首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The influence of seasonal variations in the temperature of the environment on the kinetic parameters of LDH have been followed in the shrimp Palaemon serratus. The results obtained show that this system compensates partially the effects of the temperature on its activity. The complex pattern of the monthly variations of Km values along the year can be resolved into a 2 plateaux system corresponding to the extreme temperature of the environment.  相似文献   

2.
The structure of human glutamate dehydrogenase (GDH) has been determined in the absence of active site and regulatory ligands. Compared to the structures of bovine GDH that were complexed with coenzyme and substrate, the NAD binding domain is rotated away from the glutamate-binding domain. The electron density of this domain is more disordered the further it is from the pivot helix. Mass spectrometry results suggest that this is likely due to the apo form being more dynamic than the closed form. The antenna undergoes significant conformational changes as the catalytic cleft opens. The ascending helix in the antenna moves in a clockwise manner and the helix in the descending strand contracts in a manner akin to the relaxation of an extended spring. A number of spontaneous mutations in this antenna region cause the hyperinsulinism/hyperammonemia syndrome by decreasing GDH sensitivity to the inhibitor, GTP. Since these residues do not directly contact the bound GTP, the conformational changes in the antenna are apparently crucial to GTP inhibition. In the open conformation, the GTP binding site is distorted such that it can no longer bind GTP. In contrast, ADP binding benefits by the opening of the catalytic cleft since R463 on the pivot helix is pushed into contact distance with the beta-phosphate of ADP. These results support the previous proposal that purines regulate GDH activity by altering the dynamics of the NAD binding domain. Finally, a possible structural mechanism for negative cooperativity is presented.  相似文献   

3.
The effect of temperature level (24°C, 28°C, 32°C or 36°C) on performance and thermoregulatory response in growing pigs during acclimation to high ambient temperature was studied on a total of 96 Large White barrows. Pigs were exposed to 24°C for 10 days (days -10 to -1, P0) and thereafter to a constant temperature of 24°C, 28°C, 32°C or 36°C for 20 days. Pigs were housed in individual metal slatted pens, allowing a separate collection of faeces and urine and given ad libitum access to feed. Rectal (RT) and cutaneous (CT) temperatures and respiration rate (RR) were measured three times daily (0700, 1200 and 1800 h) every 2 to 3 days during the experiment. From day 1 to 20, the effect of temperature on average daily feed intake (ADFI) and BW gain (average daily gain, ADG) was curvilinear. The decrease of ADFI averaged 90 g/day per °C between 24°C and 32°C and 128 g/day per °C between 32°C and 36°C. The corresponding values for ADG were 50 and 72 g/day per °C, respectively. The 20 days exposure to the experimental temperature was divided in two sub-periods (P1 and P2, from day 1 to 10 and from day 11 to 20, respectively). ADFI was not affected by duration of high-temperature exposure (i.e. P2 v. P1). The ADG was not influenced by the duration of exposure at 24°C and 28°C groups. However, ADG was higher at P2 than at P1 and this effect was temperature dependent (+130 and +458 g/day at 32°C and 36°C, respectively). In P2 at 36°C, dry matter digestibility significantly increased (+2.1%, P < 0.01); however, there was no effect of either duration or temperature on the digestibility of dry matter at group 24°C and 32°C. RT, CT and RR were measured three times daily (0700, 1200 and 1800 h) every 2 to 3 days during the experiment. Between 28°C and 36°C, RT and CT were lower during P2 than during P1 (-0.20°C and -0.23°C; P < 0.05), whereas RR response was not affected by the duration of exposure whatever the temperature level. In conclusion, this study suggests that the effect of elevated temperatures on performance and thermoregulatory responses is dependent on the magnitude and the duration of heat stress.  相似文献   

4.
The learning behaviour and memory formation of ectotherms, especially of fish, depend significantly on the acclimation temperature. Although temperature is known to affect different physiological factors in the nervous system, the exact manner in which memory and learning are affected by these alterations is not clear. Large variations in the acclimation time before learning takes place, are striking. With regard to long-lasting compensatory changes in the polarity of membrane-bound neuronal gangliosides (1) and in the bio-electrical activity of the CNS (post-synaptic potential amplitudes (2)) following thermal acclimation it was of interest to investigate the time course of acclimation on the learning ability of fish subjected to a new environmental temperature.  相似文献   

5.
Summary Glutamate (Glu) the major amino acid in mammalian brain and most dietary proteins possesses neurotransmitter as well as neurotoxic properties. We administered monosodium glutamate (MSG) 4 mg/g bwt, sc on postnatal day (PND) 1 through 10 to rats on alternate days or daily and sacrificed them on PND 45 or PND 90 respectively. The activities of glutamate dehydrogenase and aminotransferases were evaluated in the circumventricular organs of brain. Results show that neonatal MSG produces alterations in glutamate metabolism in blood-brain-barrier deficient regions.  相似文献   

