首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytochrome P-450 is present in the endoplasmic reticulum at varying concentrations in almost all tissues. However, the existence and role of cytochrome P-450 in normal and neoplastic reproductive tissues has not been clearly demonstrated. Our interest lies in the possibility that variations in cytochrome P-450 levels may influence the responsiveness of breast and endometrial carcinomas to endocrine therapy. This may be of particular importance with agents such as tamoxifen where hydroxylation reactions are known to alter therapeutic activities. Therefore, a simple, sensitive spectrophotometric assay for determining levels of cytochrome P-450-dependent cyclohexane hydroxylase activity in breast and uterine microsomes has been developed. Cyclohexane was chosen as a substrate because of the relatively high levels of cyclohexane hydroxylase activity in tumor microsomes and because cyclohexane serves as a substrate for several forms of cytochrome P-450. In order to confirm the results of the spectrophotometric assay, a direct method utilizing isotope dilution gas chromatography/mass spectrometry (GC/MS) has been developed for detecting low levels of the hydroxylated product, cyclohexanol. By employing a stable isotopically labeled analog of cyclohexanol (cyclohexanol-d12), good agreement was demonstrated between the simple, indirect method (measuring NADPH oxidation at 340 nm) and the more complex, direct method (measuring cyclohexanol formation) utilizing GC/MS. The agreement of results obtained using these two techniques indicates that they are equally valid measures of NADPH-dependent cyclohexane hydroxylase activity. The use of the spectrophotometric method is proposed for rapid, multiple assays such as in the clinical setting, reserving GC/MS analysis for use as a research tool.  相似文献   

2.
In order to distinguish between the mechanism of microsomal ethanol oxidation and hydroxyl-radical formation, the rate of cytochrome P-450 (P-450)-dependent oxidation of dimethyl sulphoxide (Me2SO) was determined in the presence and in the absence of iron-chelating compounds, in liver microsomes from control, ethanol- and phenobarbital-treated rats. Ethanol treatment resulted in a specific increase (3-fold) of the microsomal ethanol oxidation and NADPH consumption per nmol of P-450. A form of P-450 was purified to apparent homogeneity from the ethanol-treated rats and characterized with respect of amino acid composition and N-terminal amino acid sequence. Specific ethanol induction of a cytochrome P-450 species having a catalytic-centre activity of 20/min for ethanol and consuming 30 nmol of NADPH/min could account for the results observed with microsomes. Phenobarbital treatment caused 50% decrease in the rate of ethanol oxidation and NADPH oxidation per nmol of P-450. The rate of oxidation of the hydroxyl-radical scavenger Me2SO was increased 3-fold by ethanol or phenobarbital treatment when expressed on a per-mg-of-microsomal-protein basis, but the rate of Me2SO oxidation expressed on a per-nmol-of-P-450 basis was unchanged. Addition of iron-chelating agents to the three different types of microsomal preparations caused an 'uncoupling' of the electron-transport chain accompanied by a 4-fold increase of the rate of Me2SO oxidation. It is concluded that ethanol treatment results in the induction of P-450 forms specifically effective in ethanol oxidation and NADPH oxidation, but not in hydroxyl-radical production, as detected by the oxidation of Me2SO.  相似文献   

3.
A simple and rapid method for the determination of (S)-mephenytoin 4-hydroxylase activity by human liver microsomal cytochrome P-450 has been developed. [Methyl-14C] mephenytoin was synthesized by alkylation of S-nirvanol with 14CH3I and used as a substrate. After incubation of [methyl-14C]mephenytoin with human liver microsomes or a reconstituted monooxygenase system containing partially purified human liver cytochrome P-450, the 4-hydroxylated metabolite of mephenytoin was separated by thin-layer chromatography and quantified. The formation of the metabolite depended on the incubation time, substrate concentration, and cytochrome P-450 concentration and was found to be optimal at pH 7.4. The Km and Vmax rates obtained with a human liver microsomal preparation were 0.1 mM and 0.23 nmol 4-hydroxymephenytoin formed/min/nmol cytochrome P-450, respectively. The hydroxylation activity showed absolute requirements for cytochrome P-450, NADPH-cytochrome P-450 reductase, and NADPH in a reconstituted monooxygenase system. Activities varied from 5.6 to 156 pmol 4-hydroxymephenytoin formed/min/nmol cytochrome P-450 in 11 human liver microsomal preparations. The basic system utilized for the analysis of mephenytoin 4-hydroxylation can also be applied to the estimation of other enzyme activities in which phenol formation occurs.  相似文献   

