首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Opening of connexin hemichannels in the plasma membrane is highly regulated. Generally, depolarization and reduced extracellular Ca2+ promote hemichannel opening. Here we show that hemichannels formed of Cx50, a principal lens connexin, exhibit a novel form of regulation characterized by extraordinary sensitivity to extracellular monovalent cations. Replacement of extracellular Na+ with K+, while maintaining extracellular Ca2+ constant, resulted in >10-fold potentiation of Cx50 hemichannel currents, which reversed upon returning to Na+. External Cs+, Rb+, NH4+, but not Li+, choline, or TEA, exhibited a similar effect. The magnitude of potentiation of Cx50 hemichannel currents depended on the concentration of extracellular Ca2+, progressively decreasing as external Ca2+ was reduced. The primary effect of K+ appears to be a reduction in the ability of Ca2+, as well as other divalent cations, to close Cx50 hemichannels. Cx46 hemichannels exhibited a modest increase upon substituting Na+ with K+. Analyses of reciprocal chimeric hemichannels that swap NH2- and COOH-terminal halves of Cx46 and Cx50 demonstrate that the difference in regulation by monovalent ions in these connexins resides in the NH2-terminal half. Connexin hemichannels have been implicated in physiological roles, e.g., release of ATP and NAD+ and in pathological roles, e.g., cell death through loss or entry of ions and signaling molecules. Our results demonstrate a new, robust means of regulating hemichannels through a combination of extracellular monovalent and divalent cations, principally Na+, K+, and Ca2+.  相似文献   

3.
Gap junction (GJ) channels provide an important pathway for direct intercellular transmission of signaling molecules. Previously we showed that fixed negative charges in the first extracellular loop domain (E1) strongly influence charge selectivity, conductance, and rectification of channels and hemichannels formed of Cx46. Here, using excised patches containing Cx46 hemichannels, we applied the substituted cysteine accessibility method (SCAM) at the single channel level to residues in E1 to determine if they are pore-lining. We demonstrate residues D51, G46, and E43 at the amino end of E1 are accessible to modification in open hemichannels to positively and negatively charged methanethiosulfonate (MTS) reagents added to cytoplasmic or extracellular sides. Positional effects of modification along the length of the pore and opposing effects of oppositely charged modifying reagents on hemichannel conductance and rectification are consistent with placement in the channel pore and indicate a dominant electrostatic influence of the side chains of accessible residues on ion fluxes. Hemichannels modified by MTS-EA+, MTS-ET+, or MTS-ES- were refractory to further modification and effects of substitutions with positively charged residues that electrostatically mimicked those caused by modification with the positively charged MTS reagents were similar, indicating all six subunits were likely modified. The large reductions in conductance caused by MTS-ET+ were visible as stepwise reductions in single-channel current, indicative of reactions occurring at individual subunits. Extension of single-channel SCAM using MTS-ET+ into the first transmembrane domain, TM1, revealed continued accessibility at the extracellular end at A39 and L35. The topologically complementary region in TM3 showed no evidence of reactivity. Structural models show GJ channels in the extracellular gap to have continuous inner and outer walls of protein. If representative of open channels and hemichannels, these data indicate E1 as constituting a significant portion of this inner, pore-forming wall, and TM1 contributing as pore-lining in the extracellular portion of transmembrane span.  相似文献   

4.
Gap junctions (GJ) and hemichannels (HC) formed from the protein subunits called connexins are transmembrane conduits for the exchange of small molecules and ions. Connexins and another group of HC-forming proteins, pannexins comprise the two families of transmembrane proteins ubiquitously distributed in vertebrates. Most cell types express more than one connexin or pannexin. While connexin expression and channel activity may vary as a function of physiological and pathological states of the cell and tissue, only a few studies suggest the involvement of pannexin HC in acquired pathological conditions. Importantly, genetic mutations in connexin appear to interfere with GJ and HC function which results in several diseases. Thus connexins could serve as potential drug target for therapeutic intervention. Growing evidence suggests that diseases resulting from HC dysfunction might open a new direction for development of specific HC reagents. This review provides a comprehensive overview of the current studies of GJ and HC formed by connexins and pannexins in various tissue and organ systems including heart, central nervous system, kidney, mammary glands, ovary, testis, lens, retina, inner ear, bone, cartilage, lung and liver. In addition, present knowledge of the role of GJ and HC in cell cycle progression, carcinogenesis and stem cell development is also discussed.  相似文献   

