首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X Hu  G Dahl 《FEBS letters》1999,451(2):113-117
Gap junction channels span the membranes of two adjacent cells and allow the gated transit of molecules as large as second messengers from cell to cell. The structure of the gap junction channel pore is not resolved. For identification of pore determinants we used a chimera of two connexins, cx46 and cx32E(1)43, that form membrane channels with distinct unit conductances and channel kinetics. Exchange of the first transmembrane segment (M1) between these connexins resulted in a chimera that exhibited most of the channel properties of the M1 donor, including single channel conductance, channel kinetics, and the preference to dwell at a subconductance level. The M1 segment thus appears to be an important determinant of conductance and gating properties of connexin channels.  相似文献   

2.
Ma M  Dahl G 《Biophysical journal》2006,91(1):151-163
The physiological function of gap junction channels goes well beyond their initially discovered role in electrical synchronization of excitable cells. In most tissues, gap junction cells facilitate the exchange of second messengers and metabolites between cells. To test which parts of the channels formed by connexins determine the exclusion limit for the transit of molecules in the size range of second messengers and metabolites a domain exchange approach was used in combination with an accessibility assay for nonelectrolytes and flux measurements. The experimental results suggest that two open hemichannel forming connexins, Cx46 and Cx32E(1)43, differ in accessibility and permeability. Sucrose is at the exclusion limit for Cx46 channels whereas sorbitol is at the exclusion limit for Cx32E(1)43 channels. In chimeras between these connexins, where the first transmembrane segment M1 is exchanged, the exclusion limits correlate with those of the M1 donor. The same segregation was found in a separate study for the unitary conductance of the channels. Thus, conductance and permeability/accessibility of the channels cosegregate with M1.  相似文献   

3.
Gap junctions are collections of intercellular channels composed of structural proteins called connexins (Cx). We have examined the functional interactions of the three rodent connexins present in the lens, Cx43, Cx46, and Cx50, by expressing them in paired Xenopus oocytes. Homotypic channels containing Cx43, Cx46, or Cx50 all developed high conductance. heterotypic channels composed of Cx46 paired with either Cx43 or Cx50 were also well coupled, whereas Cx50 did not form functional channels with Cx43. We also examined the functional response of homotypic and heterotypic channels to transjunctional voltage and cytoplasmic acidification. We show that all lens connexins exhibited sensitivity to cytoplasmic acidification as well as to voltage, and that voltage-dependent closure of heterotypic channels for a given connexin was dramatically influenced by its partner connexins in the adjacent cell. Based on the observation that Cx43 can discriminate between Cx46 and Cx50, we investigated the molecular determinants that specify compatibility by constructing chimeric connexins from portions of Cx46 and Cx50 and testing them for their ability to form channels with Cx43. When the second extracellular (E2) domain in Cx46 was replaced with the E2 of Cx50, the resulting chimera could no longer form heterotypic channels with Cx43. A reciprocal chimera, where the E2 of Cx46 was inserted into Cx50, acquired the ability to functionally interact with Cx43. Together, these results demonstrate that formation of intercellular channels is a selective process dependent on the identity of the connexins expressed in adjacent cells, and that the second extracellular domain is a determinant of heterotypic compatibility between connexins.  相似文献   

4.
It has been suggested that the opening of non-junctional connexin 43 (Cx43) hemichannels may play a role in cell physiology, but some workers doubt the reality of hemichannel openings. Here we show data on unitary conductance and voltage gating properties demonstrating that Cx43 hemichannels can open. Membrane depolarization > +60 mV induced single hemichannel currents in HeLa cells expressing Cx43 or Cx43 with enhanced green fluorescent protein attached to the carboxy terminal (Cx43-EGFP). The conductance of single hemichannels was approximately 220 pS, about twice that of the cell-cell channels. Cx43 and Cx43-EGFP hemichannels exhibited slow transitions (>5 ms) between closed and fully open states. Cx43 hemichannels also exhibited fast transitions (<1 ms) between the fully open state and a substate of approximately 75 pS. Similar gating was described for their respective cell-cell channels. No comparable single channel activity was detected in the parental (nontransfected cells) or HeLa cells expressing Cx43 fused at the amino terminal with EGFP (EGFP-Cx43). The latter chimera was inserted into the surface and formed plaques, but did not express functional hemichannels or cell-cell channels. These data convincingly demonstrate the opening of Cx43 hemichannels.  相似文献   