4.
(1) We evaluated the involvement of brain mitochondrial and microsomal cytochrome P-450 in the metabolization of known porphyrinogenic agents, with the aim of improving the knowledge on the mechanism leading to porphyric neuropathy. We also compared the response in brain, liver and kidney. To this end, we determined mitochondrial and microsomal cytochrome P-450 levels and the activity of NADPH cytochrome P-450 reductase. (2) Animals were treated with known porphyrinogenic drugs such as volatile anaesthetics, allylisopropylacetamide, veronal, griseofulvin and ethanol or were starved during 24 h. Cytochrome P-450 levels and NADPH cytochrome P-450 reductase activity were measured in mitochondrial and microsomal fractions from the different tissues. (3) Some of the porphyrinogenic agents studied altered mitochondrial cytochrome P-450 brain but not microsomal cytochrome P-450. Oral griseofulvin induced an increase in mitochondrial cytochrome P-450 levels, while chronic Isoflurane produced a reduction on its levels, without alterations on microsomal cytochrome P-450. Allylisopropylacetamide diminished both mitochondrial and microsomal cytochrome P-450 brain levels; a similar pattern was detected in liver. Mitochondria cytochorme P-450 liver levels were only diminished after chronic Isoflurane administration. In kidney only mitochondrial cytochrome P-450 levels were modified by veronal; while in microsomes, only acute anaesthesia with Enflurane diminished cytochrome P-450 content. (4) Taking into account that δ-aminolevulinic acid would be responsible for porphyric neuropathy, we investigated the effect of acute and chronic δ-aminolevulinic acid administration. Acute δ-aminolevulinic acid administration reduced brain and liver cytochrome P-450 levels in both fractions; chronic δ-aminolevulinic acid administration diminished only liver mitochondrial cytochrome P-450. (5) Brain NADPH cytochrome P-450 reductase activity in animals receiving allylisopropylacetamide, dietary griseofulvin and δ-aminolevulinic acid showed a similar profile as that for total cytochrome P-450 levels. The same response was observed for the hepatic enzyme. (6) Results here reported revealed differential tissue responses against the xenobiotics assayed and give evidence on the participation of extrahepatic tissues in porphyrinogenic drug metabolization. These studies have demonstrated the presence of the integral Phase I drug metabolizing system in the brain, thus, total cytochrome P-450 and associated monooxygenases in brain microsomes and mitochondria would be taken into account when considering the xenobiotic metabolizing capability of this organ. Dedicated to the memory of Dr. Susana Afonso  相似文献   

5.
Renal microsomal cytochrome P-450-dependent arachidonic acid metabolism was correlated with the level of cytochrome P-450 in the rabbit kidney. Cobalt, an inducer of haem oxygenase, reduced cytochrome P-450 in both the cortex and medulla in association with a 2-fold decrease in aryl-hydrocarbon hydroxylase, an index of cytochrome P-450 activity, and a similar decrease in the formation of cytochrome P-450-dependent arachidonic acid metabolites by renal microsomes (microsomal fractions). Formation of the latter was absolutely dependent on NADPH addition and was prevented by SKF-525A, an inhibitor of cytochrome P-450-dependent enzymes. Arachidonate metabolites of cortical microsomes were identified by g.c.-m.s. as 20- and 19-hydroxyeicosatetraenoic acid, 11,12-epoxyeicosatrienoic acid and 11,12-dihydroxyeicosatrienoic acid. The profile of arachidonic acid metabolites was the same for the medullary microsomes. Induction of cytochrome P-450 by 3-methylcholanthrene and beta-naphthoflavone increased cytochrome P-450 content and aryl-hydrocarbon hydroxylase activity by 2-fold in the cortex and medulla, and this correlated with a 2-fold increase in arachidonic acid metabolites via the cytochrome P-450 pathway. These changes can also be demonstrated in cells isolated from the medullary segment of the thick ascending limb of the loop of Henle, which previously have been shown to metabolize arachidonic acid specifically via the cytochrome P-450-dependent pathway. The specific activity for the formation of arachidonic acid metabolites by this pathway is higher in the kidney than in the liver, the highest activity being in the outer medulla, namely 7.9 microgram as against 2.5 micrograms of arachidonic acid transformed/30 min per nmol of cytochrome P-450 for microsomes obtained from outer medulla and liver respectively. These findings are consistent with high levels of cytochrome P-450 isoenzyme(s), specific for arachidonic acid metabolism, primarily localized in the outer medulla.  相似文献   