5.
A key goal is to correct defective folding of mutant ATP binding cassette (ABC) transporters, as they cause diseases such as cystic fibrosis. P-glycoprotein (ABCB1) is a useful model system because introduction of an arginine at position 65 of the first transmembrane (TM) segment could repair folding defects. To determine the mechanism of arginine rescue, we first tested the effects of introducing arginines at other positions in TM1 (residues 52-72) of a P-glycoprotein processing mutant (G251V) that is defective in folding and trafficking to the cell surface (20% maturation efficiency). We found that arginines introduced into one face of the TM1 helix (positions 52, 55, 56, 59, 60, 62, 63, 66, and 67) inhibited maturation, whereas arginines on the opposite face of the helix promoted (positions 64, 65, 68, and 71) or had little effect (positions 61, and 69) on maturation. Arginines at positions 61, 64, 65, and 68 appeared to lie close to the drug binding sites as they reduced the apparent affinity for drug substrates such as vinblastine and verapamil. Therefore, arginines that promoted maturation may face an aqueous drug translocation pathway, whereas those that inhibited maturation may face the lipid bilayer. The highest maturation efficiencies (60-85%) were observed with the Arg-65 and Arg-68 mutants. Mutations that removed hydrogen bond acceptors (Y950F/Y950A or Y953F/Y953A) in TM11 predicted to lie close to Arg-65 or Arg-68 inhibited maturation but did not affect maturation of the G251V parent. Therefore, arginine may rescue defective folding by promoting packing of the TM segments through hydrogen bond interactions.  相似文献   

6.
《FEBS letters》2014,588(8):1446-1457
Connexin 43 (Cx43) hemichannels may form open channels in the plasma membrane when exposed to specific stimuli, e.g. reduced extracellular concentration of divalent cations, and allow passage of fluorescent molecules and presumably a range of smaller physiologically relevant molecules. However, the permeability profile of Cx43 hemichannels remains unresolved. Exposure of Cx43-expressing Xenopus laevis oocytes to divalent cation free solution induced a gadolinium-sensitive uptake of the fluorescent dye ethidium. In spite thereof, a range of biological molecules smaller than ethidium, such as glutamate, lactate, and glucose, did not permeate the pore whereas ATP did. In contrast, permeability of glutamate, glucose and ATP was observed in oocytes expressing Cx30. Exposure to divalent cation free solutions induced a robust membrane conductance in Cx30-expressing oocytes but none in Cx43-expressing oocytes. C-terminally truncated Cx43 (M257) displayed increased dye uptake and, unlike wild type Cx43 channels, conducted current. Neither Cx30 nor Cx43 acted as water channels in their hemichannel configuration. Our results demonstrate that connexin hemichannels have isoform-specific permeability profiles and that dye uptake cannot be equaled to permeability of smaller physiologically relevant molecules in given settings.  相似文献   

7.
Connexins oligomerize to form intercellular channels that gate in response to voltage and chemical agents such as divalent cations. Historically, these are believed to be two independent processes. Here, data for human connexin37 (hCx37) hemichannels indicate that voltage gating can be explained as block/unblock without the necessity for an independent voltage gate. hCx37 hemichannels closed at negative potentials and opened in a time-dependent fashion at positive potentials. In the absence of polyvalent cations, however, the channels were open at relatively negative potentials, passing current linearly with respect to voltage. Current at negative potentials could be inhibited in a concentration-dependent manner by the addition of polyvalent cations to the bathing solution. Inhibition could be explained as voltage-dependent block of hCx37, with the field acting directly on polyvalent cations, driving them through the pore to an intracellular site. At positive potentials, in the presence of polyvalent cations, the field favored polyvalent efflux from the intracellular blocking site, allowing current flow. The rate of appearance of current depended on the species and valence of the polyvalent cation in the bathing solution. The rate of current decay upon repolarization depended on the concentration of polyvalent cations in the bathing solution, consistent with deactivation by polyvalent block, and was rapid (time constants of tens of milliseconds), implying a high local concentration of polyvalents in or near the channel pore. Sustained depolarization slowed deactivation in a flux-dependent, voltage- and time-independent fashion. The model for hCx37 voltage gating as polyvalent block/unblock can be expanded to account for observations in the literature regarding hCx37 gap junction channel behavior.  相似文献   

