首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Lignans are a group of compounds consisting of dimers of phenyl propane units. They are found in diverse forms distributed in a variety of plants. Sesame lignans in particular are obtained from Sesamum indicum, a highly prized oilseed crop cultivated widely in many countries in the east. The plant is the main source of clinically important antioxidant lignans such as sesamin, sesamolin, sesaminol and sesamol. These lignans exhibit antihypertensive, anticancerous and hypocholesterolemic activities as well especially in humans due to which they have become compounds of tremendous research interest in recent times. Sesamin is synthesized from shikimic acid through phenylpropanoid pathway and metabolised into enterolignans which play a pivotal role in protection against several hormone related diseases. In this paper we present an overview of current status of research on sesame lignans with respect to the analytical methods employed, the biological activities and biosynthesis of sesame lignans.  相似文献   

2.
Sesamin, sesamolin (lignans) and sesamol - from sesame seed (Sesamum indicum L.) - are known for their health promoting properties. We examined the inhibition effect of sesamol, a phenolic degradation product of sesamolin, on the key enzyme in melanin synthesis, viz. tyrosinase, in vitro. Sesamol inhibits both diphenolase and monophenolase activities with midpoint concentrations of 1.9 μM and 3.2 μM, respectively. It is a competitive inhibitor of diphenolase activity with a Ki of 0.57 μM and a non-competitive inhibitor of monophenolase activity with a Ki of 1.4 μM. Sesamol inhibits melanin synthesis in mouse melanoma B16F10 cells in a concentration dependant manner with 63% decrease in cells exposed to 100 μg/mL sesamol. Apoptosis is induced by sesamol, limiting proliferation. This study of the chemistry and biology of lignans, in relation to the mode of action of bioactive components, may open the door for drug applications targeting enzymes.  相似文献   

3.
Sesame (Sesamum indicum) is an important oilseed crop which produces seeds with 50% oil that have a distinct flavor and contains antioxidant lignans. Because sesame lignans are known to have antioxidant and health-protecting properties, metabolic pathways for lignans have been of interest in developing sesame seeds. As an initial approach to identify genes involved in accumulation of storage products and in the biosynthesis of antioxidant lignans, 3328 expressed sequence tags (ESTs) were obtained from a cDNA library of immature seeds 5-25 days old. ESTs were clustered and analyzed by the BLASTX or FASTAX program against the GenBank NR and Arabidopsis proteome databases. To compare gene expression profiles during development of green and non-green seeds, a comparative analysis was carried out between developing sesame and Arabidopsis seed ESTs. Analyses of these two seed EST sets have helped to identify similar and different gene expression profiles during seed development, and to identify a large number of sesame seed-specific genes. In particular, we have identified EST candidates for genes possibly involved in biosynthesis of sesame lignans, sesamin and sesamolin, and also suggest a possible metabolic pathway for the generation of cofactors required for synthesis of storage lipid in non-green oilseeds. Seed-specific expression of several candidate genes has been confirmed by northern blot analysis.  相似文献   

4.
5.
Bioassay-directed fractionation of a root extract of Acronychia laurifolia (Rutaceae) using the KB-V1+ human tumor cell line led to the isolation of six quinoline alkaloids. One of these alkaloids is novel, namely, 2,3-methylenedioxy-4,7-dimethoxyquinoline and the other five were identified as the known compounds, evolitrine, gamma-fagarine, skimmianine, kokusaginine and maculosidine. Two known bis-tetrahydrofuran lignans, sesamolin and yangambin, were also identified. The structure of the new alkaloid was determined by spectroscopic methods. All of the isolates were evaluated against a panel of human cancer cell lines; four of the alkaloids showed weak cytotoxic activity.  相似文献   

