首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NADPH and NADP+ levels were measured in rat lens from normal controls, from galactose-fed and diabetic rats during the first week of cataract formation. The level of NADPH in normal rat lens was determined to be 12.3 +/- 0.4 nmol/g wet weight, and that of NADP+ 4.6 +/- 0.2 nmol/g wet weight. In early cataract formation NADPH levels decreased rapidly during the first 2 days and then remained stable at 76% of control for galactose-fed and 84% for diabetic rats. NADP+ levels increased by 38% of control for galactose-fed and 54% for diabetic rats. Calculated NADPH/NADP+ ratios dropped from 3.36 +/- 0.21 to 1.86 +/- 0.16 in galactose fed rats, and from 2.81 +/- 0.15 to 1.61 +/- 0.16 in diabetic rats (P less than 0.001 for both experimental groups). These data are consistent with rapid NADPH oxidation during onset of lens cataracts. No significant changes in aldose reductase enzymatic activity levels were observed in either the galactosemic or the diabetic rats during the times measured.  相似文献   

2.
Isolated, intact rat liver mitochondria, without extraneous substrates but loaded with Ca2+ (20 nmol/mg), can be observed to release Ca2+ when treated with ruthenium red. Such release can be inhibited by 0.33 mM dlisocitrate but not by 10 mM dl-β-hydroxybutyrate. Assays of NADP+, NADPH, NAD+, and NADH revealed that only the reduction of NADP+ can be linked with such inhibition of Ca2+ release, not that of NAD+. Since ruthenium redinsensitive Ca2+ release is a physiological (but normally masked) process, this experimental approach avoids some potential problems ascribed to strong pyridine nucleotide oxidation. It is suggested that specific NADP+:NADPH dependent reactions are part of a physiological mechanism regulating Ca2+ release/retention.  相似文献   

3.
Equilibrium dialysis indicates that rat liver glucose-6-P dehydrogenase binds two molecules of NADP+ per subunit with a dissociation constant of 0.6 × 10?6 M. The NADP+ free enzyme will not bind glucose-6-P indicating a compulsory order of substrate binding. Development of an isotopic assay allowed a direct measurement of the effect of physiological alterations in the NADP+/NADPH ratio on the activity of glucose-6-P and 6-phosphogluconate dehydrogenases. A combination of enzyme induction and altered NADP+/NADPH ratios could produce 30–50 fold changes in the capacity of these enzymes to produce NADPH during alterations in the nutritional state of the animal.  相似文献   

4.
Klaus Lendzian  James A. Bassham 《BBA》1975,396(2):260-275
The activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) from spinach chloroplasts is strongly regulated by the ratio of NADPH/NADP+, with the extent of this regulation controlled by the concentration of ribulose 1,5-diphosphate. Other metabolites of the reductive pentose phosphate cycle are far less effective in mediating the regulation of the enzyme activity by NADPH/NADP+ ratio. With a ratio of NADPH/NADP+ of 2, and a concentration of ribulose 1,5-diphosphate of 0.6 mM, the activity of the enzyme is completely inhibited.This level of ribulose 1,5-diphosphate is well within the concentration range which has been reported for unicellular green algae photosynthesizing in vivo. Ratios of NADPH/NADP+ of 2.0 have been measured for isolated spinach chloroplasts in the light and under physiological conditions.Since ribulose 1,5-diphosphate is a metabolite unique to the reductive pentose phosphate cycle and inhibits glucose-6-phosphate dehydrogenase in the presence of NADPH/NADP+ ratios found in chloroplasts in the light, it is proposed that regulation of the oxidative pentose phosphate cycle is accomplished in vivo by the levels of ribulose 1,5-diphosphate, NADPH, and NADP+.It already has been shown that several key reactions of the reductive pentose phosphate cycle in chloroplasts are regulated by levels of NADPH/NADP+ or other electron-carrying cofactors, and at least one key-regulated step, the carboxylation reaction is strongly affected by 6-phosphogluconate, the metabolite unique to the oxidative pentose phosphate cycle. Thus there is an interesting inverse regulation system in chloroplasts, in which reduced/oxidized coenzymes provide a general regulatory mechanism. The reductive cycle is activated at high NADPH/NADP+ ratios where the oxidative cycle is inhibited, and ribulose 1,5-diphosphate and 6-phosphogluconate provide further control of the cycles, each regulating the cycle in which it is not a metabolite.  相似文献   

