首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several populations of Prosopis reptans collected along the Texas Gulf coast were examined for their flavonoids and leaf morphology. Seventeen flavonoids were detected and the nine major ones were isolated and identified: apigenin 6- and 8-C-glucoside, luteolin and its 7-O-glucoside, quercetin and its 3-O-glucoside, and myricetin, its 3-O-rhamnoside and 3-O-glucoside. The presence of a single chemical race was established, since all specimens from the Texas Gulf coast populations were uniform in their chemistry and leaf morphology, and chemically identical to the plant material from Argentina. However, the Argentina material exhibited slight morphological differences in that the leaves possessed less pubescence than the Texas Gulf coast plants.  相似文献   

2.
A survey of flavonoids in the leaves of 81 species of the Zingiberales showed that, while most of the major classes of flavonoid are represented in the order, only two families, the Zingiberaceae and Marantaceae are rich in these constituents. In the Musaceae (in 9 species), Strelitziaceae (in 8 species) and Cannaceae (1 of 2 species) flavonol glycosides were detected in small amount and in the Lowiaceae no flavonoids were fully identified. In the Zingiberaceae kaempferol (in 22%), quercetin (72%) and proanthocyanidins (71%) are distributed throughout the family. The two subfamilies of the Zingiberaceae may be distinguished by the presence of myricetin (in 26%), isorhamnetin (10%) and syringetin (3%) in the Zingiberoideae and of flavone C-glycosides (in 86% of taxa) in the Costoideae. A number of genera have distinctive flavonol profiles: e.g. Hedychium species have myricetin and quercetin. Roscoea species isorhamnetin and quercetin and Alpinia species kaempferol and quercetin glycosides. A new glycoside, syringetin 3-rhamnoside was identified in Hedychium stenopetalum. In the Zingiberoideae flavonols were found in glycosidic combination with glucuronic acid, rhamnose and glucose but glucuronides were not detected in the Costoideae or elsewhere in the Zingiberales. The Marantaceae is chemically the most diverse group and may be distinguished from other members of the Zingiberales by the occurrence of both flavone O- and C-glycosides and the absence of kaempferol and isorhamnetin glycosides. The distribution of flavonoid constituents within the Marantaceae does not closely follow the existing tribai or generic limits. Flavonols (in 50% of species). flavones (20%) and flavone C-glycosides (40%) are found with similar frequency in the two tribes and in the genera Calathea and Maranta both flavone and flavonol glycosides occur. Apigenin- and luteolin-7-sulphates and luteolin-7,3′-disulphate were identified in Maranta bicolor and M. leuconeura var. kerchoveana and several flavone C-glycosides sulphates in Stromanthe sanguinea. Anthocyanins were identified in those species with pigmented leaves or stems and a common pattern based on cyanidin-and delphinidin-3-rutinosides was observed throughout the group. Finally the possible relationship of the Zingiberales to the Commelinales, Liliales, Bromeliales and Fluviales is discussed.  相似文献   

3.
(1) 4,6-O-Ethylidene-d-glucose is a good inhibitor of adipocyte sugar transport from the external surface. Using radioactively labelled 4,6-O-methylidene-d-glucose we have shown that this compound is not taken up into cells by the hexose transporter but through a route which is insulin insensitive, d-glucose insensitive, temperature sensitive and which is slightly inhibited by phloretin. When efflux of 3-O-methyl-d-glucose is studied with 4,6-O-methylidene-d-glucose only present inside the cells then no detectable inhibition is observed indicating that this compound is a good side-specific analogue with a high affinity for only the external site of the hexose transporter. (2) Radioactively labelled alkyl-β-d-glucosides have been prepared. These also penetrate the adipocyte membrane by an insulin and d-glucose insensitive route. The half-times for equilibration with methyl-, n-propyl-, and n-butyl-β-d-glucosides are 255, 9.45 and 3.3 min, respectively, indicating that the uptake rates are dependent upon the size of the alkyl group. (3) The glucosides show poor inhibition of 3-O-methyl-d-glucose transport when added to the external solution only. When cells are preincubated with n-propyl-β-d-glucoside and n-butyl-β-d-glucoside an increase in the amount of inhibition of 3-O-methyl-d-glucosez uptake is observed. This increase in inhibition correlates well with the glucoside uptake rates and indicates that availability of the glucosides at the internal surface of the transporter is required for inhibition. This has been confirmed by measuring 3-O-methyl-d-glucose exit in the presence of n-propyl-β-d-glucoside at the internal surface only. Thus, n-propyl-β-d-glucoside is a good side-specific analogue with high affinity only for the internal site of the hexose transporter. (4) n-Propyl-β-d-glucoside inhibition of d-allose transport is fully reversible. If cells are washed after a preincubation with the analogue then the inhibition is lost. The n-propyl-β-d-glucoside inhibition of d-allose transport is reduced competitively by 3-O-methyl-d-glucose. (5) 6-O-Propyl-d-galactose has low affinity for both internal and external sites.  相似文献   