6.
贵州地方芝麻种质资源品质性状的分析与评价   总被引:1,自引:0,他引:1  
为探究贵州芝麻种质资源的品质特征,并对地方芝麻资源进行初步鉴定与评价,本研究对73份贵州芝麻种质资源的8个品质性状进行测试分析。结果表明:(1)贵州芝麻种质资源含油量介于41.45%~52.12%之间,平均含量为49.69%。在脂肪酸组成中,油酸、亚油酸等不饱和脂肪酸的平均含量分别为35.65%和50.66%;而棕榈酸、硬脂酸等饱和脂肪酸的平均含量仅为8.40%和4.79%。此外,贵州芝麻资源中芝麻素、芝麻林素和木质素的平均含量分别为5.03 mg/g、2.63 mg/g和4.79 mg/g。8个品质性状的变异系数介于3.69%~32.62%范围内,其中芝麻素含量变异系数最大,含油量变异系数最小。而芝麻素含量、芝麻林素含量及硬脂酸含量的变异系数均大于10%,表明这3个性状在芝麻样本间存在较大差异。(2)相关性分析结果显示:含油量与油酸、芝麻素含量呈极显著正相关,与亚油酸含量呈极显著负相关;油酸含量与芝麻素含量呈极显著正相关,与亚油酸含量呈极显负相关;亚油酸含量与芝麻素含量呈极显著负相关。表明品质性状间相关性大、关联程度较高,性状间相互影响较大。(3)主成分分析将8个品质性状综合为3个主成分,分别为油酸因子、含油量因子和芝麻素因子,3个主成分因子包含了贵州芝麻种质资源品质性状的绝大部分信息,累计贡献率达96%以上。(4)在欧氏距离D=9.75处将73份贵州芝麻资源划分为6个类群:第Ⅰ类群包含2份资源、第Ⅱ类群有7份、第Ⅲ类群有12份、第Ⅳ类群有5份、第Ⅴ类群有16份、第Ⅵ类群有31份。其中第Ⅵ类群油酸含量最高,且含油量、芝麻素含量较高。本研究探明了贵州芝麻品质的特征特性,可为芝麻种质资源的利用和创新提供依据,为芝麻品种选育和遗传改良提供参考。  相似文献   

7.
以料液比、超声时间、超声温度和静置时间为考察因素进行单因素试验和正交试验确定芝麻木脂素的最佳提取条件。通过改良邻苯三酚自氧化法测定芝麻木脂素清除O-2·能力来研究芝麻木脂素的抗氧化活性;用H2O2-Fe2+体系诱导线粒体脂质过氧化,测定芝麻木脂素对丙二醛(MDA)含量的影响。结果表明:芝麻木脂素最佳提取条件为料液比1∶12(g/mL),超声温度55℃,超声时间30 min,静置时间2 h,超声波辅助法提取芝麻渣中芝麻木脂素的提取量最高达到0.120 g(以100 g芝麻渣计)。芝麻渣提取物能有效清除O-2·,具有良好的抑制脂质过氧化的作用。  相似文献   

8.
The sesame 2S albumin (2Salb) promoter was evaluated for its capacity to express the reporter gusA gene encoding β-glucuronidase in transgenic tobacco seeds relative to the soybean fad3C gene promoter element. Results revealed increased expression of gusA gene in tobacco seed tissue when driven by sesame 2S albumin promoter. Prediction based deletion analysis of both the promoter elements confirmed the necessary cis-acting regulatory elements as well as the minimal promoter element for optimal expression in each case. The results also revealed that cis-regulatory elements might have been responsible for high level expression as well as spatio-temporal regulation of the sesame 2S albumin promoter. Transgenic over-expression of a fatty acid desaturase (fad3C) gene of soybean driven by 2S albumin promoter resulted in seed-specific enhanced level of α-linolenic acid in sesame. The present study, for the first time helped to identify that the sesame 2S albumin promoter is a promising endogenous genetic element in genetic engineering approaches requiring spatio-temporal regulation of gene(s) of interest in sesame and can also be useful as a heterologous genetic element in other important oil seed crop plants in general for which seed oil is the harvested product. The study also established the feasibility of fatty acid metabolic engineering strategy undertaken to improve quality of edible seed oil in sesame using the 2S albumin promoter as regulatory element.  相似文献   

9.
By virtue of their regulatory role in the biological process, certain protein–protein complexes form potential targets for designing and discovery of drugs. Alteration set in the controlled formation of such complexes results in dysregulation of several metabolic processes, leading to diseased condition. β-catenin/Tcf4 complex is one such protein–protein complex found altered in colorectal epithelial cells resulting in activation of target genes leading to cancer. Recently, certain lignans from seeds of the oil crop sesame were found inhibiting initiation and progression of this type of cancer. Molecular mechanism involved in the process, however, is not yet known. By an in silico study, we present here a possible mechanism of interaction between the sesame lignans and β-catenin leading to inhibition of formation of the said complex, thereby elevating some of these ligands as potential lead molecules in the development of drugs for treatment of colon cancer. To achieve this objective, we performed docking, molecular dynamics simulation, and binding free energy analysis of target–ligand complexes. Using computational alanine scanning approach, the key pocket residues of β-catenin that interact with Tcf4 in the formation of complex were identified. The test molecules were initially evaluated for their drug-like properties by application of Lipinski’s rule of five. Results of this study revealed that Sesamin, a furofuran lignan from sesame, has the highest affinity for β-catenin particularly with its residues that interact with Tcf4 and thus serving as a potential lead molecule for development of a drug for colon cancer.  相似文献   

