demonstrate that thyroidectomy of photorefractory starlings does not induce immediate testicular growth but may initiate a process which eventually terminates photorefractoriness in a way similar to that caused by return to short daylengths.  相似文献   

17.
This work analyzes the effect of calorie restriction on the 24 h variation of pituitary-testicular function in young male Wistar rats by measuring the circulating levels of prolactin, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone. Control animals were provided an equilibrium calorie diet and the experimental animals a calorie-restriction diet equivalent to 66% of food restriction for four weeks starting on day 35 of life. Different groups of control and experimental rats were killed at 6 h intervals around the clock, beginning 1 h after light on (HALO). Compared to the control animals, the mean secretion of prolactin was augmented and that of LH and testosterone decreased in calorie-restricted rats, whereas FSH release remained unchanged. Significant changes in the 24 h secretory pattern of circulating prolactin, LH, and testosterone occurred in the calorie-restricted rats. These include the appearance of a second maximum of plasma prolactin at 21 HALO, blunting of the LH peak seen at 13 HALO, and phase-shift of the testosterone peak from 13 HALO in controls to 17 HALO in calorie-restricted rats. The significant positive correlation between individual LH and testosterone levels found in controls was no longer observed in calorie-restricted rats. Availability of nutrients presumably affects the mechanisms that modulate the circadian variation of the pituitary-gonadal axis in growing male rats.  相似文献   

18.
Plasma levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin were measured by radioimmunoassay in plasma samples collected from free-living starlings, Sturnus vulgaris , trapped in nest-boxes. By leaving some nest-boxes undisturbed, and repeatedly destroying nests in others, birds from a single-brooded population were trapped whilst nest-building, incubating or feeding nestlings, at different times throughout the normal breeding season. In both males and females trapped whilst nest-building, plasma LH and prolactin levels increased progressively from mid March until late May. In females sampled during incubation, LH and FSH levels were high throughout May but decreased in early June. Prolactin levels were highest in late May. In both males and females trapped during mid May, LH levels were highest in these birds which were nest-building at this time and lowest in those feeding nestlings, FSH did not change significantly, and prolactin was low in those birds which were nest-building and high in those incubating or feeding nestlings. In female starlings from a double-brooded population, levels of LH and FSH were much lower whilst feeding the second brood than when feeding the first brood, whereas prolactin levels were similar. The results suggest that incubation and feeding behaviour inhibit the increase in LH secretion caused by increasing daylength, but stimulate prolactin secretion in excess of that caused by increasing daylength.  相似文献   

19.
The influence of 11 days at moderate altitude (2,000 m) combined with exercise on plasma concentration of testosterone, FSH (follicle-stimulating hormone), LH (luteinizing hormone), cortisol, aldosterone, and renin activity was studied in ten healthy subjects. Within 48 h of arrival at moderate altitude a significant increase in testosterone was found whereas FSH had decreased significantly and LH showed a tendency to decrease. Cortisol increased significantly at the beginning and reached a maximum at the end of altitude exposure. The plasma aldosterone level rose continuously and on the last day of altitude was significantly elevated. Plasma renin activity showed a tendency to decrease. On return to low land all measured parameters returned to base line values within 2 days. The findings of increases in plasma levels of aldosterone and testosterone (and serum T3 and T4, as reported by others) are in contrast to the previously found decrease of urinary excretion of all these hormones. This appears to be a distinct dissociation of serum levels of adrenal (and thyroid) hormones from their urinary excretion. The observed increase in plasma aldosterone is probably mediated through ACTH and the rise in plasma potassium, since plasma renin activity showed an opposite trend. The rise in plasma testosterone is probably of adrenal origin since plasma gonadotropins declined simultaneously. The increase of plasma levels of glucocorticoids, mineralocorticoids, and androgens after an ascent from 600 m to 2,000 m above sea level is compatible with an ACTH-mediated stimulation of the entire adrenal cortex and/or a diminished elimination of adrenal steroids: The concomitant fall of FSH, LH, and plasma renin would then be a consequence of a direct negative feedback inhibition of these hormones.  相似文献   

20.
The effects of artificial photoperiod, temperature, and long-term testosterone treatment on testicular luteinizing hormone (LH) binding were studied in adult male Djungarian hamsters. In hamsters transferred to long-day (LD; 16 hr light, 8 hr dark) photoperiod 8 weeks after adaptation in short-day (SD; 8 hr light, 16 hr dark) photoperiod of 25 degrees C, testicular growth was associated with an increase in the total LH binding per two testes and a decrease in LH binding per unit testicular weight. Plasma testosterone levels reached a peak 47 days after transfer to LD and tended to decrease thereafter, while the testes continued growing. In contrast, when hamsters reared under LD conditions at 25 degrees C for 12 weeks were transferred to SD, testicular regression was associated with a decrease in plasma testosterone and the total LH binding per two testes and an increase in LH binding per unit testicular weight. A significant decrease in LH binding per unit weight compared to SD controls was observed in those hamsters exposed to SD with continuous testosterone treatment. The testosterone treatment tended to induce decrease in the total LH binding. Scatchard plot analyses of the binding suggested that changes in LH binding were due to changes in the number of binding sites. When sexually mature male hamsters were subjected for 8 weeks to two different ambient temperatures (7 degrees C and 25 degrees C) and photoperiods (LD and SD), the difference between the two temperature groups was statistically not significant regarding the weights of testes, epididymides, and prostates; plasma testosterone levels; and LH binding in either LD or SD group. These results suggest that photoperiod is a more important environmental factor than temperature for the regulation of testicular activity and LH receptors and that testosterone reduces the number of LH receptors per unit testicular weight in adult male Djungarian hamsters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号