5.
Intercellular channels formed of members of the gene family of connexins (Cxs) vary from being substantially cation selective to being anion selective. We took advantage of the ability of Cx46 to function as an unopposed hemichannel to examine the basis of Cx charge selectivity. Previously we showed Cx46 hemichannels to be large pores that predominantly conduct cations and inwardly rectify in symmetric salts, properties suggesting selectivity is influenced by fixed negative charges located toward the extracellular end of the pore. Here we demonstrate that high ionic strength solutions applied to the extracellular, but not the intracellular, side of Cx46 hemichannels substantially reduce the ratio of cation to anion permeability. Substitution of the first extracellular loop (E1) domain of Cx32, an anion-preferring Cx, reduces conductance, converts Cx46 from cation to anion preferring, and changes the I-V relation form inwardly to outwardly rectifying. These data suggest that fixed negative charges influencing selectivity in Cx46 are located in E1 and are substantially reduced and/or are replaced with positive charges from the Cx32 E1 sequence. Extending studies to Cx46 cell-cell channels, we show that they maintain a strong preference for cations, have a conductance nearly that expected by the series addition of hemichannels, but lack rectification in symmetric salts. These properties are consistent with preservation of the fixed charge region in E1 of hemichannels, which upon docking, become symmetrically placed near the center of the cell-cell channel pore. Furthermore, heterotypic cell-cell channels formed by pairing Cx46 with Cx32 or Cx43 rectify in symmetric salts in accordance with the differences in the charges we ascribed to E1. These data are consistent with charged residues in E1 facing the channel lumen and playing an important role in determining Cx channel conductance and selectivity.  相似文献   

6.
It has been suggested that the opening of non-junctional connexin 43 (Cx43) hemichannels may play a role in cell physiology, but some workers doubt the reality of hemichannel openings. Here we show data on unitary conductance and voltage gating properties demonstrating that Cx43 hemichannels can open. Membrane depolarization > +60 mV induced single hemichannel currents in HeLa cells expressing Cx43 or Cx43 with enhanced green fluorescent protein attached to the carboxy terminal (Cx43-EGFP). The conductance of single hemichannels was ~220 pS, about twice that of the cell-cell channels. Cx43 and Cx43-EGFP hemichannels exhibited slow transitions (>5 ms) between closed and fully open states. Cx43 hemichannels also exhibited fast transitions (<1 ms) between the fully open state and a substate of ~75 pS. Similar gating was described for their respective cell-cell channels. No comparable single channel activity was detected in the parental (nontransfected cells) or HeLa cells expressing Cx43 fused at the amino terminal with EGFP (EGFP-Cx43). The latter chimera was inserted into the surface and formed plaques, but did not express functional hemichannels or cell-cell channels. These data convincingly demonstrate the opening of Cx43 hemichannels.  相似文献   

7.
Gap junction (GJ) channels provide direct passage for ions and small molecules to be exchanged between neighbouring cells and are crucial for many physiological processes. GJ channels can be gated by transjunctional voltage (known as Vj-gating) and display a wide range of unitary channel conductance (γj), yet the domains responsible for Vj-gating and γj are not fully clear. The first extracellular domain (E1) of several connexins has been shown to line part of their GJ channel pore and play important roles in Vj-gating properties and/or ion permeation selectivity. To test roles of the E1 of Cx50 GJ channels, we generated a chimera, Cx50Cx36E1, where the E1 domain of Cx50 was replaced with that of Cx36, a connexin showing quite distinct Vj-gating and γj from those of Cx50. Detailed characterizations of the chimera and three point mutants in E1 revealed that, although the E1 domain is important in determining γj, the E1 domain of Cx36 is able to effectively function within the context of the Cx50 channel with minor changes in Vj-gating properties, indicating that sequence differences between the E1 domains in Cx36 and Cx50 cannot account for their drastic differences in Vj-gating and γj. Our homology models of the chimera and the E1 mutants revealed that electrostatic properties of the pore-lining residues and their contribution to the electric field in the pore are important factors for the rate of ion permeation of Cx50 and possibly other GJ channels.  相似文献   

