首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
More than 50 collections of five species forming the Achillea nobilis group were analysed for their leaf flavonoid complement. Major accumulation trends were found to be C-glycosylflavones and flavonol 3-O-glycosides. The most common pattern consisted of the C-8-glycosylfiavones (vitexin and orientin), the C-6-glycosylflavone (isoörientin) together with minor amounts of di-C-glycosylapigenins and quercetin 3-O-glycosides. Additionally, C-6-glycosylflavones (isovitexin) and their 7-methyl ethers swertisin and swertiajaponin were sporadically accumulated, characterizing particularly two subspecies of A. nobilis. Whereas C-glycosylflavone dominated profiles were typical of most species, two taxa exhibited a flavonol dominated profile (A. ligustica; A. virescens p.p.). Regarding the infraspecific and interpopulational variations of flavonoid accumulation trends, their systematic and ecological significance is briefly discussed.  相似文献   

2.
The major flavonoid constituents of Phragmites australis flowers are the C-glycosylflavones swertiajaponin, isoswertiajaponin and two new O-glycosides, the 3′-O-gentiobioside and the 3′-O-glucoside of swertiajaponin. Two unusual flavonol glycosides, rhamnetin 3-O-rutinoside and rhamnetin 3-O-glucoside, were also characterized from the same tissue.  相似文献   

3.
The flavonoid pattern of the monotypic Turkish genus Leucocyclus consists of C-glycosylflavones (isovitexin; isoorientin and derivatives; several di-C-glycosylapigenins; schaftoside, isoschaftoside and vicenin-3; lucenin-2), of flavonol 3-O-glycosides (quercetin and kaempferol 3-O-rhamnoglucoside) and trace amounts of luteolin 7-O-rhamnoglucoside. The systematic significance of the flavonoid diversification within Leucocyclus as well as possible relationships to other genera of the Anthemideae are discussed.  相似文献   

4.
Permethylated 6-C-diglycosyl-8-C-glycosylflavones and 6-C-glycosyl-8-C-diglycosylflavones gave well defined EIMS including the molecular peak and a fragmentation pattern characteristic of the 6-C-glycosyl residue. X″′-O-glycosides (8-C-disaccharides) are thus easily distinguished from X″-O-glycosides (6-C-disaccharides) and, in the latter, the position of the O-glycosidic bond should be deduced from the MS, after acid hydrolysis. Three new C-glycosylflavones have been characterized in this way from Spergularia rubra and Stellaria holostea.  相似文献   

5.
Flavonoids in 19 Cyrtomium, three Cyrtogonellum and two Phanerophlebia taxa were surveyed. Major flavonoids were flavonol O-glycosides based on kaempferol, quercetin, and sometimes myricetin, and C-glycosylflavones, such as isovitexin, vitexin, isoorientin, orientin and their O-glycosides. The C-methylflavanones, farrerol and cyrtominetin, and their 7-O-glucosides were isolated from Cyrtomium devexiscapulae and Cyrtomium laetevirens. Flavanones have been reported from Cyrtomium falcatum sensu lato. Though C. falcatum sensu lato is divided into four taxa, i.e. C. falcatum subsp. falcatum, C. falcatum subsp. australe, C. falcatum subsp. littorale, and C. devexiscapulae, the occurrence of the flavanones was restricted to C. devexiscapulae, and they did not occur in C. falcatum sensu stricto.  相似文献   

6.
Mayaca is an aquatic monocot of the monogeneric family Mayacaceae. The flavonol glycosides quercetin 3-O-glucoside, quercetin 3-O-rutinoside, and kaempferol 3-O-glucoside, and the flavone luteolin 5-O-glucoside were found in methanolic leaf extracts. The presence of flavonol and flavone O-glycosides sets the Mayacaceae apart from the Commelinaceae, which accumulates predominantly flavone C-glycosides.  相似文献   

7.
The flavonoids and xanthones in the leaves of Amorphophallus titanum, which has the largest inflorescence among all Araceous species, were surveyed. Eight C-glycosylflavones, five flavonols, one flavone O-glycoside and two xanthones were isolated and characterized as vitexin, isovitexin, orientin, isoorientin, schaftoside, isoschaftoside, vicenin-2 and lucenin-2 (C-glycosylflavones), kaempferol 3-O-robinobioside, 3-O-rutinoside and 3-O-rhamnosylarabinoside, and quercetin 3-O-robinobioside and 3-O-rutinoside (flavonols), luteolin 7-O-glucoside (flavone), and mangiferin and isomangiferin (xanthones). Although the inflorescence of this species has been surveyed for flavonoids, those of the leaves were reported for the first time.  相似文献   