8.
Cxs (connexins), the protein subunits forming gap junction intercellular communication channels, are transported to the plasma membrane after oligomerizing into hexameric assemblies called connexin hemichannels (CxHcs) or connexons, which dock head-to-head with partner hexameric channels positioned on neighbouring cells. The double membrane channel or gap junction generated directly couples the cytoplasms of interacting cells and underpins the integration and co-ordination of cellular metabolism, signalling and functions, such as secretion or contraction in cell assemblies. In contrast, CxHcs prior to forming gap junctions provide a pathway for the release from cells of ATP, glutamate, NAD+ and prostaglandin E2, which act as paracrine messengers. ATP activates purinergic receptors on neighbouring cells and forms the basis of intercellular Ca2+ signal propagation, complementing that occuring more directly via gap junctions. CxHcs open in response to various types of external changes, including mechanical, shear, ionic and ischaemic stress. In addition, CxHcs are influenced by intracellular signals, such as membrane potential, phosphorylation and redox status, which translate external stresses to CxHc responses. Also, recent studies demonstrate that cytoplasmic Ca2+ changes in the physiological range act to trigger CxHc opening, indicating their involvement under normal non-pathological conditions. CxHcs not only respond to cytoplasmic Ca2+, but also determine cytoplasmic Ca2+, as they are large conductance channels, suggesting a prominent role in cellular Ca2+ homoeostasis and signalling. The functions of gap-junction channels and CxHcs have been difficult to separate, but synthetic peptides that mimic short sequences in the Cx subunit are emerging as promising tools to determine the role of CxHcs in physiology and pathology.  相似文献   

9.
One of the most striking features of hemi-gap-junctional channels is that they are dramatically modulated by extracellular divalent cations. In this study, we characterized the effects of external divalent cations and voltage on macroscopic human connexin46 (hCx46) hemi-gap-junctional currents using the two-electrode voltage-clamp technique. Increasing extracellular magnesium resulted in a shift of the voltage dependence of activation to more positive potentials, a decrease in the maximum conductance, an acceleration of deactivation, and a slowing of activation. Hyperpolarizing the membrane potential could mimic the effect of raising external magnesium on the activation kinetics and maximum conductance. These results could be interpreted in terms of a sequential model of channel activation with two independent divalent cation binding sites. This model could also explain the effects of external calcium on hCx46 hemichannels. However, the apparent binding affinities for calcium were significantly higher than for magnesium. In addition, we identified a mutation in the first extracellular domain of hCx46 (hCx46*N63S) that resulted in hemichannels that showed increased sensitivity to magnesium blockade.  相似文献   

10.
The mechanisms of molecular discrimination by connexin channels are of acute biological and medical importance. The availability of affinity or open-pore blocking reagents for reliable and specific study of the connexin permeability pathway, would make possible the rigorous cellular and physiological studies required to inform, in molecular terms, the underlying role of intercellular communication pathways in development and disease. Previous work utilized a series of glucosaccharides labeled with an uncharged fluorescent aminopyridine (PA-) group to establish steric constraints to permeability through connexin hemichannels. In that work, the smallest probe permeable through homomeric Cx26 and heteromeric Cx26-Cx32 channels was the PA-disaccharide, and the smallest probe permeable through homomeric Cx32 channels was the PA-trisaccharide. The larger impermeable probes did not block permeation of the smaller probes. Building on this work, a new set of glucosaccharide probes was developed in which the label was one of a homologous series of novel anthranilic acid derivatives (ABG) that carry negative or positive formal charge or remain neutral at physiological pH. When the PA-label of the smallest impermeant PA-derivatized oligosaccharides was replaced by ABG label, the resulting probes acted as reversible, high-affinity inhibitors of large molecule permeation through connexin pores in a size and connexin-specific manner.  相似文献   

