首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell swelling activates an outwardly rectifying anion current in numerous mammalian cell types. An extensive body of evidence indicates that the channel responsible for this current is the major pathway for volume regulatory organic osmolyte loss. Cell swelling also activates an outwardly rectifying anion current in Xenopus oocytes. Unlike mammalian cells, oocytes allow the direct study of both swelling-activated anion current and organic osmolyte efflux under nearly identical experimental conditions. We therefore exploited the unique properties of oocytes in order to examine further the relationship between anion channel activity and swelling-activated organic osmolyte transport. Swelling-activated anion current and organic osmolyte efflux were studied in parallel in batches of oocytes obtained from single frogs. The magnitude of swelling-activated anion current and organic osmolyte efflux exhibited a positive linear correlation. In addition, the two processes had similar pharmacological characteristics and activation, rundown and reactivation kinetics. The present study provides further strong support for the concept that the channel responsible for swelling-activated Cl efflux and the outwardly rectifying anion conductance is also the major pathway by which organic osmolytes are lost from vertebrate cells during regulatory volume decrease. Received: 22 April 1996/Revised: 18 December 1996  相似文献   

2.
The phenomenon of cell volume recovery following a hypo-osmotic stress mediated by intracellular osmolyte regulation is well known. In many, perhaps all, cell types, the osmolytes involved are usually inorganic ions and amino acids. The details of the regulatory mechanisms for the organic-type osmolytes are not well known. We have found that an immediate influx of external Ca2+ occurs coincident with the application of a hypo-osmotic stress into red cells of two invertebrate species. In both, the influx is initiated by the osmotic stress, not the concomitant ionic decrease. Volume recovery in clam red blood cells is blocked by phenothiazines. In addition, the effect of the phenothiazines is to reduce the amino acid efflux; the ionic portion of the volume response is unaffected. In contrast, the phenothiazines potentiate the volume recovery in worm red coelomocytes. A23187 also potentiates the volume recovery of the worm red cells. The results suggest that the Ca2+ influx is involved in the mechanism that alters cell membrane permeability permitting the amino acid efflux by a mechanism that may involve calmodulin.  相似文献   

3.
Extracellular lactate concentration rises following ischaemic stroke in both the infarcted area and in the surrounding ischaemic penumbra. We investigated the effect of lactate accumulation on glucose metabolism in cortical slices from guinea pigs initially by varying superfusion medium to tissue volumes. Stable intracellular K+ concentrations indicated that a decrease in media/ tissue volume did not impair viability of the tissue, but 13C NMR demonstrated that lactate accumulation in the superfusion medium reduced glucose oxidation with inhibition of glial metabolism via pyruvate carboxylase. The concentration of lactate which had accumulated when significant inhibition was observed was approximately 0.85 mM. In independent experiments we found that superfusion of brain slices with lactate at this concentration (even using a 'high-volume' of superfusion fluid) decreased oxygen consumption by 40 +/- 3%. K(-)-induced depolarisation partially reversed this effect. These results suggest that even low extracellular lactate concentrations may depress metabolic rates in inactive and poorly perfused brain tissue in vivo through inhibition of glial metabolism of glucose.  相似文献   

4.
In the course of adaptation of the rat kidney collecting duct cells to hypo-osmotic medium, the organic anion transporter inhibitor probenecid reduced significantly the regulatory cell volume decrease in response to a hypotonic shock. Both probenecid and hypotonic shock delayed significantly the entry into a cell of the fluorescent dye calcein, which exists as anion at neutral pH. Thus, the organic osmolyte transport plays an important role in the regulatory decrease of the principal cell volume under the hypo-osmotic conditions.  相似文献   

5.
A mechanism used by cells to regulate their volume under hypo-osmotic conditions is the release of organic osmolytes, one of which is myo-inositol. The possibility that activation of phospholipase-C-linked receptors can regulate this process has been examined for SH-SY5Y neuroblastoma cells. Incubation of cells with hypo-osmolar buffers (160-250 mOsm) led to a biphasic release of inositol which persisted for up to 4 h and could be inhibited by inclusion of anion channel blockers - results which indicate the involvement of a volume-sensitive organic anion channel. Inclusion of oxotremorine-M, a muscarinic cholinergic agonist, resulted in a marked increase (80-100%) in inositol efflux under hypo-osmotic, but not isotonic, conditions. This enhanced release, which was observed under all conditions of hypo-osmolarity tested, could be prevented by inclusion of atropine. Incubation of the cells with either the calcium ionophore, ionomycin, or the phorbol ester, phorbol 12-myristate 13-acetate, partially mimicked the stimulatory effect of muscarinic receptor activation when added singly, and fully when added together. The ability of oxotremorine-M to facilitate inositol release was inhibited by removal of extracellular calcium, depletion of intracellular calcium or down-regulation of protein kinase C. These results indicate that activation of muscarinic cholinergic receptors can regulate osmolyte release in this cell line.  相似文献   