8.
Tong JJ  Liu X  Dong L  Ebihara L 《Biophysical journal》2004,87(4):2397-2406
Cx46 and Cx50 are coexpressed in lens fiber cells where they form fiber-fiber gap junctions. Recent studies have shown that both proteins play a critical role in maintaining lens transparency. Although both Cx46 and Cx50 (or its chicken ortholog, Cx45.6) show a high degree of sequence homology, they exhibit marked differences in gap junctional channel gating, unitary gap junctional channel conductance, and hemichannel gating. To better understand which regions of the protein are responsible for these functional differences, we have constructed a series of chimeric Cx46-Cx45.6 gap junctional proteins in which a single transmembrane or intracellular domain of Cx45.6 was replaced with the corresponding domain of Cx46, expressed them in Xenopus oocyte pairs or N2A cells, and examined the resulting gap junctional conductances. Our results showed that four out of six of the chimeras induced high levels of gap junctional coupling. Of these chimeras, only Cx45.6-46NT showed significant changes in voltage-dependent gating properties. Exchanging the N-terminus had multiple effects. It slowed the inactivation kinetics of the macroscopic junctional currents so that they resembled those of Cx46, reduced the voltage sensitivity of the steady-state junctional conductance, and decreased the conductance of single gap junctional channels. Additional point mutations identified a uniquely occurring arginine in the N-terminus of Cx46 as the main determinant for the change in voltage-dependent gating.  相似文献   

9.
One consequence of the diversity in gap junction structural proteins is that cells expressing different connexins may come into contact and form intercellular channels that are mixed in connexin content. We have systematically examined the ability of adjacent cells expressing different connexins to communicate, and found that all connexins exhibit specificity in their interactions. Two extreme examples of selectivity were observed. Connexin40 (Cx40) was highly restricted in its ability to make heterotypic channels, functionally interacting with Cx37, but failing to do so when paired with Cx26, Cx32, Cx43, Cx46, and Cx50. In contrast, Cx46 interacted well with all connexins tested except Cx40. To explore the molecular basis of connexin compatibility and voltage gating, we utilized a chimera consisting of Cx32 from the N-terminus to the second transmembrane domain, fused to Cx43 from the middle cytoplasmic loop to the C-terminus. The chimeric connexin behaved like Cx43 with regard to selectivity and like Cx32 with regard to voltage dependence. Taken together, these results demonstrate that the second but not the first extracellular domain affects compatibility, whereas voltage gating is strongly influenced by sequences between the N-terminus and the second transmembrane domain.  相似文献   

10.
The structure of the pore is critical to understanding the molecular mechanisms underlying selective permeation and voltage-dependent gating of channels formed by the connexin gene family. Here, we describe a portion of the pore structure of unapposed hemichannels formed by a Cx32 chimera, Cx32*Cx43E1, in which the first extracellular loop (E1) of Cx32 is replaced with the E1 of Cx43. Cysteine substitutions of two residues, V38 and G45, located in the vicinity of the border of the first transmembrane (TM) domain (TM1) and E1 are shown to react with the thiol modification reagent, MTSEA–biotin-X, when the channel resides in the open state. Cysteine substitutions of flanking residues A40 and A43 do not react with MTSEA–biotin-X when the channel resides in the open state, but they react with dibromobimane when the unapposed hemichannels are closed by the voltage-dependent “loop-gating” mechanism. Cysteine substitutions of residues V37 and A39 do not appear to be modified in either state. Furthermore, we demonstrate that A43C channels form a high affinity Cd2+ site that locks the channel in the loop-gated closed state. Biochemical assays demonstrate that A43C can also form disulfide bonds when oocytes are cultured under conditions that favor channel closure. A40C channels are also sensitive to micromolar Cd2+ concentrations when closed by loop gating, but with substantially lower affinity than A43C. We propose that the voltage-dependent loop-gating mechanism for Cx32*Cx43E1 unapposed hemichannels involves a conformational change in the TM1/E1 region that involves a rotation of TM1 and an inward tilt of either each of the six connexin subunits or TM1 domains.  相似文献   