11.
Shi L  Simpson MM  Ballesteros JA  Javitch JA 《Biochemistry》2001,40(41):12339-12348
The binding site of the dopamine D2 receptor, like that of homologous G-protein-coupled receptors (GPCRs), is contained within a water-accessible crevice formed among its seven transmembrane segments (TMs). Using the substituted-cysteine-accessibility method (SCAM), we are mapping the residues that contribute to the surface of this binding-site crevice. We have now mutated to cysteine, one at a time, 21 consecutive residues in TM1. Six of these mutants reacted with charged sulfhydryl reagents, whereas bound antagonist only protected N52(1.50)C from reaction. Except for A38(1.36)C, none of the substituted cysteine mutants in the extracellular half of TM1 appeared to be accessible. Pro(1.48) is highly conserved in opsins, but absent in catecholamine receptors, and the high-resolution rhodopsin structure showed that Pro(1.48) bends the extracellular portion of TM1 inward toward TM2 and TM7. Analysis of the conversation of residues in the extracellular portion of TM1 of opsins showed a pattern consistent with alpha-helical structure with a conserved face. In contrast, this region in catecholamine receptors is poorly conserved, suggesting a lack of critical contacts. Thus, in catecholamine receptors in the absence of Pro(1.48), TM1 may be straighter and therefore further from the helix bundle, consistent with the apparent lack of conserved contact residues. When examined in the context of a model of the D2 receptor, the accessible residues in the cytoplasmic half of TM1 are at the interface with TM7 and with helix 8 (H8). We propose the existence of critical contacts of TM1, TM7, and H8 that may stabilize the inactive state of the receptor.  相似文献   

12.
Integrin cell-adhesion receptors transduce signals bidirectionally across the plasma membrane via the single-pass transmembrane segments of each alpha and beta subunit. While the beta3 transmembrane segment consists of a linear 29-residue alpha-helix, the structure of the alphaIIb transmembrane segment reveals a linear 24-residue alpha-helix (Ile-966 -Lys-989) followed by a backbone reversal that packs Phe-992-Phe-993 against the transmembrane helix. The length of the alphaIIb transmembrane helix implies the absence of a significant transmembrane helix tilt in contrast to its partnering beta3 subunit. Sequence alignment shows Gly-991-Phe-993 to be fully conserved among all 18 human integrin alpha subunits, suggesting that their unusual structural motif is prototypical for integrin alpha subunits. The alphaIIb transmembrane structure demonstrates a level of complexity within the membrane that is beyond simple transmembrane helices and forms the structural basis for assessing the extent of structural and topological rearrangements upon alphaIIb-beta3 association, i.e. integrin transmembrane signaling.  相似文献   

13.
Spreading depression (SD) is a self-propagating wave of neuronal and glial depolarization that may occur in virtually any gray matter region in the brain. One consequence of SD is an increased tolerance to ischemia. It has been shown that during cortical SD ATP is released into the extracellular space and activation of purinergic receptors leads to the induction of ischemic tolerance. In the present study we show that depolarization of cultured neurons induces ischemic tolerance which is mediated by purinergic receptor activation. Depolarization causes the release of ATP into the extracellular medium, which may be prevented by treatment with the connexin hemichannel blockers flufenamic acid and quinine, but not the pannexin hemichannel blocker carbenoxolone. Knockdown of connexin 36 expression by siRNA greatly reduces the amount of ATP released during depolarization and the subsequent degree of ischemic tolerance. We conclude that during depolarization neurons release ATP by way of connexin 36 hemichannels.  相似文献   