4.
(1) Alkyl sugar inhibition of d-allose uptake into adipocytes has been used to explore the spatial requirements of the external sugar transport site in insulin-treated cells. α-methyl and β-methyl glucosides show low affinity indicating very little space around C-1. The high affinity of d-glucosamine (Ki = 9.05 ± 0.66 mM) is lost by N-acetylation. N-Acetyl-d-glucosamine shows no detectable affinity, indicating that a bulky group at C-2 is not accepted. Similarly 2,3-di-O-methyl-d-glucose (Ki = 42.1 ± 7.5 mM) has lower affinity than 3-O-methyl-d-glucose (Ki = 5.14 ± 0.32 mM) indicating very little space around C-2 but much more around C-3. A reduction in affinity does occur if a propyl group is introduced into the C-3 position. The Ki for 3-O-propyl-d-glucose is 11.26 ± 2.12 mM. 6-O-Methyl-d-galactose (Ki = 87.2 ± 17.9 mM) and 6-O-propyl-d-glucose (Ki = 78.07 ± 12.6 mM) show low affinity compared with d-galactose and d-glucose, indicating steric constraints around C-6. High affinity is restored in 6-O-pentyl-d-galactose (Ki = 4.66 ± 0.23 mM) possibly indicating a hydrophobic binding site around C-6). (2) In insulin treated cells 4,6-O-ethylidene-d-glucose (Ki = 6.11 ± 0.5 mM) and maltose (Ki = 23.5 ± 2.1 mM) are well accommodated by the site but trehalose shows no detectable inhibition. These results indicate that the site requires a specific orientation of the sugar as it approaches the transporter from the external solution. C-1 faces the inside while C-4 faces the external solution. (3) To determine the spatial and hydrogen bonding requirements for basal cells 40 μM 3-O-methyl-d-glucose was used as the substrate. Poor hydrogen bonding analogues and analogues with sterically hindering alkyl groups showed similar Ki values to those determined for insulin-treated cells. These results indicate that insulin does not change the specificity of the adipocyte transport system.  相似文献   

5.
The flavonoid profiles of Astilbe (four taxa studied) and Rodgersia (two taxa studied) are based on simple flavonol glycosides. Astilbe has 3-O-mono-, 3-O-di-, and 3-O-triglycosides of kaempferol, quercetin, and myricetin, while Rodgersia has only mono- and diglycosides of kaempferol and quercetin. Astilbe×arendsii was also shown to accumulate dihydrochalcone glycosides. The flavonoid profile of Rodgersia is the simplest recorded so far in the herbaceous Saxifragaceae. The flavonoids of two species of Aruncus were shown to be based upon kaempferol and quercetin 3-O-mono- and 3-O-diglycosides. One of the species also exhibited an eriodictyol glycoside. The triglycoside differences were not considered important, but the differences in myricetin occurrences were taken as evidence against derivation of Saxifragaceae from an Aruncus-like ancestor. Should such an event be proposed, however, serious consideration would have to be given to the current pattern of myricetin occurrence in the two families.  相似文献   

6.
Quercetin 3-O-(6″-O-galloyl)-β-d-glucoside has been identified as a constituent of Tellima grandiflora (Saxifragaceae). In all, twelve gallates were encountered: two isomeric gallates of quercetin 3-O-glucoside and two of quercetin 3-O-galactoside, a similar set involving kaempferol, and a similar set involving myricetin.  相似文献   

7.
The flavonoids of Leptarrhena pyrolifolia comprise (+)-dihydromyricetin and mono-, di-and triglycosides of kaempferol, quercetin, isorhamnetin and myricetin. This is the first report of a dihydroflavonol in the Saxifragaceae.  相似文献   

8.
9.
The kinetic mechanism of chlorpromazine inhibition of erythrocyte hexose transport was investigated using the non-metabolizable glucose analog 3-O-methylglucose. It was found that chlorpromazine added to the external medium is a non-competitive inhibitor of both equilibrium exchange and net 3-O-methylglucose transport at pH 7.8, 15°C. The Ki for equilibrium exchange is 76 ± 21 μM. When net efflux and equilibrium exchange were measured on the same population of cells the equilibrium exchange was 2.5-times the maximum net efflux. The percent reduction of 3-O-methylglucose flux by chlorpromazine is dependent upon chlorpromazine concentration and not 3-O-methylglucose concentration as expected for a non-competitive inhibitor. Equilibrium exchange and net efflux show the same extent of inhibition at each concentration of chlorpromazine evaluated. These results suggest that exchange and net efflux of 3-O-methylglucose in the human erythrocyte may share a common transport system.  相似文献   

