首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The review contains the analysis of present-day concepts on the physiological role of the creatine kinase system. A hypothesis on the buffering functions of the creatine kinase system which ensures a constant ATP level in cells and a hypothesis according to which phosphocreatine is a macroergic phosphate carrier from mitochondria to the sites of their utilization are considered. In connection with the creatine phosphate carrier hypothesis according to which the transport function of the creatine kinase system is provided for by an effective function of mitochondrial creatine kinase, feasible mechanisms of mitochondrial creatine kinase activity regulation are considered: as a result of creation of local concentration of nucleotide substrates as well as changes in the properties of creatine kinase itself which may result from the enzyme conversion from the membrane-bound to the free form or from the interconversion of oligomeric forms of the enzyme.  相似文献   

2.
Immunological and microanalytical methods were used to investigate the two isozymes of phosphorylase kinase, enzyme w and enzyme r, in psoas major and tibialis anterior muscles. Peptide mapping experiments indicated that the alpha subunit of enzyme w and alpha' subunit of enzyme r were structurally very similar. Both subunits were completely immunoprecipitated from muscle extracts with an antibody specific for the beta subunit of the kinase, indicating that alpha and alpha' subunits are completely assembled with beta subunits in adult muscle fibers. The relative amounts of enzymes w and r in single fibers were determined from amounts of alpha and alpha' subunits, which were detected by immunoblotting. Phosphorylase kinase and phosphorylase activities were measured in the same fibers, as well as in individual fibers from diaphragm and soleus muscles. Slow oxidative fibers were found to contain low levels of enzyme r, but almost no enzyme w. Considerably more enzyme r was present in fast oxidative-glycolytic fibers. Fast glycolytic fibers contained the most enzyme w, and the highest levels of enzyme r were found in a subgroup of such fibers. Interestingly, more than half of the fast glycolytic fibers analyzed contained both isozymes. In these fibers phosphorylase was positively correlated with enzyme w, but negatively correlated with enzyme r. Total kinase activity ranged 30-fold from the highest in one of the psoas fibers to the lowest in one of the soleus fibers and was closely correlated with the phosphorylase levels. In psoas and soleus fibers, calculated absolute maximal rates for phosphorylase b to a conversion varied almost 2,500-fold.  相似文献   

3.
The aim of this study was to evaluate myofibrillar creatine kinase (EC 2.7.3.2) activity on the background of the effect of substrate channeling by myosin ATPase and to compare it with creatine kinase (CK) activity of whole skinned fibers. In order to assess CK activity, skinned fibers were prepared from the rat psoas major muscles defined by light microscopy. The activity in permeabilized fibers after treatment with saponin, Triton X-100 and Ca(2+)-free medium reached 2.80, 6.97 and 3.32 micromol ATP min(-1) mg(-1) protein, respectively, when a coupled enzyme assay system with external hexokinase and glucose-6-phosphate dehydrogenase was used. Transmission electron microscopy (TEM) revealed a possible interference among activities of sarcolemmal, sarcoplasmic, myofibrillar and mitochondrial CK from persisting structures. For evaluation of the myofibrillar CK itself, a pure myofibrillar fraction was prepared. Fraction purity was confirmed by TEM and by enzymatic assays for marker enzymes. Two procedures, i.e. the coupled enzyme assay and the evaluation of phosphocreatine (PCr) concentration before and after the CK reaction, were used for measurement of CK activity in this fraction. The procedures resulted in 3.2 nmol ATP min(-1) mg(-1) protein and 7.6 nmol PCr min(-1) mg(-1) protein, respectively. These alternative approaches revealed a discrepancy between the reacting portions of PCr by more than 50 %, which provides information about the size of the effect, generally described as substrate channeling.  相似文献   