6.
GLYT1, a glycine transporter belonging to the neurotransmitter transporter family, has recently been identified as a novel cell volume-regulatory mechanism in the earliest stages of the mouse preimplantation embryo. It apparently acts by regulating the steady-state intracellular concentration of glycine, which functions as an organic osmolyte in embryos, to balance external osmolarity and thus maintain cell volume. GLYT1 in embryos was the first mammalian organic osmolyte transporter identified that appears to function in cell volume control under conditions of normal osmolarity, rather than being a response to the stress of chronic hypertonicity. Its maximal rate of transport was shown to be regulated by osmolarity. However, it was not known whether this osmotic regulation of the rate of glycine transport is sufficient to account for the observed control of steady-state intracellular glycine levels as a function of osmolarity in embryos. Here, we show that the intracellular accumulation of glycine in embryos is a direct function of the rate of glycine uptake via GLYT1. In addition, we have shown that the rate of efflux, likely via the volume-regulated anion and organic osmolyte channel in embryos, is also under osmotic regulation and contributes substantially to the control of steady-state glycine concentrations. Together, control of both the rate of uptake and rate of efflux of glycine underlies the mechanism of osmotic regulation of the steady-state concentration of glycine and hence cell volume in early embryos.  相似文献   

7.
Abstract— The effects of hyperosmolal superfusion upon the release of preloaded, radio-labeled GABA has been studied, using both first cortical and first pontine brain slices. GABA release was stimulated with either hyperosmolal Na+ or sucrose superfusion in cortical slices. This stimulated release of radio-labeled GABA was partially Ca2+-dependent in cortical slices. When barium ions replaced Ca2+ in hyperosmolal medium, a similar effect was seen. High concentration of magnesium in Ca2+ -free hyperosmolal medium did not induce stimulation. The increased release of α-aminoisobutyric acid (AIBA), a non-metabolized amino acid induced by hyperosmolality, was not Ca2+-dependent.
GABA release was also stimulated with hyperosmolal sucrose superfusion in pontine slices. The effect of pre-treatment of cortical and pontine slices with β-alanine or L-2,4-diaminobutyric acid (DABA) was used to study the source of exogenous GABA release induced by hyperosmolality. In cortical slices, β-alanine blocked the hyperosmolal release of GABA and also slightly inhibited GABA uptake. DABA did not change hyperosmolal GABA release, although it inhibited GABA uptake. In pontine slices, both DABA and β-alanine inhibited GABA uptake, but were unable to inhibit the hyperosmolal release of GABA.
The data suggest that hyperosmolality causes increased release of GABA from neurons, analogous to that seen with K+-depolarization. AIBA, unlike GABA, is released from brain cells as a non-Ca2+ -dependent response to osmotic equilibration. The observation that pre-treatment with β-alanine inhibits the hyperosmolal release of GABA suggests that hyperosmolality alters glial cell function.  相似文献   

8.
9.
Human Intestine 407 cells respond to osmotic cell swelling by the activation of Cl(-)- and K(+)-selective ionic channels, as well as by stimulating an organic osmolyte release pathway readily permeable to taurine and phosphocholine. Unlike the activation of volume-regulated anion channels (VRAC), activation of the organic osmolyte release pathway shows a lag time of approximately 30-60 s, and its activity persists for at least 8-12 min. In contrast to VRAC activation, stimulation of organic osmolyte release did not require protein tyrosine phosphorylation, active p21(rho), or phosphatidylinositol 3-kinase activity and was insensitive to Cl(-) channel blockers. Treatment of the cells with putative organic anion transporter inhibitors reduced the release of taurine only partially or was found to be ineffective. The efflux was blocked by a subclass of organic cation transporter (OCT) inhibitors (cyanine-863 and decynium-22) but not by other OCT inhibitors (cimetidine, quinine, and verapamil). Brief treatment of the cells with phorbol esters potentiated the cell swelling-induced taurine efflux, whereas addition of the protein kinase C (PKC) inhibitor GF109203X largely inhibited the response, suggesting that PKC is involved. Increasing the level of intracellular Ca(2+) by using A-23187- or Ca(2+)-mobilizing hormones, however, did not affect the magnitude of the response. Taken together, the results indicate that the hypotonicity-induced efflux of organic osmolytes is independent of VRAC and involves a PKC-dependent step.  相似文献   