6.
NADPH cytochrome c (P-450) reductase was purified from human placental microsomes using a combination of affinity and gel filtration chromatography. Affinity chromatography using agarose-hexane-adenosine 2'5 diphosphate resulted in two protein bands being detected by SDS-PAGE of approximate MwS 68 and 75 kDa. Fractions containing the two proteins were pooled, and then resolved using Sephacryl S-200. Both of the purified proteins displayed enzyme activity, measured by their ability to reduce cytochrome c. The 75 kDa protein obtained was used to immunize three female New Zealand white rabbits. The IgG fraction was partly purified from rabbit sera which suppressed placental microsomal NADPH cytochrome c reductase activity by > 80% using 33% ammonium sulphate. The procured antibody suppressed androstenedione aromatase activity in microsomal preparations of human placental and breast adipose tissue, and NADPH cytochrome c reductase activity in prostate (benign and malignant), MDA-MB-231 breast cancer cells, breast adipose, Hep G2 hepatoma cells and placental microsomal preparations. The extent of NADPH cytochrome c reductase inhibition varied in the order of malignant prostate < benign prostate < MDA < breast adipose < Hep G2 < placenta. The results suggest that human placental NADPH cytochrome c (P-450) reductase shares common antigenic epitopes pertinent to its capability of reducing cytochrome c in all of the above-mentioned tissues. In attempting to associate possible changes in NADPH cytochrome c reductase activity imposed by neoplasia to the obtained immunochemical cross reactivity and enzyme activity results, it was noted that microsomes obtained from MDA cells exhibited enzyme activity significantly less than that of breast adipose microsomes (1.6 and 8.1 nmol/min/mg protein, respectively) and by comparison showed 6% less homology towards the placental antibody. The results obtained for benign and malignant prostate showed no significant difference between the neoplastic states as adjudged by enzyme activity and immunochemical assays.  相似文献   

7.
The kinetics of chromate reduction by liver microsomes isolated from rats pretreated with phenobarbital or 3-methylcholanthrene with NADPH or NADH cofactor have been followed. Induction of cytochrome P-450 and NADPH-cytochrome P-450 reductase activity in microsomes by phenobarbital pretreatment caused a decrease in the apparent chromate-enzyme dissociation constant, Km, and an increase in the apparent second-order rate constant, kcat/Km, but did not affect the kcat of NADPH-mediated microsomal metabolism of chromate. Induction of cytochrome P-448 in microsomes by 3-methylcholanthrene pretreatment did not affect the kinetics of NADPH-mediated reduction of chromate by microsomes. The kinetics of NADH-mediated microsomal chromate reduction were unaffected by the drug treatments. The effects of specific enzyme inhibitors on the kinetics of microsomal chromate reduction have been determined. 2'-AMP and 3-pyridinealdehyde-NAD, inhibitors of NADPH-cytochrome P-450 reductase and NADH-cytochrome b5 reductase, inhibited the rate of microsomal reduction of chromate with NADPH and NADH. Metyrapone and carbon monoxide, specific inhibitors of cytochrome P-450, inhibited the rate of NADPH-mediated microsomal reduction of chromate, whereas high concentrations of dimethyl-sulfoxide (0.5 M) enhanced the rate. These results suggest that the electron-transport cytochrome P-450 system is involved in the reduction of chromate by microsomal systems. The NADPH and NADH cofactors supply reducing equivalents ultimately to cytochrome P-450 which functions as a reductase in chromate metabolism. The lower oxidation state(s) produced upon chromate reduction may represent the ultimate carcinogenic form(s) of chromium. These studies provide evidence for the role of cytochrome P-450 in the activation of inorganic carcinogens.  相似文献   