4.
The subcellular distribution of ATP, ADP, creatine phosphate and creatine was studied in normoxic control, isoprenaline-stimulated and potassium-arrested guinea-pig hearts as well as during ischemia and after reperfusion. The mitochondrial creatine phosphate/creatine ratio was closely correlated to the oxidative activity of the hearts. This was interpreted as an indication of a close coupling of mitochondrial creatine kinase to oxidative phosphorylation. To further investigate the functional coupling of mitochondrial creatine kinase to oxidative phosphorylation, rat or guinea-pig heart mitochondria were isolated and the mass action ratio of creatine kinase determined at active or inhibited oxidative phosphorylation or in the presence of high phosphate, conditions which are known to change the functional state of the mitochondrial enzyme. At active oxidative phosphorylation the mass action ratio was one-third of the equilibrium value whereas at inhibited oxidative phosphorylation (N2, oligomycin, carboxyatractyloside) or in the presence of high phosphate, the mass action ratio reached equilibrium values. These findings show that oxidative phosphorylation is essential for the regulation of the functional state of mitochondrial creatine kinase. The functional coupling of the mitochondrial creatine kinase and oxidative phosphorylation indicated from the correlation of mitochondrial creatine phosphate/creatine ratios with the oxidative activity of the heart in situ as well as from the deviation of the mass action ratio of the mitochondrial enzyme from creatine kinase equilibrium at active oxidative phosphorylation in isolated mitochondria is in accordance with the proposed operation of a creatine shuttle in heart tissue.  相似文献   

5.
The role of the creatine phosphate shuttle in the energetics of muscle protein synthesis in isolated polysomes, from rat hindlimb muscle, was studied. Triton X-100-treated polysomes, following their centrifugation through a 1 M sucrose gradient, contained 38 mU/mg RNA of bound creatine kinase. In the presence of pH 5 enzyme (obtained from rat liver), 0.5 mM ATP, and 1 microM GTP, amino acid (leucine) incorporation by polysomes in the presence of 8 mM creatine phosphate was twice that in the presence of an exogenous ATP regenerating system of 10 mM phospho(enol)pyruvate and 10 U/ml pyruvate kinase. Since added creatine kinase had no effect on incorporation supported by creatine phosphate it is clear that endogenous creatine kinase allows sufficient regeneration of ATP. These data also suggest that nucleoside diphosphokinase must have been associated with the polysome for phosphate was transferred to GTP from [33P]creatine phosphate, and the specific activities of ATP and GTP increased at equal rates, reaching the specific activity of creatine phosphate at 8 min. We conclude that skeletal muscle polysomes have bound creatine kinase activity and they act as terminals for the creatine phosphate energy shuttle. Creatine phosphate regenerates GTP, probably through an intermediate reaction catalyzed by nucleoside diphosphokinase. This provided an added support for the hypothesis of compartmentation of enzymes and substrates and that the transport form of energy between the mitochondria and energy utilizing sites in muscle is creatine phosphate rather than ATP, which extends the general role of the creatine phosphate energy shuttle.  相似文献   

6.
The influence of mitochondrial creatine kinase on subcellular high energy systems has been investigated using isolated rat heart mitochondria, mitoplasts and intact heart and skeletal muscle tissue.In isolated mitochondria, the creatine kinase is functionally coupled to oxidative phosphorylation at active respiratory chain, so that it catalyses the formation of creatine phosphate against its thermodynamic equilibrium. Therefore the mass action ratio is shifted from the equilibrium ratio to lower values. At inhibited respiration, it is close to the equilibrium value, irrespective of the mechanism of the inhibition. The same results were obtained for mitoplasts under conditions where the mitochondrial creatine kinase is still associated with the inner membrane.In intact tissue increasing amounts of creatine phosphate are found in the mitochondrial compartment when respiration and/or muscle work are increased. It is suggested that at high rates of oxidative phosphorylation creatine phosphate is accumulated in the intermembrane space due to the high activity of mitochondrial creatine kinase and the restricted permeability of reactants into the extramitochondrial space. A certain amount of this creatine phosphate leaks into the mitochondrial matrix.This leak is confirmed in isolated rat heart mitochondria where creatine phosphate is taken up when it is generated by the mitochondrial creatine kinase reaction. At inhibited creatine kinase, external creatine phosphate is not taken up. Likewise, mitoplasts only take up creatine phosphate when creatine kinase is still associated with the inner membrane. Both findings indicate that uptake is dependent on the functional active creatine kinase coupled to oxidative phosphorylation.Creatine phosphate uptake into mitochondria is inhibited with carboxyatractyloside. This suggests a possible role of the mitochondrial adenine nucleotide translocase in creatine phosphate uptake.Taken together, our findings are in agreement with the proposal that creatine kinase operates in the intermembrane space as a functional unit with the adenine nucleotide translocase in the inner membrane for optimal transfer of energy from the electron transport chain to extramitochondrial ATP-consuming reactions.  相似文献   