5.
The contents of NADP+, NADPH, changes in the activity of glucose-6-phosphate dehydrogenase and some questions relating to its regulation in leaf tissues of tobacco plants infected with PVY were studied. The content of NADP+ and the total sum of pyridine nucleotides decreased after inoculation to 15 % and 30 %, respectively, whereas the content of NADPH increased up to the threefold control value. The contents of NADP+, NADPH and Σ(NADPH + NADP+) linearly correlated with the reproduction curve of PVY. The value of the reduction charge RC and the value of the ratio NADPH/NADP+ sharply increased after inoculation up to tenfold and eighteenfold values, respectively, of the healthy control. The activity of glucose-6-phosphate dehydrogenase was markedly increased in virus-infected tissues during the entire experimental period both in crude homogenate and after its partial purification when compared with the values found in healthy control plants. The time courses of the activity curves of both crude and partially purified enzymes were coincident and correlated with the reproduction curve of PVY. The results indicate the involvement of coarse regulation of the activity of the enzyme by its content without the involvement of fine regulation by the ratio NADPH/NADP+ and RC.  相似文献   

6.
We wished to examine the effects of diabetes on muscle glutamine kinetics. Accordingly, female Wistar rats (200 g) were made diabetic by a single injection of streptozotocin (85 mg/kg) and studied 4 days later; control rats received saline. In diabetic rats, glutamine concentration of gastrocnemius muscle was 33% less than in control rats: 2.60 ± 0.06 μmol/g vs. 3.84 ± 0.13 μmol/g (P < 0.001). In gastrocnemius muscle, glutamine synthetase activity (Vmax) was unaltered by diabetes (approx. 235 nmol/min per g) but glutaminase Vmax increased from 146 ± 29 to 401 ± 94 nmol/min per g; substrate Km values of neither enzyme were affected by diabetes. Net glutamine efflux (AZ concentration difference × blood flow) from hindlimbs of diabetic rats in vivo was greater than control values (?30.0 ± 3.2 vs. ?1.9 ± 2.6 nmol/min per g (P < 0.001) and hindlimb NH3 uptake was concomitantly greater (about 27 nmol/min per g). The glutamine transport capacity (Vmax) of the Na-dependent System Nm in perfused hindlimb muscle was 29% lower in diabetic rats than in controls (820 ± 50 vs. 1160 ± 80 nmol/min per g (P < 0.01)), but transporter Km was the same in both groups (9.2 ± 0.5 nM). The difference between inward and net glutamine fluxes indicated that glutamine efflux in perfused hindlimbs was stimulated in diabetes at physiological perfusate glutamine (0.5 mM); ammonia (1 mM in perfusate) had little effect on net glutamine flux in control and diabetic muscles. In Intramuscular Na+ was 26% greater in diabetic (13.2 μmol/g) than control muscle, but muscle K+ (100 μmol/g) was similar. The accelerated rate of glutamine release from skeletal muscle and the lower muscle free glutamine concentration observed in diabetes may result from a combination of; (i), a diminished Na+ electrochemical gradient (i.e., the net driving force for glutamine accrual in muscle falls); (ii), a faster turnover of glutamine in muscle and (iii), an increased Vmax/Km for sarcolemmal glutamine efflux.  相似文献   

7.
The reactive aldehydes methylglyoxal and glyoxal, arise from enzymatic and non-enzymatic degradation of glucose, lipid and protein catabolism, and lipid peroxidation. In Type 1 diabetes mellitus (T1DM) where hyperglycemia, oxidative stress, and lipid peroxidation are common, these aldehydes may be elevated. These aldehydes form advanced glycation end products (AGEs) with proteins that are implicated in diabetic complications. We measured plasma methylglyoxal and glyoxal in young, complication-free T1DM patients and assessed activity of the ubiquitous membrane enzyme, Na+/K+ ATPase. A total of 56 patients with TIDM (DM group), 6–22 years, and 18 non-diabetics (ND group), 6–21 years, were enrolled. Mean plasma A1C (%) was higher in the DM group (8.5 ± 1.3) as compared to the ND group (5.0 ± 0.3). Using a novel liquid chromatography-mass spectrophotometry method, we found that mean plasma methylglyoxal (nmol/l) and glyoxal levels (nmol/l), respectively, were higher in the DM group (841.7 ± 237.7, 1051.8 ± 515.2) versus the ND group (439.2 ± 90.1, 328.2 ± 207.5). Erythrocyte membrane Na+/K+ ATPase activity (nmol NADH oxidized/min/mg protein) was elevated in the DM group (4.47 ± 0.98) compared to the ND group (2.16 ± 0.59). A1C correlated with plasma methylglyoxal and glyoxal, and both aldehydes correlated with each other. A high correlation of A1C with Na+/K+ ATPase activity, and a regression analysis showing A1C as a good predictor of activity of this enzyme, point to a role for glucose in membrane alteration. In complication-free patients, increased plasma methylglyoxal, plasma glyoxal, and erythrocyte Na+/K+ ATPase activity may foretell future diabetic complications, and emphasize a need for aggressive management.  相似文献   