10.
Condensation of 3,5-di-O-benzoyl-β-d-ribofuranosyl chloride severally with 3-acetyl-5-alkylpyridines, 5-alkyl-3-methoxycarbonylpyridines (alkyl = Me, Et, Pr, and iPr), 5-isopropylnicotinamide, and 3,5-diacetylpyridine bis(ethylene acetal) in acetonitrile at ?5° gave the corresponding 1-(3,5-di-O-benzoyl-β-d-ribofuranosyl))-3,5-disubstituted pyridinium chlorides in excellent yield (90%). From the reaction of a series of 2,3-O-isopropylidene-β-d-ribofuranosyl halides with 3-acetyl-5-methyl-pyridine at room temperature, the α-nucleosides were obtained.  相似文献   

11.
The transport of 3-O-methylglucose in white fat cells was measured under equilibrium exchange conditions at 3-O-methylglucose concentrations up to 50 mM with a previously described method (Vinten, J., Gliemann, J. and Østerlind, K. (1976) J. Biol. Chem. 251, 794–800). Under these conditions the main part of the transport was inhibitable by cytochalasin B. The inhibition was found to be of competitive type with an inhibition constant of about 2.5 · 10?7 M, both in the absence and in the presence of insulin (1μM). The cytochalasin B-insensitive part of the 3-O-methylglucose permeability was about 2 · 10?9 cm · s?1, and was not affected by insulin. As calculated from the maximum transport capacity, the half saturation constant and the volume/ surface ratio, the maximum permeability of the fat cell membrane to 3-O-methylglucose at 37°C and in the presence of insulin was 4.3 · 10?6 cm · s?1. From the temperature dependence of the maximum transport capacity in the interval 18–37°C and in the presence of insulin, an Arrhenius activation energy of 14.8 ± 0.44 kcal/mol was found. The corresponding value was 13.9 ± 0.89 in the absence of insulin. The half saturating concentration of 3-O-methylglucose was about 6 mM in the temperature interval used, and it was not affected by insulin, although this hormone increased the maximum transport capacity about ten-fold to 1.7 mmol · s?1 per 1 intracellular water at 37°C.  相似文献   

12.
(1) A flow-tube apparatus suited for measurement of rapid efflux of sugars from adipocytes is described. (2) Due to heterogeneity of fat cell populations, a conventional analysis of the time-course of net efflux of 3-O-methylglucose based on the integrated rate equation can produce gross errors in estimates of kinetic parameters. (3) The half-saturation constant and maximum transport capacity for 3-O-methylglucose transport were found to be about 3-fold higher for net efflux than for equilibrium exchange flux, both in insulin-stimulated and non-stimulated adipocytes. This suggests asymmetric kinetic parameters for 3-O-methylglucose transport.  相似文献   

13.
14.
A study of the anthocyanins in a representative sample (34 species from 14 genera) of Polemoniaceae has shown that the pigment type in the flowers is broadly correlated with pollination ecology. Thus, hummingbird pollinated species such as Ipomopsis aggregata generally contain pelargonidin sometimes with cyanidin, while bee and beefly pollinated species (e.g. Gilia latiflora) contain mainly delphinidin. On the other hand, lepidopteran species such as Leptodactylon californicum have cyanidin or mixtures of cyanidin with delphinidin. The above three anthocyanidins occur usually as the 3-glucoside, 3,5-diglucoside, 3-(p-coumarylglucoside) and 3-(p-coumarylglucoside)-5-glucoside, although other types are occasionally found. The distribution of glycosidic types and of acylation, unlike that of the anthocyanidins, is more closely correlated with systematic position than with pollinating vectors. In autogamous species where animal pollination is absent or unimportant, anthocyanin pigmentation in the flowers retains the complexity present in related animal-pollinated taxa. Anthocyanins were also identified in hummingbird pollinated plants from two related families and pelargonidin derivatives were detected. In Fouquieria splendens (Fouquieriaceae), the glycosidic pattern was different from that in Polemoniaceae in being 3-galactoside. In Penstemon (Scrophulariaceae) a study of flower anthocyanins was consistent with Straw's hypothesis that the wasp-pollinated P. spectabilis originated by hybridization between the hummingbird-pollinated P. centranthifolius and the bee-pollinated P. grinnellii.  相似文献   