8.
The fresh leaves of Hillebrandia sandwicensis and 126 Begonia taxa were chemotaxonomically surveyed for flavonoids. Of their taxa, H. sandwicensis and 119 species, one variety and three hybrids were analyzed for flavonoids for the first time. Ten flavonols and eleven C-glycosylflavones were isolated and characterized as quercetin 3-O-rutinoside (1), kaempferol 3-O-rutinoside (2), isorhamnetin 3-O-rutinoside (3), quercetin 3-O-glucoside (4), quercetin 3-methyl ether 7-O-rhamnosylglucoside (5), quercetin 3,3'-dimethyl ether 7-O-rhamnosylglucoside (6), quercetin glycoside (13), quercetin glycoside (acylated) (14), kaempferol glycoside (17) and quercetin 3-O-rhamnoside (18) as flavonols, and isovitexin (7), vitexin (8), isoorientin (9), orientin (10), luteolin 6-C-pentoside (11), luteolin 8-C-pentoside (12), schaftoside (15), isoschaftoside (16), chrysoeriol 6,8-di-C-pentoside (19), apigenin 6,8-di-C-arabinoside (20) and isovitexin 2''-O-glucoside (21) as C-glycosylflavones. Quercetin 3-O-rutinoside (1) alone was isolated from H. sandwicensis endemic to Hawaii. Major flavonoids of almost Begonia species was also 1. Begonia species were divided into two chemotypes, i.e. flavonol containing type and C-glycosylflavone containing type. Of 14 section of the Begonia, almost species of many section, i.e. sect. Augustia, Coelocentrum, Doratometra, Leprosae, Loasibegonia, Monopteron and Ruizoperonia, were flavonol types. On the other hand, C-glycosyflavone type was comparatively most in sect. Platycentrum.  相似文献   

9.
Thirty-one accessions of nine species belonging to three subgenera of Ocimum (basil, family Lamiaceae) were surveyed for flavonoid glycosides. Substantial infraspecific differences in flavonoid profiles of the leaves were found only in O. americanum, where var. pilosum accumulated the flavone C-glycoside, vicenin-2, which only occurred in trace amounts in var. americanum and was not detected in cv. Sacred. The major flavonoids in var. americanum and cv. Sacred, and also in all other species investigated for subgenus Ocimum, were flavonol 3-O-glucosides and 3-O-rutinosides. Many species in subgenus Ocimum also produced the more unusual compound, quercetin 3-O-(6″-O-malonyl)glucoside, and small amounts of flavone O-glycosides. The level of flavonol glycosides produced was reduced significantly in glasshouse-grown plants, but levels of flavone glycosides were unaffected. A single species investigated from subgenus Nautochilus, O. lamiifolium, had a different flavonoid glycoside profile, although the major compound was also a flavonol O-glycoside. This was identified as quercetin 3-O-xylosyl(1‴→2″)galactoside, using NMR spectroscopy. The species investigated from subgenus Gymnocimum, O. tenuiflorum (=O. sanctum), was characterised by the accumulation of flavone O-glycosides. These were isolated, and identified as the 7-O-glucuronides of luteolin and apigenin. Luteolin 5-O-glucoside was found in all nine species of Ocimum studied, and is considered to be a key character for the genus.  相似文献   

10.
Eight C-glycosylflavone O-glycosides including three new compounds: isomollupentin 7-O-glucoside, isomollupentin 4′-O-glucoside and isomollupentin 2″-O-glucoside have been isolated from the leaves and flowers of Cerastium arvense. The 27 C-glycosylflavones identified in this plant are tabulated.  相似文献   

11.
Leaf flavonoids were isolated and characterized from the seven taxa of Hypericum, formerly segregated as Ascyrum and Crookea. These included flavonol 3-glycosides based on quercetin and kaempferol and flavone-O-glycosides and C-glycosides based on apigenin and luteolin. The flavonoid data do not indicate that the taxe of Ascyrum and Crookea form a single coherent group and hence support their merger with Hypericum.  相似文献   