8.
Stimulationg of glucose oxidation by dichloroacetate (DCA) treatment is beneficial during recovery of ischemic hearts from non-diabetic rats. We therfore determined whether DCA treatment of diabetic rat hearts (in which glucose use is extremely low), increases recovery of function of hearts reperfused following ischemia. Isolated working hearts from 6 week streptozotocindiabetic rats were perfused with 11 mM [2-3H/U-14C]glucose, 1.2 mM palmitate, 20 μU/ml insulin, and subjected to 30 min of no flow ischemia followed by 60 min reperfusion. Heart function (expressed as the product of heart rate and peak systolic pressure), prior to ischemia, was depressed in diabetic hearts compared to controls (HR × PSP × 10?3 was 18.2 ± 1 and 24.3 ± 1 beats/mm Hg/min in diabetic and control hearts respectively) but recover to pre-ischemic levels following ischemia, whereas recovery of control of control hearts was significantly decreased (17.8 ± 1 and 11.9 ± 3 beats/mm Hg/min in diabetic and control hearts respectively). This enhanced recovery of diabetic rat hearts occurred even though glucose oxidation during reperfusion was significantly reduced as compared to controls (39 ± 6 and 208 ± 42 nmol/min/g dry wt, in diabetic and control hearts respectively). Glycolytic rate (3G2O production) during reperfusion were similar in diabetic and control hearts (1623 ± 359 and 2071 ± 288 nmol/min/g dry wt, respectively). If DCA (1 mM) was added at reperfusion, hearts from control animals exhibited a significant improvement in function (HR × PSP × 10? recovered to 20 ± 4 beats/mm Hg/min) that was accompanied by a 4-fold increase in glucose oxidation (from 208 ± 42 to 753 ± 111 nmol/min/g dry wt). DCA was without effect on functional recovery of diabetic rat hearts during reperfusion but did significantly increase glucose oxidation from 39 ± 6 to 179 ± 44 nmol/min/g dry wt). These data suggests that, unlike control hearts, low glucose oxidation rates are not an important factor in reperfusion recovery of previouskly ischemic diabetic rat hearts.  相似文献   

9.
Sugar beets (Beta vulgaris L. cv. F58-554H1) were cultured hydroponically in growth chambers at 25°C, with a photon flux density of 500 mol m-2s-1. Measurements were made of net CO2 exchange, leaf adenylates (ATP, ADP and AMP), and leaf nicotinamide nucleotides (NAD+, NADP+, NADH, NADPH), over the diurnal period (16h light/8 h dark) and during photosynthetic induction. All the measurements were carried out on recently expanded leaves from 5-week-old plants. When the lights were switched on in the growth chamber, the rate of photosynthetic CO2 uptake, and the levels of leaf ATP and NADPH increased to a maximum in 30 min and remained there throughout the light period. The increase in ATP over the first few minutes of illumination was associated with the phosphorylation of ADP to ATP and the increase in NADPH with the reduction of NADP+; subsequently, the increase in ATP was associated with an increase in total adenylates while the increase in NADPH was associated with an accumulation of NADP+ and NADPH due to the light-driven phosphorylation of NAD+ to NADP+. On return to darkness, ATP and NADPH values decreased much more slowly, requiring 2 to 4 hours to reach minimum values. From these results we suggest that (i) the total adenylate and NADPH and NADP+ (but not NAD+ and NADH) pools increase following exposure to light; (ii) the increase in pool size is not accompanied by any large change in the energy or redox states of the system; and (iii) the measured ratios of ATP/ADP and NADPH/NADP+ for intact leaves are low and constant during steady-state illumination.Abbreviations AEC adenylate energy charge - DHAP dihydroxyacetone phosphate - MTT 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide - PES phenazine ethosulfate - PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - PFD photon flux density - Ru5P ribulose-5-phosphate - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