7.
Modification of contractile proteins by oxygen free radicals in rat heart   总被引:2,自引:0,他引:2  
This study was undertaken to investigate the effects of oxygen free radicals on myofibrillar creatine kinase activity. Isolated rat heart myofibrils were incubated with xanthine+xanthine oxidase (a superoxide anion radical-generating system) or hydrogen peroxide and assayed for creatine kinase activity. To clarify the involvement of changes in sulfhydryl groups in causing alterations in myofibrillar creatine kinase activity, 1) effects of N-ethylmaleimide (sulfhydryl groups reagent) on myofibrillar creatine kinase activity, 2) effect of oxygen free radicals on myofibrillar sulfhydryl groups content, and 3) protective effects of dithiothreitol (sulfhydryl groups-reducing agent) on the changes in myofibrillar creatine kinase activity due to oxygen free radicals were also studied. Xanthine+xanthine oxidase inhibited creatine kinase activity both in a time-and a concentration-dependent manner. Superoxide dismutase (SOD) showed a protective effect on the depression in creatine kinase activity caused by xanthine+xanthine oxidase. Hydrogen peroxide inhibited creatine kinase activity in a concentration-dependent manner; this inhibition was prevented by the addition of catalase. N-ethylmaleimide reduced creatine kinase activity in a dose-dependent manner. The content of myofibrillar sulfhydryl groups was decreased by xanthine+xanthine oxidase; this reduction was protected by SOD. Furthermore, the depression in myofibrillar creatine kinase activity by xanthine+xanthine oxidase was protected by the addition of dithiothreitol. Oxygen free radicals may inhibit myofibrillar creatine kinase activity by modifying sulfhydryl groups in the enzyme protein. The reduction of myofibrillar creatine kinase activity may lead to a disturbance of energy utilization in the heart and may contribute to cardiac dysfunction due to oxygen free radicals.  相似文献   

8.
Myosin and creatine kinase were co-immobilized onto Immunodyne films to mimic the behaviour of creatine kinase bound to the M-line of myofilaments. The Mg-ATPase activity of bound myosin was studied by a coupled enzymatic assay, which detects Mg-ADP in the bulk solution by means of pyruvate kinase and lactate dehydrogenase. The competition for Mg-ADP between pyruvate kinase and creatine kinase either free in solution or co-immobilized with myosin was studied at various creatine phosphate concentrations. Bound creatine kinase competed efficiently when present in very low amounts, corresponding to an activity ratio higher than 1:20,000 between creatine kinase and pyruvate kinase and a molar ratio higher than 1:1000 between creatine kinase and myosin. The Mg-ADP produced by myosin ATPase in the vicinity of the film did not diffuse into the bulk solution but, in the presence of creatine phosphate, was recycled into Mg-ATP by the neighbouring creatine kinase. The existence of an unstirred layer near the surface of the film is sufficient to explain the channeling of ADP (or ATP) between co-immobilized myosin and creatine kinase, without direct interaction or 'intimate coupling' between the enzymes. The problem now is to determine the importance of this kind of facilitated diffusion in the myofilaments in vivo.  相似文献   