11.
Currents from gap junction channels were recorded from pairs of astrocytes in primary culture using the double whole-cell recording technique. In weakly coupled pairs, single-channel events could be resolved without pharmacological uncoupling treatment. Under these conditions, unitary conductance was 56 +/- 7 pS, and except for multiples of this value, no other level of conductance was observed consistently. To characterize the type of junctional protein constituting astrocyte gap junction channels, immunological and biochemical experiments were carried out on the same material. Specific cDNA probes for three connexins identified in mammals (Cx26, Cx32, and Cx43) showed that only Cx43 mRNA was expressed in cultured astrocytes. The presence of Cx43 protein in cultured astrocytes was demonstrated by immunoblotting, immunofluorescence, and immunogold labeling using anti-peptide antibodies specific to Cx43. These results strongly suggest that gap junctions in astrocytes have a 50-60 pS unitary conductance associated with channels composed of Cx43 protein.  相似文献   

12.
A Revilla  C Castro    L C Barrio 《Biophysical journal》1999,77(3):1374-1383
Most gap junction channels are sensitive to the voltage difference between the two cellular interiors, termed the transjunctional voltage (V(j)). In several junctions, the conductance transitions induced by V(j) show more than one kinetic component. To elucidate the structural basis of the fast and slow components that characterize the V(j )dependence of connexin-32 (Cx32) and connexin-43 (Cx43) junctions, we created deletions of both connexins, where most of the carboxy-terminal (CT) domain was removed. The wild-type and "tailless" mutants were expressed in paired Xenopus oocytes, and the macroscopic gating properties were analyzed using the dual voltage clamp technique. Truncation of the CT domain of Cx32 and Cx43 abolished the fast mechanism of conductance transitions and induced novel gating properties largely attributable to the slow mechanism of gating. The formation of hybrid junctions comprising wild-type and truncated hemichannels allowed us to infer that the fast and slow components of gating reside in each hemichannel and that both gates close at a negative V(j) on the cytoplasmic side. Thus we conclude that the two kinetic components of V(j)-sensitive conductance are a result of the action of two different gating mechanisms. They constitute separate structures in the Cx32 and Cx43 molecules, the CT domain being an integral part of fast V(j) gating.  相似文献   

13.
Gap junction channels are traditionally viewed as large, nonspecific pores connecting cells. Recently the diversity in the connexin family has drawn more attention to their permeability characteristics. Several studies have shown that both size and charge contribute to the permeability of gap junctional channels. We have used a graded series of neutral polyethylene glycol probes (PEGs), which eliminate charge contribution completely, to specifically assess the physical exclusion limits of gap junction channels formed by different connexins. Cx 26, 32 and 37 were expressed in paired Xenopus oocytes to form homotypic gap junctional channels. PEG probes were perfused intracellularly into one side of the oocyte pair. A reversible drop in conductance of the gap juctional channels indicated that the probe was small enough to enter the pore and hinder ion flux. Our data suggest that Cx32 channels have a size cut-off between PEG 400 (11.2 A) and PEG 300 (9.6 A) despite their relatively small single channel conductance (approximately 55 pS). Cx26 channels (approximately 130 pS single channel conductance) have a size exclusion limit around PEG 200 (8.0 A), while Cx37 channels show the most restricted size cut-off between PEG 200 (8.0 A) and TriEG (6.8 A), despite having the largest unitary conductance (approximately 300 pS).  相似文献   

14.
We demonstrate that the Src kinase can augment gap junctional communication between cells derived from homozygous null Cx43 knockout mice. The total conductance between Src transformed cells was nearly twice that of nontransformed cells. In addition, the unitary conductance of the majority of single channel events between transformed cells was about 35% greater than that of nontransformed cells. Analysis showed that both nontransformed and transformed cells expressed at least two populations of channels, suggesting that Src increased junctional conductance by up-regulating one population and/or by increasing the unitary conductance of another population of channels. Interestingly, the conductance displayed by heterologous pairs of transformed and nontransformed cells resembled that of nontransformed cells. The majority of single channel events between heterologous pairs shifted back to lower conductances that were exhibited by nontransformed cells. Thus, nontransformed cells can effectively "normalize" the conductance of gap junction channels expressed by adjacent tumor cells.  相似文献   