12.
A survey of the leaves and flowers of 62 representatives of the tribe Loteae (Leguminosae) showed the presence of several classes of flavonoids: flavonol 7-methyl ethers (rhamnocitrin, rhamnetin), 8-O-substituted flavonols (gossypetin, limocitrin, sexangularetin, corniculatusin), 3′,4′,5′-tri-O-substituted flavonols (myricetin, mearnsetin, syringetin, laricitrin), proanthocyanidins and flavone-C-glycosides. The trisubstitution of the B-ring and the 8-O-substitution of the A-ring allow the definition of a major group including the genera Dorycnium, Bonjeania, Lotus and Tetragonolobus. The presence of proanthocyanidins and 7-O-methylation determine a second group consisting of the genus Anthyllis. Finally, Securigera, on the basis of its flavonoid chemistry, appears to be rather remote from other members of the tribe.  相似文献   

13.
Perianth parts, in particular, tepals of Echinocereus triglochidiatus var. gurneyi yielded a complex mixture of dihydroflavonols and dihydroflavonol 7-O-glucosides. Dihydroquercetin and its 7-O-glucoside were the predominant compounds while dihydrokaempferol and dihydromyricetin and their 7-O-glycosides were present in lesser amounts. Quercetin 7-O-glucoside was the principal flavonol glycoside: others present were quercetin and kaempferol 3-O-glucosides and 3-O-rhamnosylglucosides. The epidermis and spines yielded only traces of presumed flavonols as determined by two-dimensional TLC. No flavonoids were detected in the cortex tissue. This is the first report of dihydroflavonol derivatives from the Cactaceae and constitutes the first record of flavonoids from Echinocereus.  相似文献   

14.
The conifer genus Phyllocladus is shown by comparative flavonoid chemistry to be remarkably homogeneous and quite distinct from other studied genera in the Podocarpaceae. It is characterized by the accumulation (in the foliage) of a predominance of flavone O-glycosides, and in particular, luteolin 7- and 3′-O-glycosides. Lower levels of flavonol O-glycosides are also evident. Two flavone glycosides are reported for the first time, luteolin 3′-O-α-L-rhamnopyranoside and luteolin 7-O-α-L-rhamnoside.  相似文献   

15.
Permethylated O-glycosyl-C-glycosylflavones give well defined MS including an important molecular peak. Permethyl 6-C-glycosylflavones O-glycosylated on a phenolic hydroxyl group are easily distinguished from the isomeric permethyl 6-C-diholosylflavones. In both types, the position of the O-glycosidic bond can be deduced from the MS, eventually after acid hydrolysis. 2″-O-glycosyl-6-C-glycosylflavones can be differentiated from their 8-C isomers.  相似文献   

16.
LC–UV–MS/MS analysis of leaf extracts from 146 accessions of 71 species of Rosa revealed that some taxa accumulated flavonol O-glycosides acylated with 3-hydroxy-3-methylglutaric acid, which are relatively uncommon in plants. The structures of two previously unrecorded examples isolated from Rosa spinosissima L. (syn. Rosa pimpinellifolia L.) were elucidated using spectroscopic and chemical methods as the 3-O-α-l-rhamnopyranosyl-(1  2)-[6-O-(3-hydroxy-3-methylglutaryl)-β-d-galactopyranosides] of kaempferol (3,5,7,4′-tetrahydroxyflavone) and quercetin (3,5,7,3′,4′-pentahydroxyflavone). The corresponding 3-O-[6-O-(3-hydroxy-3-methylglutaryl)-β-d-galactopyranoside] of quercetin was also present in R. spinosissima, but at lower levels, together with 17 other flavonol O-glycosides for which structures were assigned using LC–UV–MS/MS. The distribution of flavonol 3-hydroxy-3-methylglutarylgalactosides in Rosa was limited to some species of subgenus Rosa section Pimpinellifoliae and Rosa roxburghii Sw. of the monotypic subgenus Platyrhodon, indicating that this character could be of value in phylogenetic analyses of the genus.  相似文献   

17.
Leaves of 14 species of Ficus growing in the Budongo Forest, Uganda, were analysed for vacuolar flavonoids. Three to six accessions were studied for each species to see whether there was intraspecific chemical variation. Thirty-nine phenolic compounds were identified or characterised, including 14 flavonol O-glycosides, six flavone O-glycosides and 15 flavone C-glycosides. In some species the flavonoid glycosides were acylated. Ficus thonningii contained in addition four stilbenes including glycosides. Most of the species could be distinguished from each other on the basis of their flavonoid profiles, apart from Ficus sansibarica and Ficus saussureana, which showed a very strong intraspecific variation. However, on the whole flavonoid profiles were sufficiently distinct to help in future identifications.  相似文献   