14.
Connexin hemichannels have a low open probability under normal conditions but open in response to various stimuli, forming a release pathway for small paracrine messengers. We investigated hemichannel-mediated ATP responses triggered by changes of intracellular Ca2+ ([Ca2+]i) in Cx43 expressing glioma cells and primary glial cells. The involvement of hemichannels was confirmed with gja1 gene-silencing and exclusion of other release mechanisms. Hemichannel responses were triggered when [Ca2+]i was in the 500 nM range but the responses disappeared with larger [Ca2+]i transients. Ca2+-triggered responses induced by A23187 and glutamate activated a signaling cascade that involved calmodulin (CaM), CaM-dependent kinase II, p38 mitogen activated kinase, phospholipase A2, arachidonic acid (AA), lipoxygenases, cyclo-oxygenases, reactive oxygen species, nitric oxide and depolarization. Hemichannel responses were also triggered by activation of CaM with a Ca2+-like peptide or exogenous application of AA, and the cascade was furthermore operational in primary glial cells isolated from rat cortex. In addition, several positive feed-back loops contributed to amplify the responses. We conclude that an elevation of [Ca2+]i triggers hemichannel opening, not by a direct action of Ca2+ on hemichannels but via multiple intermediate signaling steps that are adjoined by distinct signaling mechanisms activated by high [Ca2+]i and acting to restrain cellular ATP loss.  相似文献   

15.
Tector M  Hartl FU 《The EMBO journal》1999,18(22):6290-6298
The cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel with 12 membrane-spanning sequences, undergoes inefficient maturation in the endoplasmic reticulum (ER). Potentially charged residues in transmembrane segments may contribute to this defect in biogenesis. We demonstrate that transmembrane segment 6 of CFTR, which contains three basic amino acids, is extremely unstable in the lipid bilayer upon membrane insertion in vitro and in vivo. However, two distinct mechanisms counteract this anchoring deficiency: (i) the ribosome and the ER translocon co-operate to prevent transmembrane segment 6 from passing through the membrane co- translationally; and (ii) cytosolic domains of the ion channel post-translationally maintain this segment of CFTR in a membrane-spanning topology. Although these mechanisms are essential for successful completion of CFTR biogenesis, inefficiencies in their function retard the maturation of the protein. It seems possible that some of the disease-causing mutations in CFTR may reduce the efficiency of proper membrane anchoring of the protein.  相似文献   

16.
The ability of certain connexins to form open hemichannels has been exploited to study the pore structure of gap junction (hemi)channels. Cysteine scanning mutagenesis was applied to cx46 and to a chimeric connexin, cx32E(1)43, which both form patent hemichannels when expressed in Xenopus oocytes. The thiol reagent maleimido-butyryl-biocytin was used to probe 12 cysteine replacement mutants in the first transmembrane segment and two in the amino-terminal segment. Maleimido-butyryl-biocytin was found to inhibit channel activity with cysteines in two equivalent positions in both connexins: I33C and M34C in cx32E(1)43 and I34C and L35C in cx46. These two positions in the first transmembrane segment are thus accessible from the extracellular space and consequently appear to contribute to the pore lining. The data also suggest that the pore structure is complex and may involve more than one transmembrane segment.  相似文献   

17.
In the vertebrate retina, horizontal cells generate the inhibitory surround of bipolar cells, an essential step in contrast enhancement. For the last decades, the mechanism involved in this inhibitory synaptic pathway has been a major controversy in retinal research. One hypothesis suggests that connexin hemichannels mediate this negative feedback signal; another suggests that feedback is mediated by protons. Mutant zebrafish were generated that lack connexin 55.5 hemichannels in horizontal cells. Whole cell voltage clamp recordings were made from isolated horizontal cells and cones in flat mount retinas. Light-induced feedback from horizontal cells to cones was reduced in mutants. A reduction of feedback was also found when horizontal cells were pharmacologically hyperpolarized but was absent when they were pharmacologically depolarized. Hemichannel currents in isolated horizontal cells showed a similar behavior. The hyperpolarization-induced hemichannel current was strongly reduced in the mutants while the depolarization-induced hemichannel current was not. Intracellular recordings were made from horizontal cells. Consistent with impaired feedback in the mutant, spectral opponent responses in horizontal cells were diminished in these animals. A behavioral assay revealed a lower contrast-sensitivity, illustrating the role of the horizontal cell to cone feedback pathway in contrast enhancement. Model simulations showed that the observed modifications of feedback can be accounted for by an ephaptic mechanism. A model for feedback, in which the number of connexin hemichannels is reduced to about 40%, fully predicts the specific asymmetric modification of feedback. To our knowledge, this is the first successful genetic interference in the feedback pathway from horizontal cells to cones. It provides direct evidence for an unconventional role of connexin hemichannels in the inhibitory synapse between horizontal cells and cones. This is an important step in resolving a long-standing debate about the unusual form of (ephaptic) synaptic transmission between horizontal cells and cones in the vertebrate retina.  相似文献   