9.
This study was undertaken to examine the effects of oxygen free radicals on mitochondrial creatine kinase activity in rat heart. Xanthine plus xanthine oxidase (superoxide anion radical generating system) reduced mitochondrial creatine kinase activity both in a dose- and a time-dependent manner. Superoxide dismutase showed a protective effect on depression in creatine kinase activity due to xanthine plus xanthine oxidase. Hydrogen peroxide inhibited creatine kinase activity in a dose-dependent manner, this inhibition was protected by the addition of catalase. In order to understand the detailed mechanisms by which oxygen free radicals inhibit mitochondrial creatine kinase activity, the effects of oxygen free radicals on mitochondrial sulfhydryl groups were examined. Mitochondrial sulfhydryl groups contents were decreased by xanthine plus xanthine oxidase or hydrogen peroxide; this depression in sulfhydryl groups contents was prevented by the addition of superoxide dismutase or catalase. N-Ethylmaleimide (sulfhydryl group reagent) expressed inhibitory effects on the creatine kinase activity both in a dose- and a time-dependent manner; dithiothreitol or cysteine (sulfhydryl group reductant) showed protective effects on the creatine kinase activity depression induced by N-ethylmaleimide. Dithiothreitol or cysteine also blocked the depression of mitochondrial creatine kinase activity caused by xanthine plus xanthine oxidase or hydrogen peroxide. These results lead us to conclude that oxygen free radicals may inhibit mitochondrial creatine kinase activity by modifying sulfhydryl groups in the enzyme protein.  相似文献   

10.
The influence of carboxylic group modification with N-cyclohexyl-N'-beta-(4-methyl-morpholine)ethylcarbodiimide on the activity of creatine kinase was examined. The modification rate for M- and M'-subunits of the enzyme depends on the reagent concentration and the presence of Mg2+ ions. The process is described by linear dependences of logarithms of activity vs. time, indicating a pseudofirst order of reactions. The reagent inactivates M- and M'-subunits of the enzyme at approximately the same rate, modification being characterized by rate constants of 0.17 min-1 and K1 of 0.17 M. Mild alkaline hydrolysis (pH 9.2) of the modified enzyme leads to partial (30-60%) restoration of its activity. The addition of [14C]glycine methyl ester results in the irreversible incorporation of radioactivity into the protein. AMP and ATP gamma-(p-azido-anilide), the inhibitors acting competitively to nucleotide substrates, protect the enzyme against inactivation with the reagent, whereas creatine and creatine phosphate exert no influence on the modification rate of the enzyme. It is suggested that modification affects the aspartate or glutamate carboxyls at or near the ATP-binding sites in the M- and M'-subunits of the enzyme.  相似文献   

11.
C L Borders  J F Riordan 《Biochemistry》1975,14(21):4699-4704
Treatment of rabbit muscle creatine kinase (EC 2.4.3.2) with either butanedione in borate buffer or phenylglyoxal in Veronal buffer decreases enzymatic activity correlating with the modification of a single arginyl residue per subunit of the dimeric enzyme. Very little activity is lost when modification is performed in the presence of MgATP or MgADP. Nucleotide binding to the modified enzyme is virtually abolished as determined by ultraviolet difference spectroscopy. The data suggest that an arginyl residue plays an essential role in the enzymatic mechanism of creatine kinase, probably as a recognition site for the negatively charged oligophosphate moiety of the nucleotide.  相似文献   