15.
It was observed previously (Csáky, T.Z. and Fischer, E. (1981) Diabetes 30, 568–574), that sustained hyperglycemia enhances the intestinal transport of aldohexoses; on the other hand, hyperfructosemia affects primarily the transport of fructose. The present study examines in detail the hyperketosemia-induced intestinal ketose transport. Intravenously infused 3-O-methylfructose produces marked 3-O-methylfructosemia without concomitant hyperglycemia; in such animals the intestinal transport of both fructose and 3-O-methylfructose increased. The hyperketosemia-induced increased ketose transport was inhibited by phloretin but only if placed on the serosal compartment. Phlorizin affects neither the basal nor the induced intestinal ketohexose transport. The enhancement of the intestinal ketohexose transport is not sodium-dependent and is not inhibited by ouabain.  相似文献   

16.
17.
Sucrose and 1,2-O-isopropylidene-α-d-glucofuranose (1) were oxidised with bromine in aqueous solution at pH 7 and room temperature. The resulting keto derivatives were converted into their more-stable O-methyloximes, which were characterised by spectroscopic and chromatographic methods. Oxidation of 1 occurred at C-3 and C-5, with a preference for C-5. In the sucrose derivatives isolated after oxidation, those having a keto group in the glucopyranosyl moiety preponderated. The axial fructofuranosyl aglycon protects position 3 in the glucopyranosyl group and oxidation occurs only at C-2 and C-4. Small amounts of sucrose oxidised at C-3 in the fructofuranosyl moiety were also found.  相似文献   

18.
19.
Both d-glucose and its nonmetabolized analog 3-O-methyl-d-glucose are known to protect the pancreatic B-cell against the toxic action of alloxan, as if the protective action of hexoses were to involve a membrane-associated glucoreceptor site. In the present study, the protective actions of the two hexoses were found to differ from one another in several respects. Using the process of glucose-stimulated insulin release by rat pancreatic islets as an index of alloxan cytotoxicity, we observed that the protective action of d-glucose was suppressed by d-mannoheptulose and menadione, impaired by NH4Cl, and little affected by aminooxyacetate. These findings and the fact that d-glucose failed to decrease [2-14C]alloxan uptake by the islets suggest that the protective action of d-glucose depends on an increase in the generation rate of reducing equivalents (NADH and NADPH). The latter view is supported by the observation that the protective action of a noncarbohydrate nutrient, 2-ketoisocaproate, was also abolished by menadione. Incidentally, the protective action of 2-ketoisocaproate was apparently a mitochondrial phenomenon, it not being suppressed by aminooxyacetate. In contrast to that of glucose, the protective action of 3-O-methyl-d-glucose was unaffected by d-mannoheptulose, failed to be totally suppressed by menadione, and coincided with a decreased uptake of [2-14C]-alloxan by the islets. It is concluded that the protective action of d-glucose in linked to the metabolism of the sugar in islet cells, whereas that of 3-O-methyl-d-glucose results from inhibition of alloxan uptake. This conclusion reinforces our opinion that the presence in the B-cell of an alleged stereospecific membrane glucoreceptor represents a mythical concept.  相似文献   

20.
The characterization of cytochalasin B binding and the resulting effect on hexose transport in rat liver parenchymal cells in primary culture were studied. The cells were isolated from adult rats by perfusing the liver in situ with collagenase and separating the hepatocytes from the other cell types by differential centrifugation. The cells were established in primary culture on collagen-coated dishes. The binding of [4-3H]cytochalasin B and transport of 3-O-methyl-D-[14C]glucose into cells were investigated in monolayer culture followed by digestion of cells and scintillation counting of radioactivity. The binding of cytochalasin B to cells was rapid and reversible with association and dissociation being essentially complete within 2 min. Analysis of the kinetics of cytochalasin B binding by Scatchard plots revealed that binding was biphasic, with the parenchymal cell being extremely rich in high-affinity binding sites. The high-affinity site, thought to be the glucose-transport carrier, exhibited a KD of 2.86 · 10?7 M, while the low-affinity site had a KD of 1.13 · 10?5M. Sugar transport was monitored by 3-O-methyl-D-glucose uptake and it was found that cytochalasin B (10?5M) drastically inhibited transport. However, D-glucose (10?5M) did not displace cytochalasin B, and cytochalasin E, which does not inhibit transport, was competitive for cytochalasin B at only the low-affinity site, demonstrating that the cytochalasin B inhibition of sugar transport occurs at the high-affinity site but that the inhibition is non-competitive in nature. Therefore, the liver parenchymal cells may represent an unusually rich source of glucose-transport system which may be useful in the isolation of this important membrane carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号