8.
The ethanol-inducible form of cytochrome P-450 (P-450IIE1) has previously been shown to exhibit an unusually high rate of oxidase activity with the subsequent formation of reactive oxygen species, e.g., hydrogen peroxide, and to be the main contributor of microsomal oxidase activity in liver microsomes from acetone-treated rats [Ekstr?m & Ingelman-Sundberg (1989) Biochem. Pharmacol. (in press)]. The results here presented indicate that oxygen exposure of rats causes an about 4-fold induction of P-450IIE1 in rat liver and lung microsomes. The induction in liver was not accompanied by any measurable increase in the P-450IIE1 mRNA levels, but the enhanced amount of P-450IIE1 accounted for 60% of the net 50% increase in the level of hepatic P-450 as determined spectrophotometrically. The induction of P-450IIE1 was maximal after 60 h of O2 exposure, and concomitant increases in the rates of liver microsomal CCl4-dependent lipid peroxidation, O2 consumption, NADPH oxidation, O2- formation, H2O2 production, and NADPH-dependent microsomal lipid peroxidation were seen. Liver microsomes from oxygen-treated rats had very similar properties to those of microsomes isolated from acetone-treated rats with respect to the P-450IIE1 content and catalytic properties, but different from those of thyroxine-treated animals. Treatment of rats with the P-450IIE1 inducer acetone in combination with oxygen exposure caused a potentiation of the NADPH-dependent liver and lung microsomal lipid peroxidation and decreased the survival time of the rats. The results reached indicate a role for cytochrome P-450 and, in particular, for cytochrome P-450IIE1 in oxygen-mediated tissue toxicity.  相似文献   

9.
A new method was employed for the purification of cytochrome P-450 from rat liver microsomes. The purified cytochrome was essentially free from possible contaminants and the recovery and degree of purification were high. Although 15% of the original P-450 was recovered through the purification procedure used, only 0.8% of the total original microsomal ethanol oxidation activity was associated with this fraction. Addition of this purified fraction to other fractions isolated did not further stimulate ethanol oxidation. The component of rat liver microsomes that was found most efficient in the oxidation of ethanol was the mixture of catalase and NADPH - cytochrome c - reductase. It is concluded that highly purified cytochrome P-450 by itself does not oxidize ethanol to any appreciable degree.  相似文献   

10.
We have developed a specific radioimmunoassay to quantify NADPH: cytochrome P-450 reductase. The assay is based on the use of 125I-labelled NADPH: cytochrome P-450 reductase as the radiolabelled antigen and can detect quantities of this protein in amounts as low as 30 pg. The results of the radioimmunoassay demonstrates that the 2.7-fold increase in enzyme activity in rat liver microsomal membranes after phenobarbital treatment is due to increased amounts of the protein. beta-Naphthoflavone treatment, however, did not alter the activity or the quantity of this enzyme in microsomes. The quantification of NADPH: cytochrome P-450 reductase in the microsomes isolated from control and phenobarbital- and beta-naphthoflavone-treated animals permits the calculation of the ratio of this protein to that of total cytochromes P-450. A molar ratio of 15:1 (cytochromes P-450/NADPH: cytochrome P-450 reductase) was calculated for control and phenobarbital-treated animals. This ratio increased to 21:1 after beta-naphthoflavone treatment. Thus the molar ratio of these proteins in liver microsomes can vary with exposure of the animals to particular xenobiotics.  相似文献   