12.
We have investigated (a) effects of varying proton concentration on force and shortening velocity of glycerinated muscle fibers, (b) differences between these effects on fibers from psoas (fast) and soleus (slow) muscles, possibly due to differences in the actomyosin ATPase kinetic cycles, and (c) whether changes in intracellular pH explain altered contractility typically associated with prolonged excitation of fast, glycolytic muscle. The pH range was chosen to cover the physiological pH range (6.0-7.5) as well as pH 8.0, which has often been used for in vitro measurements of myosin ATPase activity. Steady-state isometric force increased monotonically (by about threefold) as pH was increased from pH 6.0; force in soleus (slow) fibers was less affected by pH than in psoas (fast) fibers. For both fiber types, the velocity of unloaded shortening was maximum near resting intracellular pH in vivo and was decreased at acid pH (by about one-half). At pH 6.0, force increased when the pH buffer concentration was decreased from 100 mM, as predicted by inadequate pH buffering and pH heterogeneity in the fiber. This heterogeneity was modeled by net proton consumption within the fiber, due to production by the actomyosin ATPase coupled to consumption by the creatine kinase reaction, with replenishment by diffusion of protons in equilibrium with a mobile buffer. Lactate anion had little mechanical effect. Inorganic phosphate (15 mM total) had an additive effect of depressing force that was similar at pH 7.1 and 6.0. By directly affecting the actomyosin interaction, decreased pH is at least partly responsible for the observed decreases in force and velocity in stimulated muscle with sufficient glycolytic capacity to decrease pH.  相似文献   

13.
The main purpose of this study was to investigate the effect of free radicals and experimental diabetes on cytosolic creatine kinase activity in rat heart, muscle and brain. Hydrogen peroxide decreased creatine kinase activity in a dose dependent manner which was reversed by catalase. Xanthine/xanthine oxidase, which produces superoxide anion, lowered the creatine kinase activity in the same manner whose effect was protected by superoxide dismutase. N-acetylcysteine and dithiothreitol also significantly ameliorated the effect of Xanthine/xanthine oxidase and hydrogen peroxide. Experimental diabetes of twenty-one days (induced by alloxan), also caused a similar decrease in the activity of creatine kinase. This led us to the conclusion that the decrease in creatine kinase activity during diabetes could be due to the production of reactive oxygen species. The free radical effect could be on the sulfhydryl groups of the enzyme at the active sites, since addition of sulfhydryl groups like N-acetylcysteine and dithiothreitol showed a significant reversal effect.  相似文献   

14.
1. The absence of creatine was demonstrated enzymically in the hen's-egg yolk and in the albumin contrary to former reports. 2. A comparison of the results obtained by enzymic and colorimetric methods to measure creatine is presented. 3. Creatine phosphate was not detected in the yolk extracts. 4. The content of free arginine enzymically assayed was 15.7mumol in the yolk and 3.38mumol in the albumin. Arginine amounts to practically all of the guanidine compounds in the yolk and one-half of those in the albumin. 5. No glycine amidinotransferase activity was found in the egg-yolk homogenates. 6. The heart of the chick embryo does not receive creatine from the egg and the creatine kinase activity present in this organ starting from the 27th hour of incubation suggests that the enzyme is a constitutive one working probably as an adenosine triphosphatase in a way similar to the kinase isolated from rabbit skeletal muscle. 7. Liver glycine amidinotransferase activity appeared clearly after day 5 of incubation. The specific activity reached a maximum at day 12 and then declined; however, the activity per total mass of liver increased steadily during all the prenatal period. Concomitantly with this steady increase a rise in the creatine content of the whole embryo was observed. An analogous increasing relationship between total liver amidinotransferase activity and liver creatine content was also detected during the postnatal period. 8. Repression of amidinotransferase by creatine cannot be accepted as occurring under physiological conditions since an inverse relationship between the two parameters was not observed. 9. Repression of liver amidinotransferase is observed only when pharmacological concentrations of the exogenous creatine are present in the chick liver.  相似文献   