18.
Nine C-glycosyldeoxyanthocyanidins, 6-C-β-glucopyranosyl-7-O-methylapigeninidin, 6-C-β-glucopyranosyl-7-O-methylluteolinidin, 6-C-β-(2″-O-β-glucopyranosylglucopyranosyl)-7-O-methylapigeninidin, 6-C-β-(2″-O-β-glucopyranosylglucopyranosyl)-7,4′-di-O-methylapigeninidin, 8-C-β-glucopyranosylapigeninidin, 8-C-β-(2″-O-α-rhamnopyranosylglucopyranosyl)apigeninidin, 8-C-β-(2″-O-α-(4″′-O-acetylrhamnopyranosyl)glucopyranosyl)apigeninidin, 6,8-di-C-β-glucopyranosylapigeninidin (8), 6,8-di-C-β-glucopyranosyl-4′-O-methylluteolinidin (9), have been synthesized from their respective C-glycosylflavones (yields between 14% and 32%) by the Clemmensen reduction reaction using zinc-amalgam. The various precursors (C-glycosylflavones) of the C-glycosylanthocyanidins were isolated from either flowers of Iris sibirica L., leaves of Hawthorn ‘Crataegi Folium Cum Flore’, or lemons and oranges. This is the first time C-glycosylanthocyanidins have been synthesized. The structures of all flavonoids including the flavone rotamers were elucidated by 2D NMR techniques and high-resolution electrospray MS. The distribution of the various structural forms of 8 and 9 are different at pH 1.1, 4.5, and 7.0, however, the two pigments undergoes similar structural transformations at the various pH values. Pigments 8 and 9 with C-C linkages between the sugar moieties and the aglycone, were found to be far more stable towards acid hydrolysis than pelargonidin 3-O-glucoside, which has the typical anthocyanidin C-O linkage between the sugar and aglycone. This stability may extend the present use of anthocyanins as nutraceuticals, pharmaceuticals or colorants.  相似文献   

19.
Blue flowers of six Bhutani Meconopsis species, M. bhutanica, M. bella, M. horridula, M. simplicifolia, M. primulina and M. polygonoides, were surveyed for anthocyanins and other flavonoids. Four anthocyanins were isolated and identified as cyanidin 3-O-sambubioside-7-O-glucoside (1), cyanidin 3-O-[xylosyl-(1 → 2)-(6″-malonylglucoside)]-7-O-glucoside (2), cyanidin 3-O-sambubioside (4) and cyanidin 3-O-[xylosyl-(1 → 2)-(6″-malonylglucoside)] (5). On the other hand, 12 flavonols were isolated from their Meconopsis species with various combination and characterized as kaempferol 3-O-glycosides (812), kaempferol 3,7-O-glycosides (1316), quercetin 3-O-glycosides (17 and 18) and isorhamnetin 3-O-glycoside (19). Of six Meconopsis species which were surveyed in this experiment, anthocyanin and flavonol composition of five species except for M. horridula was clarified for the first time. Their Meconopsis species showed the different flavonoid profiles, respectively, and flavonoid diversity within the glycosylation level of Meconopsis flowers were indicated.  相似文献   

20.
The flavonoid chemistry of Takakia is described for the first time. T. lepidozioides, thought to be amongst the most primitive of extant liverworts, contains a high level and wide variety of flavone C- and O-glycosides, many of which are unique. New flavonoids include the 8-O-glucuronide and 8-O-xylosylglucoside of takakin (8-hydroxyacacetin), luteolin 6-C-arabinoside-8-C-pentoside, kaempferol 3-O-glucoside-7-O-xyloside and a number of tricetin C-glycosides. The only other known Takakia species, T. ceratophylla, contains the same 4 major constituents but significantly lacks flavonols. The often suggested relationship of Takakia with the order Calobryales is not supported by the available flavonoid data. Biochemical affinities of Takakia with all major liverwort orders are noted and the flavonoid data are interpreted as supporting the concept of Takakia as an isolated branch among the ancestors of modern bryophytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号