10.
11.
Resting cells of the methanogen strain HU, a formate-utilizing methanogenic bacterium, was able to utilize formate or hydrogen as electron donor for the production of NADPH from NADP+ under suitable conditions. In the presence of 0.2% Triton X-100 and 0.3 m potassium phosphate, pH 9.0 at 30°C, the resting cells could convert ca. 60% of the exogenous NADP+ into NADPH yielding ca. 6 g NADPH/liter. Phosphate ions greatly enhanced the NADPH production.  相似文献   

12.
Galactosemic cataracts are characterized by electrolyte disturbances resulting in osmotic imbalance and loss of transparency. We have studied the defensive role of quercetin, a bioflavonoid, against the alterations of calcium (Ca2+), sodium (Na+), and potassium (K+) concentrations in galactose-induced cataract in a rodent model. The experimental study was conducted on weanling male Wistar rats with an average body weight of 34 ± 0.9 g. Different groups received normal stock AIN 93 diet (group A, n = 8), AIN 93 diet with 30% galactose (group B, n = 8), and AIN 93 diet with 30% galactose + quercetin at 400 mg/100 g diet (group C, n = 8). Aldose reductase activity and protein content and concentrations of Ca2+, Na+, and K+ were determined in normal and cataractous lenses. Treatment with quercetin resulted in a significant decrease in Na+ and Ca2+ and aldose reductase levels and an increase in K+ and protein levels in galactosemic cataractous lenses. These results imply that inclusion of quercetin contributes to lens transparency through the maintenance of characteristic osmotic ion equilibrium and protein levels of the lens.  相似文献   

13.
Methods for measuring total glutathione are described. These are based on the ability of glutathione and glutathione reductase (EC 1.6.4.2.) to catalyze the oxidation of NADPH by Ellman's reagent. Except for highest glutathione levels, NADP+ rather than the reduced Ellman compound is measured. For intermediate sensitivity (2 × 10?12 mol) NADP+ is measured stoichiometrically by conversion to NADPH and determination of fluorescence. For smaller amounts (10?14 mol) the NADP+ generated is amplified by enzymatic cycling. These procedures have been tested extensively on kidney and are probably applicable to tissues in general.  相似文献   

14.
We have studied the influence of NADP+ on routine electrocardiography (ECG) in 6-month-old C57BL/6 and mdx mice. The animals were anesthetized by ether before ECG recording. ECG registration was carried out at a speed of 100 mm/s. The first ECG recording was made before intraperitoneal NADP+ injection in a dose of 13 or 80 mg/kg. The second ECG recording was made 10 min after NADP+ injection. Anesthesia was then terminated. The mice were occasionally anesthetized 45–60 min later, and the third ECG was recorded 1 h after injection of NADP+. ECG recording was carried out at a speed of 100 mm/s in standard leads I, II, and III and unipolar leads AvR, AvL, and AvF. Values of standard ECG characteristics, such as the P wave and the intervals PQ, QT, RR, and the QRS complex, were measured in milliseconds in standard lead II. We did not observe any differences between ECG magnitudes of 2- to 3-month-old C57BL/6 and mdx mice during trial experiments. Mice of both strains had a sinus rhythm in their heart rate. The QRS complex in mdx mice had a tendency to be larger than in C57BL/6 mice. Heart rates fluctuated between 722 ± 22 and 681 ± 21 beats per minute. The effect of NADP+ was studied in 6-month-old male mice. The increase in the RR interval and the decline in heart rate from 697 ± 21 to 461 ± 23 and 491 ± 28 beats per min for C57BL/6 mice (p < 0.01) and from 722 ± 28 beats per minute to 454 ± 31 beats per min for mdx mice were registered 10 min after NADP+ injection at a dose of 80 mg/kg. The increase in the RR interval can be explained by an increase in the QT interval. A statistically significant reduction in the QT interval leading to a diminished RR interval was observed in mdx mice 1 h after NADP+ injection. NADP+ at a dose of 13 mg/kg did not significantly change the ECG properties in mdx mice. ECG of mdx mice was characterized by negative repolarization of the T wave in 37% of all leads. The amount of leads with negative T-wave repolarization decreased up to 3% 1 h after NADP+ injection in dose of 80 mg/kg. The results have shown that cytomembranes of ventricular cardiac myocytes and the degree of oxidative stress are the main targets of the action of NADP+ in C57BL/6 and mdx mouse hearts.  相似文献   