15.
The effects of ADP and phosphate on the contraction of muscle fibers.   总被引:47,自引:11,他引:36       下载免费PDF全文
The products of MgATP hydrolysis bind to the nucleotide site of myosin and thus may be expected to inhibit the contraction of muscle fibers. We measured the effects of phosphate and MgADP on the isometric tensions and isotonic contraction velocities of glycerinated rabbit psoas muscle at 10 degrees C. Addition of phosphate decreased isometric force but did not affect the maximum velocity of shortening. To characterize the effects of ADP on fiber contractions, force-velocity curves were measured for fibers bathed in media containing various concentrations of MgATP (1.5-4 mM) and various concentrations of MgADP (1-4 mM). As the [MgADP]/[MgATP] ratio in the fiber increases, the maximum velocity achieved by the fiber decreases while the isometric tension increases. The inhibition of fiber velocities and the potentiation of fiber tension by MgADP is not altered by the presence of 12 mM phosphate. The concentration of both MgADP and MgATP within the fiber was calculated from the diffusion coefficient for nucleotides within the fiber, and the rate of MgADP production within the fiber. Using the calculated values for the nucleotide concentration inside the fiber, observed values of the maximum contraction velocity could be described, within experimental accuracy, by a model in which MgADP competed with MgATP and inhibited fiber velocity with an effective Ki of 0.2-0.3 mM. The average MgADP level generated by the fiber ATPase activity within the fiber was approximately 0.9 mM. In fatigued fibers MgADP and phosphate levels are known to be elevated, and tension and the maximum velocity of contraction are depressed. The results obtained here suggest that levels of MgADP in fatigued fibers play no role in these decreases in function, but the elevation of both phosphate and H+ is sufficient to account for much of the decrease in tension.  相似文献   

16.
To define more clearly the interactions between mitochondrial creatine kinase and the adenine nucleotide translocase, the outer membrane of rat heart mitochondria was removed by digitonin, producing an inner membrane-matrix (mitoplast) preparation. This mitoplast fracton was well-coupled and contained a high specific activity of mitochondrial creatine kinase. Outer membrane permeabilization was documented by the loss of adenylate kinase, a soluble intermembrane enzyme, and by direct antibody inhibition of mitochondrial creatine kinase activity. With this preparation, we documented four important aspects of functional coupling. Kinetic studies showed that oxidative phosphorylation decreased the value of the ternary enzyme-substrate complex dissociation constant for MgATP from 140 to 16 microM. Two approaches were used to document the adenine nucleotide translocase specificity for ADP generated by mitochondrial creatine kinase. Exogenous pyruvate kinase (20 IU/ml) could not readily phosphorylate ADP produced by creatine kinase, since added pyruvate kinase did not markedly inhibit creatine + ATP-stimulated respiration. Additionally, when ADP was produced by mitochondrial creatine kinase, the inhibition of the translocase required 2 nmol of atractyloside/mg of mitoplast protein, while only 1 nmol/mg was necessary when exogenous ADP was added. Finally, the mass action ratio of the mitochondrial creatine kinase reaction exceeded the apparent equilibrium constant when ATP was supplied to the creatine kinase reaction by oxidative phosphorylation. Overall, these results are consistent with much data from intact rat heart mitochondria, and suggest that the outer membrane plays a minor role in the compartmentation of adenine nucleotides. Furthermore, since the removal of the outer membrane does not alter the unique coupling between oxidative phosphorylation and mitochondrial creatine kinase, we suggest that this cooperation is the result of protein-protein proximity at the inner membrane surface.  相似文献   