10.
Four lignans were isolated from the flower buds of Magnolia fargesii Cheng, two of which were known lignans, pinoresinol dimethyl ether and lirioresinol-B dimethyl ether; the other two were new lignans, magnolin and fargesin, and their structures have been determined by spectroscopic studies.  相似文献   

11.
《Phytomedicine》2015,22(2):301-307
Arctium lappa is a well-known traditional medicinal plant in China (TCM) and Europe that has been used for thousands of years to treat arthritis, baldness or cancer. The plant produces lignans as secondary metabolites which have a wide range of bioactivities. Yet, their ability to reverse multidrug resistance (MDR) in cancer cells has not been explored. In this study, we isolated six lignans from A. lappa seeds, namely arctigenin, matairesinol, arctiin, (iso)lappaol A, lappaol C, and lappaol F. The MDR reversal potential of the isolated lignans and the underlying mechanism of action were studied using two MDR cancer cell lines, CaCo2 and CEM/ADR 5000 which overexpress P-gp and other ABC transporters. In two-drug combinations of lignans with the cytotoxic doxorubicin, all lignans exhibited synergistic effects in CaCo2 cells and matairesinol, arctiin, lappaol C and lappaol F display synergistic activity in CEM/ADR 5000 cells. Additionally, in three-drug combinations of lignans with the saponin digitonin and doxorubicin MDR reversal activity was even stronger enhanced. The lignans can increase the retention of the P-gp substrate rhodamine 123 in CEM/ADR 5000 cells, indicating that lignans can inhibit the activity of P-gp. Our study provides a first insight into the potential chemosensitizing activity of a series of natural lignans, which might be candidates for developing novel adjuvant anticancer agents.  相似文献   

12.
Mature seeds of 20 Linum species were analyzed for their content of lignans. The seeds of common flax (Linum usitatissimum L.) are known to contain as characteristic lignan sesoisolariciresinol diglucoside (SDG), whose presence in seeds of some other Linum species has also been reported. In order to investigate the material for the presence of such very polar lignans as well as for less polar non-glycosidic lignans as frequently found in aerial parts of Linum species, polar and non-polar extracts of each sample were analyzed by HPLC/ESI-MSMS.SDG was detected in 15 of 16 investigated seed samples of taxa representing sections Linum and Dasylinum. None of eight samples of taxa from sections Syllinum and Linopsis contained detectable amounts of SDG. Quite interestingly, most of the SDG-positive samples contained the 8R,8′R-isomer exclusively while only three (including L. usitatissimum) contained the 8S,8′S-stereoisomer as the predominant form. As a most noteworthy finding, the dichloromethane extracts obtained from seeds of several Linum species were found to contain significant concentrations of non-polar cyclolignans of the arylnaphthalene/-dihydronaphthalene lactone type or, alternatively of the aryltetralin lactone type. Thus, seeds of Linum perenne L. as well as those of several other representatives of sections Linum and Dasylinum were found to contain significant concentrations of the arylnaphthalene justicidin B along with further compounds of this type and some aryldihydronaphthalene-type lignans. On the other hand, seeds of Linum flavum and further representatives of section Syllinum were found to contain aryltetralin-type lignans, mainly in the form of esters with aliphatic carboxylic acids, such as 6-methoxypodophyllotoxin-7-O-n-hexanoate, whose occurrence in L. flavum seeds has very recently been reported by us for the first time.Various chemosystematic and biogenetic aspects are discussed in the light of these results.  相似文献   

13.
Sesame (Sesamum indicum L.) is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded) using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603). The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC) regions and inverted repeats (IR) in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1–585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17) were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants.  相似文献   