11.
We have previously shown that uroporphyrinogen is oxidized to uroporphyrin by microsomes (microsomal fractions) from 3-methylcholanthrene-pretreated chick embryo liver [Sinclair, Lambrecht & Sinclair (1987) Biochem. Biophys. Res. Commun. 146, 1324-1329]. We report here that a specific antibody to chick liver methylcholanthrene-induced cytochrome P-450 (P-450) inhibited both uroporphyrinogen oxidation and ethoxyresorufin O-de-ethylation in chick-embryo liver microsomes. 3-Methylcholanthrene-pretreatment of rats and mice markedly increased uroporphyrinogen oxidation in hepatic microsomes as well as P-450-mediated ethoxyresorufin de-ethylation. In rodent microsomes, uroporphyrinogen oxidation required the addition of NADPH, whereas chick liver microsomes required both NADPH and 3,3',4,4'-tetrachlorobiphenyl. Treatment of rats with methylcholanthrene, hexachlorobenzene and o-aminoazotoluene increased uroporphyrinogen oxidation and P-450d, whereas phenobarbital did not increase either. The contribution of hepatic P-450c and P-450d to uroporphyrinogen oxidation and ethoxyresorufin O-de-ethylation in methylcholanthrene-induced microsomes was assessed by using specific antibodies to P-450c and P-450d. Uroporphyrinogen oxidation by methylcholanthrene-induced rat liver microsomes was inhibited up to 75% by specific antibodies to P-450d, but not by specific antibodies to P-450c. In contrast, ethoxyresorufin de-ethylation was inhibited only 20% by anti-P450d but 70% by anti-P450c. Methylcholanthrene-induced kidney microsomes which contain P-450c but non P-450d did not oxidize uroporphyrinogen. These data indicate that hepatic P-450d catalyses uroporphyrinogen oxidation. We suggest that the P-450d-catalysed oxidation of uroporphyrinogen has a role in the uroporphyria caused by hexachlorobenzene and other compounds.  相似文献   

12.
Preincubation of mouse liver microsomes with NADPH resulted in malondialdehyde formation, destruction of cytochrome P-450, and decreased rates of aniline hydroxylation and N-demethylation of aminopyrine and ethylmorphine. These phenomena were more pronounced in phosphate than in Tris buffer. No reduction in rates of NADPH-linked oxidation of ethanol or in the activities of NADPH oxidase and NADPH-cytochrome c reductase was observed. While addition of EDTA to preincubation mixtures prevented lipid peroxidation, loss of cytochrome P-450, and inactivation of the drug-metabolizing capacity of microsomes, it did not alter ethanol oxidation rates and the activities of NADPH oxidase and NADPH-cytochrome c reductase. These findings argue against the involvement of cytochrome P-450 in the microsomal ethanol-oxidizing system.  相似文献   

13.
The fractionation of the liver of goldfish (Carassius auratus) was studied, and the properties of the microsomal fraction were examined. The microsomal fraction contained cytochrome P-450 and catalyzed the oxidation of aminopyrine, aniline, 7-ethoxycoumarin and benzo(a)pyrene. The oxidation activities were significantly lower than those of rat liver microsomes. The titration of cytochrome P-450 by potassium cyanide indicated the presence of multiple forms of cytochrome P-450 in goldfish liver microsomes. Feeding of goldfish with 3-methylcholanthrene-containing food greatly induced benzo(a)pyrene hydroxylation activity of the liver microsomes. The Soret peak of the carbon monoxide compound of cytochrome P-450 was shifted from 450 to 448 nm.  相似文献   

14.
Debromination of 1,2-dibromoethane (DBE) by a rabbit liver microsomal preparation and a reconstituted cytochrome P-450 enzyme system was investigated. The reaction was performed in our newly constructed reaction vessel, in which a bromide electrode was installed. During the reaction, the liberated bromide ion was continuously measured by the bromide electrode, and the amount was recorded. In the microsomal preparation, the DBE-debromination rate per nmol cytochrome P-450 was enhanced by phenobarbital-pretreatment of rabbits compared with the untreated microsomes, whereas it was diminished by 3-methylcholanthrene-pretreatment. The debromination reaction was reconstituted in a purified enzyme system containing phenobarbital-inducible rabbit liver microsomal cytochrome P-450 (P-450PB), NADPH-cytochrome P-450 reductase, and NADPH. The optimum conditions required the presence of dilauroylphosphatidylcholine and cytochrome b5. Cytochrome b5 was found not to be an obligatory component for the DBE-debromination in the reconstituted system, but it stimulated the activity about 3.4-fold. Preincubation of the reconstituted mixture with guinea pig anti-cytochrome P-450PB antiserum markedly inhibited the debromination reaction.  相似文献   