15.
A sonicate of Achromobacter parvulus IFO-13182 produced NADPH from NADP+by an NADP+-linked malic enzyme [l-malate: NAD(P)+oxidoreductase, EC 1.1.1.39–40] reaction in the presence of l-malic acid and divalent metal ions. Malic enzyme of A. parvulus was stabilized by 5% l-malic acid, and activity was maintained at 60°C for 1 h. Contaminating phosphatase (orthophosphoricmonoester phosphohydrolase, EC 3.1.3.1–2) was completely inactivated by this treatment. Among the conditions tested, the optimum NADPH production was done using 36 μmol NADP+, 67 μmol l-malic acid, 63 μmol MgCl2 and 1 unit of the malic enzyme in 3 ml of 55 mm phosphate buffer (pH 7.8). Conversion ratio of NADPH from NADP+ reached 100% after 4 h incubation at 30°C and the amount of NADPH accumulated was ~12 μmol ml?1of the reaction mixture. No dephosphorylation of NADP+to NAD+or of NADPH to NADH was found by high performance liquid chromatography. The NADPH produced by such enzymatic reduction was purified by ethanol precipitation and dried in vacuo in powdered form with 97% purity, judged from the ratio of the absorbances at 340 and 260 nm. The purity of the NADPH produced was determined to be 95% from its coenzyme activity with NAD(P)+-linked glutathione reductase [NAD(P)H: oxidized-glutathione oxidoreductase, EC 1.6.4.2].  相似文献   

16.
Experiments designed to elucidate the nature of 17β-hydroxysteroid dehydrogenase from human red blood cells have shown that NADP+ activates and protects the enzyme, while also serving as substrate for the reaction. Enzyme activity was measured by the conversion of 17β-estradiol to estrone and by the production of NADPH with 17β-estradiol-3-sulfate as substrate. It appears that the reaction sequence is first, binding with NADP+ and second, binding with the steroid. The binding with NADP+ is essentially irreversible: the activated enzyme is completely protected against loss of activity by dilution. On dilution of the unactivated enzyme, much of the activity is lost. The bireactant rate equation of the sequential type has been restated for the case of activation by one of the reactants. Since it has been found that activation of enzyme is linear with NADP+ concentration, it follows that the Michaelis constant for the steroid substrate is independent of the concentration of NADP+ activating the enzyme. This is substantiated by the determination of the Michaelis constant for 17β-estradiol-3-sulfate from data on double-reciprocal plots of activated and unactivated enzyme with limiting amounts of steroid. The activating effect increases linearly up to a concentration of 1.2 × 10?5m of NADP+ and then levels off. The activation is highly specific for NADP+; neither NAD+, ATP, NADPH, nicotinic acid, ncr nicotinamide prevent the loss of activity after storing the enzyme for 1 hr at 37 °C. The steroid substrate appears to interfere with the activation of NADP+.  相似文献   

17.
Redox state of pyridine nucleotides of the endoplasmic reticulum (ER) lumen was determined in different nutritional conditions. NADPH-dependent cortisone reduction and NADP+-dependent cortisol oxidation were measured in rat liver microsomes, by utilizing the luminal 11β-hydroxysteroid dehydrogenase type 1 activity. Cortisone reduction decreased, while cortisol oxidation increased during onward starvation, showing that the luminal NADPH/NADP+ ratio was substantially decreased. Cortisone or metyrapone addition caused a smaller decrease in NADPH fluorescence in microsomes from starved rats. The results demonstrate that nutrient supply is mirrored by the redox state of ER luminal pyridine nucleotides.  相似文献   