14.
Sesamin is a furofuran lignan biosynthesized from the precursor lignan pinoresinol specifically in sesame seeds. This lignan is shown to exhibit anti-hypertensive activity, protect the liver from damages by ethanol and lipid oxidation, and reduce lung tumor growth. Despite rapidly elevating demand, plant sources of lignans are frequently limited because of the high cost of locating and collecting plants. Indeed, the acquisition of sesamin exclusively depends on the conventional extraction of particular Sesamum seeds. In this study, we have created the efficient, stable and sustainable sesamin production system using triple-transgenic Forsythia koreana cell suspension cultures, U18i-CPi-Fk. These transgenic cell cultures were generated by stably introducing an RNAi sequence against the pinoresinol-glucosylating enzyme, UGT71A18, into existing CPi-Fk cells, which had been created by introducing Sesamum indicum sesamin synthase (CYP81Q1) and an RNA interference (RNAi) sequence against pinoresinol/lariciresinol reductase (PLR) into F. koreanna cells. Compared to its transgenic prototype, U18i-CPi-Fk displayed 5-fold higher production of pinoresinol aglycone and 1.4-fold higher production of sesamin, respectively, while the wildtype cannot produce sesamin due to a lack of any intrinsic sesamin synthase. Moreover, red LED irradiation of U18i-CPi-Fk specifically resulted in 3.0-fold greater production in both pinoresinol aglycone and sesamin than production of these lignans under the dark condition, whereas pinoresinol production was decreased in the wildtype under red LED. Moreover, we developed a procedure for sodium alginate-based long-term storage of U18i-CPi-Fk in liquid nitrogen. Production of sesamin in U18i-CPi-Fk re-thawed after six-month cryopreservation was equivalent to that of non-cryopreserved U18i-CPi-Fk. These data warrant on-demand production of sesamin anytime and anywhere. Collectively, the present study provides evidence that U18i-CP-Fk is an unprecedented platform for efficient, stable, and sustainable production of sesamin, and shows that a transgenic and specific light-regulated Forsythia cell-based metabolic engineering is a promising strategy for the acquisition of rare and beneficial lignans.  相似文献   

15.
The lignan profile of the aerial part of Piper cubeba L. (Piperaceae) was determined using GC, GC–MS and HPLC. The number of lignans found in the leaves was 15, followed by berries and the stalks with respectively 13 and five lignans. This is the first investigation of lignans from the leaves and the stalks of P. cubeba. Cubebin, hinokinin, yatein, isoyatein are common lignans in the genus Piper and appeared as major components in all parts of P. cubeba investigated.  相似文献   

16.
The aerial parts of 54 accessions representing 41 Linum species and four species of related genera were analysed for lignans by means of HPLC-ESI/MS–MS-UV/DAD. In total, 64 different lignans of the aryltetralin-, arylnaphthalene-, aryldihydronaphthalene-, dibenzylbutyrolactone-, and furofuran type were identified. According to their lignan profile, the Linum species can be divided in two groups accumulating as major lignan types either cyclolignans of the aryltetralin-series on one hand, or aryldihydronaphthalenes/arylnaphthalenes, on the other. Five of the investigated Linum species did not contain any detectable amounts of these lignans under the chosen analytical conditions. Furthermore, none of the lignans identified in Linum species was detectable in representatives of three related genera, namely, Reinwardtia (Linaceae, Linoideae), Hugonia and Indorouchera (Linaceae, Hugonioideae).The two species groups differing in the types of the dominating cyclolignans comprise representatives of the major taxonomic sections. Representatives of sections Syllinum, Cathartolinum and Linopsis accumulate mainly aryltetralins while those of sections Linum and Dasylinum were found to contain mainly aryldihydronaphthalenes/-naphthalenes. These phytochemical data correlate very well with a recent study on the molecular phylogeny of Linum/Linaceae, where a subdivision of Linum into two major clades comprising representatives of the two mentioned groups was found. Thus, the distribution of lignans apparently reflecting phylogenetic interrelations at the infrageneric level, a plausible scenario for the evolution of lignan biosynthesis in the genus Linum can now be presented.  相似文献   