15.
The stability of hepatic microsomal drug oxidation and its associated electron transport has been studied in rabbits under conditions approximating those existing prior to human autopsy. Aminopyrine N-demethylation, aniline p-hydroxylation. NADPH cytochrome c reductase, NADPH cytochrome P-450 reductase, and the microsomal content of cytochrome P-450 declined appreciably in 2 h when microsomes were prepared from rabbit liver left in situ after death. In livers removed immediately after death and kept on ice these microsomal components remained stable for at least 4.5 h. Evidence of degeneration of human microsomes prepared from liver obtained at autopsy is discussed. The lability of hepatic microsomes from livers left in situ in these experiments or prior to autopsy is most likely secondary to slow cooling of the liver with coincidental autolysis. The possibility that the degeneration observed was due to the rapid growth of bacteria was disproved. These experiments demonstrate that care must be exercised in interpreting data obtained using microsomes from human autopsy material.  相似文献   

16.
The metabolism of the dihydropyridine calcium antagonist and vasodilator nifedipine has been reported to exhibit polymorphism among individual humans (Kleinbloesem, C. H., van Brummelen, P., Faber, H., Danhof, M., Vermeulen, N. P. E., and Breimer, D.D. (1984) Biochem. Pharmacol. 33, 3721-3724). Nifedipine oxidation has been shown to be catalyzed by cytochrome P-450 (P-450) enzymes. Reconstitution, immunoinhibition, and induction studies with rat liver indicated that the forms designated P-450UT-A and P-450PCN-E are the major contributors to microsomal nifedipine oxidation. The P-450 which oxidizes nifedipine (P-450NF) was purified to electrophoretic homogeneity from several human liver samples. Antibodies raised to P-450NF were highly specific as judged by immunoblotting analysis and inhibited greater than 90% of the nifedipine oxidase activity in human liver microsomes. A monoclonal antibody raised to the human P-450 preparation reacted with both human P-450NF and rat P-450PCN-E. Immunoblotting analysis of 39 human liver microsomal samples using anti-P-450NF antibodies revealed the same 52,000-dalton polypeptide, corresponding to P-450NF, with only one of the microsomal samples showing an additional immunoreactive protein. The level of nifedipine oxidase activity was highly correlated with the amount of P-450NF thus detected using either polyclonal (r = 0.78) or monoclonal (r = 0.65) antibodies, suggesting that the amount of the P-450NF polypeptide may be a major factor in influencing the level of catalytic activity in humans as well as rats. Cytochrome b5 enhanced the catalytic activity of reconstituted P-450NF, and anti-cytochrome b5 inhibited nifedipine oxidase activity in human liver microsomes. P-450NF also appears to be a major contributor to human liver microsomal aldrin epoxidation, d-benzphetamine N-demethylation, 17 beta-estradiol 2- and 4-hydroxylation, and testosterone 6 beta-hydroxylation, the major pathway for oxidation of this androgen in human liver microsomes.  相似文献   

17.
Adrenocortical NADPH-cytochrome P-450 reductase (EC. 1.6.2.4) was purified from bovine adrenocortical microsomes by detergent solubilization and affinity chromatography. The purified cytochrome P-450 reductase was a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, being electrophoretically homogeneous and pure. The cytochrome P-450 reductase was optically a typical flavoprotein. The absorption peaks were at 274, 380 and 45 nm with shoulders at 290, 360 and 480 nm. The NADPH-cytochrome P-450 reductase was capable of reconstituting the 21-hydroxylase activity of 17 alpha-hydroxyprogesterone in the presence of cytochrome P-45021 of adrenocortical microsomes. The specific activity of the 21-hydroxylase of 17 alpha-hydroxyprogesterone in the reconstituted system using the excess concentration of the cytochrome P-450 reductase, was 15.8 nmol/min per nmol of cytochrome P-45021 at 37 degrees C. The NADPH-cytochrome P-450 reductase, like hepatic microsomal NADPH-cytochrome P-450 reductase, could directly reduce the cytochrome P-45021. The physicochemical properties of the NADPH-cytochrome P-450 reductase were investigated. Its molecular weight was estimated to be 80 000 +/- 1000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analytical ultracentrifugation. The cytochrome P-450 reductase contained 1 mol each FAD and FMN as coenzymes. Iron, manganese, molybdenum and copper were not detected. The Km values of NADPH and NADH for the NADPH-cytochrome c reductase activity and those of cytochrome c for the activity of NADPH-cytochrome P-450 reductase were determined kinetically. They were 5.3 microM for NADPH, 1.1 mM for NADH, and 9-24 microM for cytochrome c. Chemical modification of the amino acid residues showed that a histidyl and cysteinyl residue are essential for the binding site of NADPH of NADPH-cytochrome P-450 reductase.  相似文献   