18.
K. J. Lendzian 《Planta》1978,141(1):105-110
Glucose-6-phosphate dehydrogenase (EC 1.1.1.49) from spinach chloroplasts is strongly affected by interactions between Mg2+, proton, and substrate concentrations. Mg2+ activates the enzyme to different degrees; however, it is not essential for enzyme activity. The Mg2+-dependent activation follows a maximum curve, magnitude and position of the maximum being dependent on pH and NADPH/NADP+ ratios. At a ratio of zero and pH 7.2, maximum activity is observed at 10 mM Mg2+. Increasing the NADPH/NADP+ ratio up to 1.7 (a ratio measured in the stroma during a light period), maximum activity is shifted to much lower Mg2+ concentrations. At pH 8.2 (corresponding to the pH of the stroma in the light) and at a high NADPH/NADP+ ratio, enzyme activity is not affected by the Mg2+ ion. The results are discussed in relation to dark-light-dark regulation of the oxidative pentose phosphate cycle in spinach chloroplasts.Abbreviations DTT dithiothreitol - G-6-P glucose-6-phosphate - G-6-PDH glucose-6-phosphate dehydrogenase (EC 1.1.1.49) - PPC pentose phosphate cycle  相似文献   

19.
Malic enzyme (EC 1.1.1.40) converts l-malate to pyruvate and CO2 providing NADPH for metabolism especially for lipid biosynthesis in oleaginous microorganisms. However, its role in the oleaginous yeast, Yarrowia lipolytica, is unclear. We have cloned the malic enzyme gene (YALI0E18634g) from Y. lipolytica into pET28a, expressed it in Escherichia coli and purified the recombinant protein (YlME). YlME used NAD+ as the primary cofactor. Km values for NAD+ and NADP+ were 0.63 and 3.9 mM, respectively. Citrate, isocitrate and α-ketoglutaric acid (>5 mM) were inhibitory while succinate (5–15 mM) increased NADP+- but not NAD+-dependent activity. To determine if fatty acid biosynthesis could be increased in Y. lipolytica by providing additional NADPH from an NADP+-dependent malic enzyme, the malic enzyme gene (mce2) from an oleaginous fungus, Mortierella alpina, was expressed in Y. lipolytica. No significant changes occurred in lipid content or fatty acid profiles suggesting that malic enzyme is not the main source of NADPH for lipid accumulation in Y. lipolytica.  相似文献   

20.
Objective: Although recent studies link altered cellular redox state to protein dysfunction in various disease-states, such associations are least studied in clinical diabetes. Therefore, this study assessed the levels of reduced glutathione (GSH) and Na+/K+ ATPase activities in type 2 diabetic patients with and without microangiopathy. Methods: The study group comprised of a total of 160 subjects, which included non-diabetic healthy controls (n = 40) and type 2 diabetic patients without (n = 60) and with microangiopathy (n = 60), defined as presence of retinopathy with or without nephropathy. Erythrocyte Na+/K+ ATPase activity and GSH levels were estimated spectrophotometrically and fluorometry was used to determine the plasma thiobarbituric acid reactive substances (TBARS) and serum advanced glycation end products (AGEs). Results: GSH levels in diabetic subjects without (4.8± 0.15 μmol/g Hb) and with microangiopathy (5.2± 0.14 μmol/g Hb) were significantly lower (p < 0.001) compared to control subjects (6.3± 0.14 μmol/g Hb). Erythrocyte Na+/K+ ATPase activity was significantly reduced (p < 0.001) in diabetes subjects with (272± 7 nmol Pi/mg protein/h) and without microangiopathy (304 ± 8) compared to control (374 ± 6) subjects. TBARS were significantly higher (p < 0.001) in diabetes subjects with (10.65± 0.81 nM/ml) and without microangiopathy (9.90± 0.5 nM/ml) compared to control subjects (5.18± 0.18 nM/ml). Advanced glycation end product levels were also significantly (p < 0.001) elevated in diabetic subjects with microangiopathy (8.2± 1.8 AU) when compared to diabetes subjects without microangiopathy (7.0± 2.0 AU) and control subjects (4.6± 1.9 AU). On multivariate regression analysis, GSH levels showed a positive association with the Na+/K+ ATPase activity and negative association with TBARS and AGE levels. Conclusion: Hypoglutathionemia and increased oxidative stress appears to be early biochemical aberrations in diabetes, and through protein alterations, oxidative stress and redox modifications may contribute to pathogenesis of diabetic microangiopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号