10.
The aim of this study was to determine whether hypo-osmolarity, which activates taurine transport through the volume-sensitive organic osmolyte channel in skate (Raja erinacea) erythrocytes, also activates the organic osmolyte channel activity of skate AE1 (skAE1) expressed in oocytes. When Xenopus laevis oocytes expressing skAE1 were incubated in hypo-osmotic ND 96 (210 mOsm) media, taurine was transported at a significantly higher rate than when incubated in ND 96 (235 mOsm), which is iso-osmotic to Xenopus plasma. Therefore, hypo-osmotic stress is part of the activation mechanism of the organic osmolyte channel in skAE1 expressing oocytes.  相似文献   

11.
Taurine is an important osmolyte involved in cell volume regulation. During regulatory volume decrease it is released via a volume-sensitive organic osmolyte/anion channel. Several molecules have been suggested as candidates for osmolyte release. In this study, we chose three of these, namely ClC-2, ClC-3 and ICln, because of their expression in rat astrocytes, a cell type which is known to release taurine under hypotonic stress, and their activation by hypotonic shock. As all three candidates were also suggested to be chloride channels, we investigated their permeability for both chloride and taurine under isotonic and hypotonic conditions using the Xenopus laevis oocyte expression system. We found a volume-sensitive increase of chloride permeability in ClC-2-expressing oocytes only. Yet, the taurine permeability was significantly increased under hypotonic conditions in oocytes expressing any of the tested candidates. Further experiments confirmed that the detected taurine efflux does not represent unspecific leakage. These results suggest that ClC-2, ClC-3 and ICln either participate in taurine transport themselves or upregulate an endogenous oocyte osmolyte channel. In either case, the taurine efflux of oocytes not being accompanied by an increased chloride flux suggests that taurine and chloride can be released via two separate pathways.  相似文献   

12.
Abstract: Excitatory amino acids are an important cause of cell death in the hypoxic and ischaemic brain. Neuronal glutamate stores are depleted rapidly in hypoxia, but alanine production rises under such conditions and has been suggested to be a potential precursor of glutamate. To test this hypothesis, we have investigated amino acid metabolism using 13C NMR with superfused guinea pig cortical slices subjected to varying degrees of hypoxia. During severe hypoxia, brain slices metabolising 5 m M [2-13C]pyruvate exported [2-13C]alanine into the superfusion fluid. The metabolic fate of alanine during normoxia and hypoxia was tested by superfusion of brain slices with 10 m M glucose and 2 m M [2-13C, 15N]alanine. Metabolism of exogenous alanine leads to the release of aspartate into the superfusion fluid. The pattern of labelling of aspartate indicated that it was synthesised via the glial-specific enzyme pyruvate carboxylase. 13C-labelled glutamate was produced with both normoxia and hypoxia, but concentrations were 30-fold lower than for labelled aspartate. Thus, although substantial amounts of glutamate are not synthesised from alanine in hypoxia, there is significant production of aspartate, which also may have deleterious effects as an excitatory amino acid.  相似文献   

13.
The aims of this study were to determine the pathway of swelling-activated trimethylamine oxide (TMAO) efflux and its regulation in spiny dogfish (Squalus acanthias) red blood cells and compare the characteristics of this efflux pathway with the volume-activated osmolyte (taurine) channel present in erythrocytes of fishes. The characteristics of the TMAO efflux pathway were similar to those of the taurine efflux pathway. The swelling-activated effluxes of both TMAO and taurine were significantly inhibited by known anion transport inhibitors (DIDS and niflumic acid) and by the general channel inhibitor quinine. Volume expansion by hypotonicity, ethylene glycol, and diethyl urea activated both TMAO and taurine effluxes similarly. Volume expansion by hypotonicity, ethylene glycol, and diethyl urea also stimulated the activity of tyrosine kinases p72syk and p56lyn, although the stimulations by the latter two treatments were less than by hypotonicity. The volume activations of both TMAO and taurine effluxes were inhibited by tyrosine kinase inhibitors, suggesting that activation of tyrosine kinases may play a role in activating the osmolyte effluxes. These results indicate that the volume-activated TMAO efflux occurs via the organic osmolyte (taurine) channel and may be regulated by the volume activation of tyrosine kinases.  相似文献   