18.
We used cell lines expressing wild-type connexin43 and connexin43 fused with the enhanced green fluorescent protein (Cx43-EGFP) to examine conductance and perm-selectivity of the residual state of Cx43 homotypic and Cx43/Cx43-EGFP heterotypic gap junction channels. Each hemichannel in Cx43 cell-cell channel possesses two gates: a fast gate that closes channels to the residual state and a slow gate that fully closes channels; the transjunctional voltage (V(j)) closes the fast gate in the hemichannel that is on the relatively negative side. Here, we demonstrate macroscopically and at the single-channel level that the I-V relationship of the residual state rectifies, exhibiting higher conductance at higher V(j)s that are negative on the side of gated hemichannel. The degree of rectification increases when Cl(-) is replaced by Asp(-) and decreases when K(+) is replaced by TEA(+). These data are consistent with an increased anionic selectivity of the residual state. The V(j)-gated channel is not permeable to monovalent positively and negatively charged dyes, which are readily permeable through the fully open channel. These data indicate that a narrowing of the channel pore accompanies gating to the residual state. We suggest that the fast gate operates through a conformational change that introduces positive charge at the cytoplasmic vestibule of the gated hemichannel, thereby producing current rectification, increased anionic selectivity, and a narrowing of channel pore that is largely responsible for reducing channel conductance and restricting dye transfer. Consequently, the fast V(j)-sensitive gating mechanism can serve as a selectivity filter, which allows electrical coupling but limits metabolic communication.  相似文献   

19.
A detailed understanding of the mechanisms regulating cell-to-cell communication in the lens necessitates information about the distribution and density of Cx46 and Cx50 in their native cellular environment. These isoforms constitute the extensive pathway between the lens surface and the interior, helping to maintain its striking optical properties. To identify Cx50 channels and hemichannels in the plasma membrane and to differentiate between them, immuno-freeze-fracture-labeling (FRIL) with immuno-gold particles in used. In equatorial lens fibers, the Cx50-gold complexes label gap junctions at high densities and non-junctional plasma membranes at lower densities. Small depressions in the non-junctional plasma membrane labeled by the gold-complexes most likely represent points of hemichannel insertion. Measurement of the width of the extra-cellular space separating adjacent plasma membranes indicates that the gold complexes in the gap junctions represent Cx50 channels and those in the non-junctional plasma membrane, Cx50 hemichannels. Estimates of their densities indicate that the channels are at least one order of magnitude more numerous than the hemichannels. Therefore, in lens fibers, Cx50 hemichannels are inserted via exocytosis and are rapidly assembled into channels assembled in gap junction plaques.  相似文献   

20.
Gap-junctional channels are formed by two connexons or gap-junctional hemichannels in series, with each connexon conformed by six connexin molecules. As with other membrane proteins, structural information on connexons can potentially be obtained with techniques that take advantage of the highly specific thiol chemistry by positioning Cys residues at locations of interest, ideally in an otherwise Cys-less protein. It has been shown that conserved Cys residues located in the extracellular loops of connexins are essential for the docking of connexons from adjacent cells, preventing the formation of functional gap-junctional channels. Here we engineered a Cys-less version of connexin 43 (Cx43) and assessed its function using a Xenopus oocyte expression system. The Cys-less protein was expressed at the plasma membrane and did not form gap-junctional channels but formed hemichannels that behave similarly to those formed by Cx43 in terms of permeation to carboxyfluorescein. The carboxyfluorescein permeability of Cys-less hemichannels was increased by protein kinase C inhibition, like the wild-type Cx43 hemichannels. We generated a protein with a single Cys in a position (residue 34) thought to face the channel pore and show that thiol modification of the Cys abolishes the carboxyfluorescein permeability. We conclude that Cysless Cx43 forms regulated functional hemichannels, and therefore Cys-less Cx43 is a useful tool for future structural studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号