18.
Incubation of R(+)-[14C]pulegone with rat liver microsomes in the presence of NADPH resulted in covalent binding of radioactive material to macromolecules. Covalent binding was much higher in phenobarbital-treated microsomes as compared to 3-methylcholanthrene treated or control microsomes. The Km and Vmax of covalent binding was 0.4 mM and 1.7 nmol min-1 mg-1, respectively. Covalent binding was drastically inhibited (93%) in the presence of piperonyl butoxide. Antibodies to phenobarbital-induced cytochrome P-450 and NADPH-cytochrome P-450 reductase inhibited covalent binding to an extent of 72% and 47%, respectively. Cysteine and semicarbazide also inhibited NADPH dependent binding of radiolabel from R(+)-[14C]pulegone to microsomal proteins. The results suggest the involvement of liver microsomal cytochrome P-450 in the bioactivation of R(+)-pulegone to reactive metabolite(s) which might be responsible for covalent binding to macromolecules resulting in toxicity.  相似文献   

19.
The enzymatic oxidation of tetrachloro-1,4-hydroquinone (1,4-TCHQ), resulting in covalent binding to protein of tetrachloro-1,4-benzoquinone (1,4-TCBQ), was investigated, with special attention to the involvement of cytochrome P-450 and reactive oxygen species. 1,4-TCBQ itself reacted very rapidly and extensively with protein (58% of the 10 nmol added to 2 mg of protein, in a 5-min incubation). Ascorbic acid and glutathione prevented covalent binding of 1,4-TCBQ to protein, both when added directly and when formed from 1,4-TCHQ by microsomes. In microsomal incubations as well as in a reconstituted system containing purified cytochrome P-450b, 1,4-TCHQ oxidation and subsequent protein binding was shown to be completely dependent on NADPH. The reaction was to a large extent, but not completely, dependent on oxygen (83% decrease in binding under anaerobic conditions). Inhibition of cytochrome P-450 by metyrapone, which is also known to block the P-450-mediated formation of reactive oxygen species, gave a 80% decrease in binding, while the addition of superoxide dismutase prevented 75% of the covalent binding, almost the same amount as found in anerobic incubations. A large part of the conversion of 1,4-TCHQ to 1,4-TCBQ is apparently not catalyzed by cytochrome P-450 itself, but is mediated by superoxide anion formed by this enzyme. The involvement of this radical anion is also demonstrated by microsomal incubations without NADPH but including the xantine/xantine oxidase superoxide anion generating system. These incubations resulted in a 1.6-fold binding as compared to the binding in incubations with NADPH but without xantine/xantine oxidase. 1,4-TCHQ was shown to stimulate the oxidase activity of microsomal cytochrome P-450. It is thus not unlikely that 1,4-TCHQ enhances its own microsomal oxidation.  相似文献   

20.
The presence of cytochrome P-450 and associated mono-oxygenase activities was examined in brain microsomes from male and female mice. Although the cytochrome P-450 level in male mouse brain was very low as compared with mouse liver, the aminopyrine N-demethylase and morphine N-demethylase specific activities in male mouse brain were much higher than those observed in mouse liver. Ethoxycoumarin O-de-ethylase and aniline hydroxylase activities were, however, not detected in mouse brain. Sex-related differences were observed in both the cytochrome P-450 levels and aminopyrine N-demethylase activity in mouse brain, the levels of both being higher in male mouse brain as compared with female mouse brain. Aminopyrine N-demethylase activity in mouse brain microsomes was dependent on the presence of oxygen and NADPH and could be inhibited by piperonyl butoxide, N-octyl imidazole and carbon monoxide. Antiserum raised to the phenobarbital-inducible form of rat liver cytochrome P-450 [P-450(b+e)] inhibited mouse brain aminopyrine N-demethylase activity by around 80+ mouse brain microsomal protein exhibited cross-reactivity against this antiserum when examined by Ouchterlony double diffusion and immunoblotting. The present results indicate the presence of a phenobarbital-inducible form of cytochrome P-450 (or a form of cytochrome P-450 that is similar immunologically) in mouse brain microsomes, which is associated with a sex-related difference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号