17.
Upon exposure to 8 M urea, creatine kinase from rabbit muscle exhibited a rapid increase in intrinsic fluorescence and a rapid decrease in fluorescence polarization. Polarization changes were complete after 5 min, while fluorescence changes continued for at least 15 min. Fluorescence polarization changes accompanying reassembly were complex, and appeared to involve a concentration dependent reaction. Enzyme sampled at intervals during denaturation exhibited refolding kinetics displaying two first-order rate constants, the first dependent and the second independent of the duration of exposure to urea. There was evidence for an additional renaturation step, occurring within the mixing phase of the denatured protein with solvent. Reactivation kinetics and yield of reactivated enzyme exhibited a dependency upon length of exposure to denaturant. The exposure of renaturing creatine kinase to trypsin was shown to prevent further reactivation, and provided use of a method to determine reactivation rates at discrete intervals after initiation of reassembly. The presence of 2 mM MgADP during reactivation enhanced the rate of reactivation immediately after initiation of reactivation. Reactivation was not accelerated if nucleotide substrate was added after reactivation was initiated nor did nucleotide substrate increase the overall reactivation yield. The presence of MgADP also enhanced the rate of refolding at an early stage as judged by changes in intrinsic fluorescence and resistance to tryptic hydrolysis. While in addition to MgADP, creatine phosphate accelerated resistance by refolding creatine kinase to trypsin, according to the other criteria measured, the phosphagen substrates did not promote reactivation or renaturation. The unfolding-refolding studies and role of substrate in reassembly were consistent with a mechanism involving at least two steps, possibly involving cis-trans isomerization of proline. These data also supported the suggestion that the formation of the nucleotide binding region is an early event in the refolding of creatine kinase in vitro.  相似文献   

18.
Thiamin-diphosphate (TDP) kinase which catalyzes thiamin triphosphate formation from TDP requires a low-molecular-mass cofactor in addition to ATP and Mg2+. The cofactor was isolated in a crystalline form from pig skeletal muscle and identified as creatine by proton NMR, mass spectrometry, infrared spectrometry and elemental analysis. The isolated cofactor and authentic creatine supported the same activity of partially purified TDP kinase at identical molar concentrations. Neither creatine phosphate nor creatinine showed activity as a cofactor. This is the first report showing evidence of the existence of a creatine-dependent enzyme.  相似文献   

19.
Abstract— Creatine kinase derived from rabbit brain has been re-examined with respect to its kinetic features. The enzyme from brain has lower Michaelis constants for both ADP and creatine phosphate than does the enzyme from rabbit muscle. Substrate inhibition by excess creatine phosphate occurs at a concentration approximating that found in the tissue. The enzyme from muscle is less sensitive to substrate inhibition.
The crude mitochondrial fraction from rat brain was centrifuged in a sucrose density gradient and the distribution of enzymatic activities among the subfractions was determined. The distribution of creatine kinase resembled that of two glycolytic enzymes; no evidence for a mitochondrial localization was found.  相似文献   

20.
ADP is an important regulator of hepatic metabolism. Despite its importance the level of free ADP in the liver remains controversial. Recently, we engineered transgenic mice which express high levels of creatine kinase in liver. The reaction catalyzed by creatine kinase was assumed to be at equilibrium and used to calculate a free ADP level of 0.059 mumol/g wet weight. In this report we test the equilibrium assumption by studying the free ADP level as a function of enzyme activity or substrate content. Over a 5-fold range of creatine kinase activity, from 150-800 mumol/min/g wet weight, there was no change in the free ADP level. The average value of ADP for these mice was 0.061 +/- 0.016 mumol/g wet weight. Similarly, altering hepatic creatine content from 1.6 to 30 mumol/g wet weight had no effect on the calculated total free ADP level. The average value of ADP for the creatine levels was 0.048 +/- 0.015 mumol/g wet weight. Finally, the free ADP level was calculated using the equilibrium with cyclocreatine rather than creatine as substrate. The equilibrium of the reaction with cyclocreatine lies 30 times more toward phosphorylation than does the equilibrium with creatine. A free ADP level of 0.063 +/- 0.031 mumol/g wet weight was calculated using cyclocreatine. This value is not different from that found with creatine. These results show that the equilibrium assumption used to calculate free ADP levels in transgenic mouse liver is valid, and the presence of creatine kinase does not affect ADP levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号