14.
The efflux of [3H]noradrenaline (NA) and of the non transmitter, non metabolizable, amino acid [14C]α-aminoisobutyrate (AIB), was followed simultaneously from superfused rat brain cortex thin slices, that had been preloaded with those substances. Short (2 min) “pulses” of increasing veratridine concentrations were applied at 10 min intervals. When calcium in the superfusion fluid was 1 mM, [3H]NA efflux increased progressively with pulses of 1, 3, 10 and 30 μM veratridine, but further increase to 100 μM resulted in a decrease of the induced 3H-efflux. Veratridine-enhanced [3H]NA efflux decreased considerably in 0.1 mM calcium and was virtually suppressed when no calcium was added to the superfusion fluid. In 1 mM calcium, the efflux of [14C] AIB was increased progressively by pulses of 10, 30 and 100 μM veratridine, but no increase in efflux was seen with 1 or 3 μM drug. In 0.1 mM, or without added calcium, the induced efflux of [14C]AIB was markedly increased. Similar findings were seen when a long (10 min) pulse of 10 μM veratridine was given. After such long pulses there was a rapid return of AIB efflux to pre-veratridine levels if calcium was 1 mM, but in the absence of added calcium, the return to baseline levels of both [3H]NA and, especially, that of [14C]AIB efflux, was greatly impaired. The veratridine enhanced efflux of both NA and AIB was entirely blocked by 1 μM tetrodotoxin.  相似文献   

15.
A variety of physiological and pathological factors induce cellular swelling in the brain. Changes in cell volume activate several types of ion channels, which mediate the release of inorganic and organic osmolytes and allow for compensatory cell volume decrease. Volume-regulated anion channels (VRAC) are thought to be responsible for the release of some of organic osmolytes, including the excitatory neurotransmitters glutamate and aspartate. In the present study, we compared the in vivo properties of the swelling-activated release of glutamate, aspartate, and another major brain osmolyte taurine. Cell swelling was induced by perfusion of hypoosmotic (low [NaCl]) medium via a microdialysis probe placed in the rat cortex. The hypoosmotic medium produced several-fold increases in the extracellular levels of glutamate, aspartate and taurine. However, the release of the excitatory amino acids differed from the release of taurine in several respects including: (i) kinetic properties, (ii) sensitivity to isoosmotic changes in [NaCl], and (iii) sensitivity to hydrogen peroxide, which is known to modulate VRAC. Consistent with the involvement of VRAC, hypoosmotic medium-induced release of the excitatory amino acids was inhibited by the anion channel blocker DNDS, but not by the glutamate transporter inhibitor TBOA or Cd2+, which inhibits exocytosis. In order to elucidate the mechanisms contributing to taurine release, we studied its release properties in cultured astrocytes and cortical synaptosomes. Similarities between the results obtained in vivo and in synaptosomes suggest that the swelling-activated release of taurine in vivo may be of neuronal origin. Taken together, our findings indicate that different transport mechanisms and/or distinct cellular sources mediate hypoosmotic medium-induced release of the excitatory amino acids and taurine in vivo.  相似文献   

16.
Tissue slices of shark rectal gland are studied to examine the kinetics of the cellular fluxes of taurine, a major intracellular osmolyte in this organ. Maintenance of high steady-state cell taurine (50 mM) is achieved by a ouabain-sensitive active Na+-dependent uptake process and a relatively slow efflux. Uptake kinetics are described by two saturable taurine transport components (high-affinity, Km 60 microM; and low-affinity, Km 9 mM). [14C]Taurine uptake is enhanced by external Cl-, inhibited by beta-alanine and unaffected by inhibitors of the Na+/K+/2Cl- co-transport system. Two cellular efflux components of taurine are documented. Incubation of slices in p-chloromercuribenzene sulfonate (1 mM) reduces taurine uptake, increases efflux of taurine and induces cell swelling. Studies of efflux in isotonic media with various cation and anion substitutions demonstrate that high-K+ markedly enhances taurine efflux irrespective of cell volume changes (i.e. membrane stretching is not involved). Moreover, iso-osmotic cell swelling induced in media containing propionate is not associated with enhanced efflux of taurine from the cells. It is suggested that external K+ exerts a specific effect on the cytoplasmic membrane to increase its permeability to taurine.  相似文献   