15.
Connexin (Cx)43 gapjunction channels are phosphorylated by numerous protein kinases, withthe net effect typically being a reduction in gap junctioncommunication (GJC). This reduction must result from a decrease inchannel open probability, unitary conductance, or permselectivity,because previous results suggest that channel number is unaffected.Coexpression of v-Src with wild-type Cx43 (Cx43-wt) but not Cx43 withtyrosine to phenylalanine substitutions at 247 and 265 (Cx43-Y247,265F)resulted in reduced electrical and dye coupling but no change insingle-channel amplitudes. EGF treatment of cells expressing Cx43-wtbut not Cx43 with serine to alanine substitutions at 255, 279, and 282 (Cx43-S255,279,282A) resulted in reduced GJC, also with no change insingle-channel amplitude. Dye coupling was reduced to a far greaterextent than electrical coupling, suggesting that channel selectivitywas also altered but with minimal effect on unitary conductance. Theabsence of Src- and MAPK-induced reductions in single-channel amplitude suggests that the decreases in GJC induced by these kinases result fromreduced channel open probability and possibly altered selectivity.

  相似文献   

16.
Gap junction channels composed of connexins connect cells, allowing intercellular communication. Their cellular assembly involves a unique quality-control pathway. Some connexins [including connexin43 (Cx43) and Cx46] oligomerize in the trans-Golgi network following export of stabilized monomers from the endoplasmic reticulum (ER). In contrast, other connexins (e.g., Cx32) oligomerize early in the secretory pathway. Amino acids near the cytoplasmic aspect of the third transmembrane domain have previously been shown to determine this difference in assembly sites. Here, we characterized the oligomerization of two connexins expressed prominently in the vasculature, Cx37 and Cx40, using constructs containing a C-terminal dilysine-based ER retention/retrieval signal (HKKSL) or treatment with brefeldin A to block ER vesicle trafficking. Both methods led to intracellular retention of connexins, since the cells lacked gap junction plaques. Retention of Cx40 in the ER prevented it from oligomerizing, comparable to Cx43. By contrast, ER-retained Cx37 was partially oligomerized. Replacement of two amino acids near the third transmembrane domain of Cx43 (L152 and R153) with the corresponding amino acids from Cx37 (M152 and G153) resulted in early oligomerization in the ER. Thus, residues that allow Cx37 to oligomerize early in the secretory pathway could restrict its interactions with coexpressed Cx40 or Cx43 by favoring homomeric oligomerization, providing a structural basis for cells to produce gap junction channels with different connexin composition.  相似文献   

17.
Studies on physiological modulation of intercellular communication mediated by protein kinases are often complicated by the fact that cells express multiple gap junction proteins (connexins; Cx). Changes in cell coupling can be masked by simultaneous opposite regulation of the gap junction channel types expressed. We have examined the effects of activators and inhibitors of protein kinase A (PKA), PKC, and PKG on permeability and single channel conductance of gap junction channels composed of Cx45, Cx43, or Cx26 subunits. To allow direct comparison between these Cx, SKHep1 cells, which endogenously express Cx45, were stably transfected with cDNAs coding for Cx43 or Cx26. Under control conditions, the distinct types of gap junction channels could be distinguished on the basis of their permeability and single channel properties. Under various phosphorylating conditions, these channels behaved differently. Whereas agonists/antagonist of PKA did not affect permeability and conductance of all gap junction channels, variable changes were observed under PKC stimulation. Cx45 channels exhibited an additional conductance state, the detection of the smaller conductance states of Cx43 channels was favored, and Cx26 channels were less often observed. In contrast to the other kinases, agonists/antagonist of PKG affected permeability and conductance of Cx43 gap junction channels only. Taken together, these results show that distinct types of gap junction channels are differentially regulated by similar phosphorylating conditions. This differential regulation may be of physiological importance during modulation of cell-to-cell communication of more complex cell systems.  相似文献   