6.
The synthesis of glutamate from α-oxoglutarate and NH4+ by pea seedling mitochondria has been demonstrated under certain defined but non-physiological conditions. Malate acts as a hydrogen donor for the synthesis of glutamate but isocitrate is more effective, whilst succinate, in the presence or absence of ATP, is a poor donor of hydrogen. Glutamate dehydrogenase has been purified from pea mitochondria and from the cytosol. The similarities between the two preparations are interpreted to mean that the soluble glutamate dehydrogenase is released from the mitochondria during isolation. The kinetics of the mitochondrial enzyme and the effect of various metabolites on its activity have been examined. The results are discussed in relation to the proposed role of this enzyme and it is suggested that the ratio NADH-NAD+ may play a role in the control of glutamate metabolism.  相似文献   

7.
The influence of selected factors on the activity of highly purified GDH in triticale roots was investigated in vitro. In the presence of 2-ME, NADH-GDH activity increased by 400 %, while NADPH-GDH activity rose by 500 %. No effect of reducing factors on NAD(P)+-GDH reaction was detected. The sulphydryl groups inhibitors, such as p-chloromercuribenzoate (p-CMB) and iodoacetamide, proved the strongest inhibitors of the aminative reaction. Metal-binding compounds: ethylenediaminetetraacetic acid disodium salt (EDTA) and Zinkov also considerably inhibited NAD(P)H-GDH activity. Diisopropylfluorophosphate (DFP) and pepstatin A, the inhibitors specific for -OH serine and COO aspartic acid groups respectively, caused a non-significant NAD(P)H-GDH activity decrease. Cd2+, Co2+, Hg2+, Mg2+, Pb2+ and Zn2+ ions strongly inhibited the amination reaction, whereas their inhibiting effect upon NAD+-GDH activity was negligible. Among the applied ions, only Ca2+ activated NADH-GDH.  相似文献   

8.
The effects of 0.01 to 5 m M salicyclic acid on the increase in nitrite reductase or glutamate dehydrogenase activities in maize roots by nitrate or ammonium respectively, were examined. Nitrite reductase activity was inhibited by the highest concentration of the acid. The activity of NADH-glutamate dehydrogenase was stimulated slightly (but consistently) by the lowest concentration and was inhibited by higher concentrations. Total protein content was also inhibited at high concentrations. When the crude enzyme extract was stored at 25°C in light, the glutamate dehydrogenase activity in the control decreased after 4 h of incubation. Low concentrations of the acid had no effect on this decrease but higher concentration accelerated the process. The divalent cations Caz2+, Mn2+, Mg2+ and Zn2+ protected against loss of enzyme activity during storage, both in the absence and presence of the acid. The inhibitory effect of 5 m M salicylic acid on glutamate dehydrogenase activity is apparent due to interference with the activity of the enzyme rather than with its synthesis.  相似文献   

9.
The gdhA genes of IRC-3 GDH-strain and IRC-8 GDH+ strain were cloned,and they both successfully complemented the nutritional lesion of an E.coli glutamate auxotroph,Q100 GDH-.However,the gdhA gene from the mutant IRC-8 GDH+ strain failed to complement the glutamate deficiency of the wild type strain IRC-3.The gdhA genes of the wild type and mutant origin were sequenced separately.No nucleotide difference was detected between them.Further investigations indicated that the gdhA genes were actively expressed in both the wild type and the mutant.Additionally,no GDH inhibitor was found in the wild type strain IRC-3.It is thus proposed that the inactivity of GDH in wild type is the result of the deficiency at the post-translational level of the gdhA expression.Examination of the deduced amino acid sequence of Bacillus licheniformis GDH revealed the presence of the motifs characteristic of the familyⅠ-type hexameric protein,while the GDH of Bacillus subtilis belongs to family II.  相似文献   

10.
Human glutamate dehydrogenase isozymes (hGDH1 and hGDH2) differ markedly in their inhibition by GTP. These regulatory preferences must arise from amino acid residues that are not common between hGDH isozymes. We have constructed chimeric enzymes by reciprocally switching the corresponding amino acid segments 390-465 in hGDH isozymes that are located within or near the C-terminal 48-residue antenna helix, which is thought to be part of the regulatory domain of mammalian GDHs. These resulted in triple mutations in amino acid sequences at 415, 443, and 456 sites that are not common between hGDH1 and hGDH2. The chimeric enzymes did not change their enzyme efficiency (kcat/Km) and expression level. Functional analyses, however, revealed that the chimeric mutants almost completely acquired the different GTP regulatory preference between hGDH isozymes. These results suggest that the 415, 443, and 456 residues acting in concert are responsible for the GTP inhibitory properties of hGDH isozymes.  相似文献   