17.
Feeding experiments in Podophyllum hexandrum plants with labelled aryltetralin lignans have established much of the biosynthetic interrelationships existing amongst Podophyllum lignans. Thus, desoxypodophyllotoxin is converted into podophyllotoxin, which in turn is oxidized to podophyllotoxone, although this latter step appears to be reversible. A similar sequence is proposed for the corresponding 4′-demethyl derivatives. Although 4′-demethyldesoxy-podophyllotoxin is readily converted into 4′-demethylpodophyllotoxin, neither compound is incorporated into lignans of the 4′-methyl series such as podophyllotoxin. The Podophyllum lignans may be subdivided biogenctically into two groups, those with 3,4,5-trimethoxy substitution in the pendent aryl ring, and those with a 4-hydroxy-3,5-dimethoxy substituted pendent ring, although these probably arise from a common precursor. A biogenetic scheme interrelating all of the known Podophyllum aryltetralin lignans is proposed.  相似文献   

18.
Sesame (Sesamum indicum L.) is an important staple crop of the family Pedaliaceae. The commercial production of sesame is still dependent on the applications of chemical fertilizers. Mycorrhiza inoculum resulted in better morphological and biochemical traits in vegetables. Thus, here the outcome of arbuscular mycorrhizal fungi (AMF) and Pseudomonas fluorescence (ATCC-17400) inoculation was studied in the pot culture experiment. Primarily, there seems to be a promising opportunity of AMF in sesame under pot and field trials because of enhanced morphological parameters, especially root weight, and disparities in nutrients and metabolites. The AMF appears to be an option to boost plant growth, mineral content, and sesame yield. The AMF treatment with Pseudomonas fluorescence strain (ATCC-17400) determined the maximum values for the morphological traits and mineral content. Overall, our study highlights mycorrhizal fungi and other microbes efficacy in achieving a successful sesame production.  相似文献   

19.
Planthopper (Delphacidae) pests have broken out frequently in Asia over the last decade leading to interest in enhancing the impact of natural enemies by growing nectar plants on the bunds that border rice fields. Such targeted use of plant diversity is popular in other crop systems but there is a marked lack of information on the scope for its use in rice, particularly the important aspect of which plant species to use. This study used Y-tube olfactometer assays to measure the response of two important parasitoids of delphacid pests to candidate nectar plants. Anagrus optabilis exhibited significant attraction to the air from six of the seven plant species whilst Anagrus nilaparvatae appeared more selective, exhibiting attraction to only seven of the 23 plants screened and repulsion to one. Sesamum indicum, Emilia sonchifolia, and Impatiens balsamena were the only three plants attractive to both parasitoids. Laboratory longevity of adult female A. nilaparvatae and A. optabilis with access to sesame flowers was significantly greater than with access to sesame from which the flowers were removed plus water. Similarly, both parasitoids parasitized significantly more brown planthopper (Nilaparvatae lugens) eggs in the presence of sesame flowers. Handling time of A. nilaparvatae was reduced from 31.29 to 18.36 min by access to sesame nectar. Findings show that sesame has a marked beneficial effect on key parameters of Anagrus spp. and justifies further evaluation of its utility as a nectar plant to improve biological control in Asian rice systems.  相似文献   

20.
Sesame (Sesamum indicum L.) is an ancient and important oilseed crop. However, few sesame reference genes have been selected for quantitative real-time PCR until now. Screening and validating reference genes is a requisite for gene expression normalization in sesame functional genomics research. In this study, ten candidate reference genes, i.e., SiACT, SiUBQ6, SiTUB, Si18S rRNA, SiEF1α, SiCYP, SiHistone, SiDNAJ, SiAPT and SiGAPDH, were chosen and examined systematically in 32 sesame samples. Three qRT-PCR analysis methods, i.e., geNorm, NormFinder and BestKeeper, were evaluated systematically. Results indicated that all ten candidate reference genes could be used as reference genes in sesame. SiUBQ6 and SiAPT were the optimal reference genes for sesame plant development; SiTUB was suitable for sesame vegetative tissue development, SiDNAJ for pathogen treatment, SiHistone for abiotic stress, SiUBQ6 for bud development and SiACT for seed germination. As for hormone treatment and seed development, SiHistone, SiCYP, SiDNAJ or SiUBQ6, as well as SiACT, SiDNAJ, SiTUB or SiAPT, could be used as reference gene, respectively. To illustrate the suitability of these reference genes, we analyzed the expression variation of three functional sesame genes of SiSS, SiLEA and SiGH in different organs using the optimal qRT-PCR system for the first time. The stability levels of optimal and worst reference genes screened for seed development, anther sterility and plant development were validated in the qRT-PCR normalization. Our results provided a reference gene application guideline for sesame gene expression characterization using qRT-PCR system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号