18.
We used cell lines expressing wild-type connexin43 and connexin43 fused with the enhanced green fluorescent protein (Cx43-EGFP) to examine conductance and perm-selectivity of the residual state of Cx43 homotypic and Cx43/Cx43-EGFP heterotypic gap junction channels. Each hemichannel in Cx43 cell-cell channel possesses two gates: a fast gate that closes channels to the residual state and a slow gate that fully closes channels; the transjunctional voltage (V(j)) closes the fast gate in the hemichannel that is on the relatively negative side. Here, we demonstrate macroscopically and at the single-channel level that the I-V relationship of the residual state rectifies, exhibiting higher conductance at higher V(j)s that are negative on the side of gated hemichannel. The degree of rectification increases when Cl(-) is replaced by Asp(-) and decreases when K(+) is replaced by TEA(+). These data are consistent with an increased anionic selectivity of the residual state. The V(j)-gated channel is not permeable to monovalent positively and negatively charged dyes, which are readily permeable through the fully open channel. These data indicate that a narrowing of the channel pore accompanies gating to the residual state. We suggest that the fast gate operates through a conformational change that introduces positive charge at the cytoplasmic vestibule of the gated hemichannel, thereby producing current rectification, increased anionic selectivity, and a narrowing of channel pore that is largely responsible for reducing channel conductance and restricting dye transfer. Consequently, the fast V(j)-sensitive gating mechanism can serve as a selectivity filter, which allows electrical coupling but limits metabolic communication.  相似文献   

19.
Connexin37 (Cx37) forms gap junction channels between endothelial cells, and two polymorphic Cx37 variants (Cx37-S319 and Cx37-P319) have been identified with a possible link to atherosclerosis. We studied the gap junction channel properties of these hCx37 polymorphs by expression in stably transfected communication-deficient cells (N2A and RIN). We also expressed a third, truncated variant (Cx37-fs254Delta293) and Cx37 constructs containing epitope tags added to their amino or carboxyl termini. All Cx37 constructs were produced by the transfected cells as demonstrated by RT-PCR and immunoblotting and trafficked to appositional surfaces between cells as demonstrated by immunofluorescence microscopy. Dual whole cell patch-clamping studies demonstrated that Cx37-P319, Cx37-S319, and Cx37-fs254Delta293 had large unitary conductances ( approximately 300 pS). However, addition of an amino terminal T7 tag (T7-Cx37-fs254Delta293) produced a single channel conductance of 120-145 pS with a 24-30 pS residual state. Moreover, the kinetics of the voltage-dependent decline in junctional current for T7-Cx37-fs254Delta293 were significantly slower than for the wild type, implying a destabilization of the transition state. These data suggest that the amino terminus of Cx37 plays a significant role in gating as well as conductance. The carboxyl terminal tail has lesser influence on unitary conductance and inactivation kinetics.  相似文献   

20.
Cells in blood vessel walls express connexin (Cx)43, Cx40, and Cx37. We recently characterized gap junction channels in rat basilar artery smooth muscle cells and found features attributable not only to these three connexins but also to an unidentified connexin, including strong voltage dependence and single channel conductance of 30-40 pS. Here, we report data consistent with identification of Cx45. Immunofluorescence using anti-human Cx45 and anti-mouse Cx45 antibodies revealed labeling between alpha-actin-positive cells, and RT-PCR of mRNA from arteries after endothelial destruction yielded amplicons exhibiting 90-98% identity with mouse Cx45 and human Cx45. Dual-perforated patch clamping was performed after exposure to oligopeptides that interfere with docking of Cx43, Cx40, or Cx45. Cell pairs pretreated with blocking peptides for Cx43 and Cx40 exhibited strongly voltage-dependent transjunctional conductances [voltage at which voltage-dependent conductance declines by one-half (V1/2) = +/-18.9 mV] and small single channel conductances (31 pS), consistent with the presence of Cx45, whereas cell pairs pretreated with blocking peptide for Cx45 exhibit weaker voltage-dependent conductances (V1/2 = +/-37.9 mV), consistent with block of Cx45. Our data suggest that Cx45 is transcribed, expressed, and forms functional gap junction channels in rat cerebral arterial smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号