17.
Excitatory amino acid release and neurotoxicity in the ischemic brain may be reduced by endogenously released adenosine which can modulate both glutamate or aspartate release and depress neuronal excitability. The present study reports on the patterns of release of glutamate and aspartate; the inhibitory amino acids GABA and glycine; and of the purine catabolites adenosine and inosine from the rat parietal cerebral cortex during 20 and 60 min periods of middle cerebral artery (MCA) occlusion followed by reperfusion. Aspartate and glutamate efflux into cortical superfusates rose steadily during the period of ischemia and tended to increase even further during the subsequent 40 min of reperfusion. GABA release rose during ischemia and declined during reperfusion, whereas glycine efflux was relatively unchanged during both ischemia and reperfusion. Adenosine levels in cortical superfusates rose rapidly at the onset of ischemia and then declined even though MCA occlusion was continued. Recovery to pre-occulusion levels was rapid following reperfusion. Inosine efflux also increased rapidly, but its decline during reperfusion was slower than that of adenosine.  相似文献   

18.
The roles of various inorganic ions and taurine, an organic osmolyte, in cell volume regulation were investigated in the perfused liver of a freshwater air-breathing catfishClarias batrachus under aniso-osmotic conditions. There was a transient increase and decrease of liver cell volume following hypotonic (-80 mOsmol/l) and hypertonic (+80 mOsmol/l) exposures, respectively, which gradually decreased/increased near to the control level due to release/ uptake of water within a period of 25–30 min. Liver volume decrease was accompanied by enhanced efflux of K+ (9.45 ± 0.54 μmol/g liver) due to activation of Ba2+- and quinidine-sensitive K+ channel, and to a lesser extent due to enhanced efflux of Cl- (4.35 ± 0.25 μmol/g liver) and Na+ (3.68 ± 0.37 μmol/g liver). Conversely, upon hypertonic exposure, there was amiloride- and ouabain-sensitive uptake of K+(9.78 ± 0.65 μmol/g liver), and also Cl- (3.72 ± 0.25 μmol/g liver). The alkalization/acidification of the liver effluents under hypo-/hypertonicity was mainly due to movement of various ions during volume regulatory processes. Taurine, an important organic osmolyte, appears also to play a very important role in hepatocyte cell volume regulation in the walking catfish as evidenced by the fact that hypo- and hyper-osmolarity caused transient efflux (5.68 ± 0.38 μmol/g liver) and uptake (6.38 ± 0.45 μmol/g liver) of taurine, respectively. The taurine efflux was sensitive to 4,4′-di-isothiocyanatostilbene-2,2′-disulphonic acid (DIDS, an anion channel blocker), but the uptake was insensitive to DIDS, thus indicating that the release and uptake of taurine during volume regulatory processes are unidirectional. Although the liver of walking catfish possesses the RVD and RVI mechanisms, it is to be noted that liver cells remain partly swollen and shrunken during anisotonic exposures, thereby possibly causing various volume-sensitive metabolic changes in the liver as reported earlier.  相似文献   

19.
1. The effects of unconjugated bilirubin on rat renal tissue metabolism and organic anion transport were investigated using cortical slices. 2. Unconjugated bilirubin in the medium decreased slice-to-medium ratio of p-aminohippurate, altered intracellular Na+ and K+, and decreased ATP content without modifications of (Na+-K+) ATPase. 3. The effects were similar to those of ethacrynic acid and cyanide but less marked. 4. The presence of probenecid blocked the effect of pigment on intracellular electrolytes. 5. The results suggest that pigment is taken up by renal tissue using the organic anion transport system, and within the cell inhibits ATP production.  相似文献   

20.
Early preimplantation mouse embryos are susceptible to the detrimental effects of increased osmolarity and, paradoxically, their in vitro development is significantly compromised by osmolarities near that of oviductal fluid. In vitro development can be restored, however, by several compounds that are accumulated by 1-cell embryos to act as organic osmolytes, providing intracellular osmotic support and cell volume regulation. Taurine, a substrate of the beta-amino acid transporter that functions as an organic osmolyte transporter in other cells, had been proposed to function as an organic osmolyte in mouse embryos. Here, however, we found that taurine is neither able to provide protection for in vitro embryo development against increased osmolarity nor is it accumulated to higher intracellular levels as osmolarity is increased, indicating that it cannot function as an organic osmolyte in early preimplantation embryos. In contrast, beta-alanine, the other major substrate of the beta-amino acid transporter, both protects against increased osmolarity and is accumulated to somewhat higher levels as osmolarity is increased, indicating that it is able to function as an organic osmolyte in embryos. However, we also found that beta-alanine is displaced from embryos by glycine-the most effective organic osmolyte in embryos previously identified-and beta-alanine does not increase protection above that afforded by glycine at concentrations near those in vivo. Thus, the beta-amino acid transporter is likely present in early preimplantation embryos to supply beta-amino acids such as taurine for purposes other than to serve as organic osmolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号