11.
The gdhA genes of IRC-3 GDH strain and IRC-8 GDH strain were cloned, and they both successfully complemented the nutritional lesion of an E. coli glutamate auxotroph, Q100 GDH". However, the gdhA gene from the mutant IRC-8 GDH strain failed to complement the glutamate deficiency of the wild type strain IRC-3. The gdhA genes of the wild type and mutant origin were sequenced separately. No nucleotide difference was detected between them. Further investigations indicated that the gdhA genes were actively expressed in both the wild type and the mutant. Additionally, no GDH inhibitor was found in the wild type strain IRC-3. It is thus proposed that the inactivity of GDH in wild type is the result of the deficiency at the post-translational level of the gdhA expression. Examination of the deduced amino acid sequence of Bacillus licheniformis GDH revealed the presence of the motifs characteristic of the family I -type hexameric protein, while the GDH of Bacillus subtilis belongs to family II.  相似文献   

12.
In this paper, elevated pressures up to 750 atm (1 atm = 101 kPa) were found to have a strong stabilizing effect on two extremely thermophilic glutamate dehydrogenases (GDHs): the native enzyme from the hyperthermophile Pyrococcus furiosus (Pf), and a recombinant GDH mutant containing an extra tetrapeptide at the C-terminus (rGDHt). The presence of the tetrapeptide greatly destabilized the recombinant mutant at ambient pressure; however, the destabilizing effect was largely reversed by the application of pressure. Electron spin resonance (ESR) spectroscopy of a spin-label attached to the terminal cysteine of rGDHt revealed a high degree of mobility, suggesting that destabilization is due to weakened intersubunit ion-pair interactions induced by thermal fluctuations of the tetrapeptide. For both enzymes, the stabilizing effect of pressure increased with temperature as well as pressure, reaching 36-fold for rGDHt at 105 degrees C and 750 atm, the largest pressure-induced thermostabilization of an enzyme reported to date. Stabilization of both native GDH and rGDHt was also achieved by adding glycerol. Based on the kinetics of thermal inactivation and the known effects of glycerol on protein structure, a mechanism of pressure-induced thermostabilization is proposed.  相似文献   

13.
Glutamate dehydrogenase (GDH), encoded by GLUD1, participates in the breakdown and synthesis of glutamate, the main excitatory neurotransmitter. In the CNS, besides its primary signaling function, glutamate is also at the crossroad of metabolic and neurotransmitter pathways. Importance of brain GDH was questioned here by generation of CNS‐specific GDH‐null mice (CnsGlud1?/?); which were viable, fertile and without apparent behavioral problems. GDH immunoreactivity as well as enzymatic activity were absent in Cns‐Glud1?/? brains. Immunohistochemical analyses on brain sections revealed that the pyramidal cells of control animals were positive for GDH, whereas the labeling was absent in hippocampal sections of Cns‐Glud1?/? mice. Electrophysiological recordings showed that deletion of GDH within the CNS did not alter synaptic transmission in standard conditions. Cns‐Glud1?/? mice exhibited deficient oxidative catabolism of glutamate in astrocytes, showing that GDH is required for Krebs cycle pathway. As revealed by NMR studies, brain glutamate levels remained unchanged, whereas glutamine levels were increased. This pattern was favored by up‐regulation of astrocyte‐type glutamate and glutamine transporters and of glutamine synthetase. Present data show that the lack of GDH in the CNS modifies the metabolic handling of glutamate without altering synaptic transmission.  相似文献   

14.
大多数生物体中都含有谷氨酸脱氢酶(Glutamate dehydrogenase, GDH)(E.C. 1.4.1.2–1.4.1.4)。在真核生物中,该酶主要存在于线粒体中,并在氮和碳的代谢以及信号通路中起着至关重要的作用。研究发现谷氨酸脱氢酶与肿瘤发生及发展有一定的关系,对于肿瘤研究具有一定意义,但是关于其与人类肿瘤的关系方面的综述很少见。文中对谷氨酸脱氢酶与乳腺癌、胶质瘤、结直肠癌以及卵巢癌等的关系进行了归纳和总结,希望可以为相关研究提供帮助。  相似文献   

15.
Properties of glutamate dehydrogenase from developing maize endosperm   总被引:2,自引:0,他引:2  
Glutamate dehydrogenase (EC 1.4.1.3) activity was assayed in homogenates of maize ( Zea mays L. inbred lines Oh43 and Oh43o2) endosperm during development. During the period 20–35 days after pollination anabolic (aminative) activities were higher than catabolic (deaminating) ones. In order to study the regulation of GDH activity, glutamine or glutamate were injected into the ear peduncle before sample harvesting. The amination and deamination reactions showed similar behaviour with different nitrogen sources: glutamine increased, whereas glutamate decreased, both aminative and deaminative reactions. Partially purified enzyme was active with NADH and NADPH in a ratio 9:1. In Tris-HCl buffer a broad optimum at pH 7.6–8.9 and pH 6.8–8.9 was observed with NADH and NADPH, respectively, NADH activity was activated by Ca2+. Saturation curves for (NH4)2SO4 and NADH showed normal Michaelis-Menten kinetics in the presence of 1 m M Ca2+, but substrate inhibition occurred without Ca2+. The enzyme was inactivated by EDTA. The effect of EDTA was reversed by Ca2+ and Mn2+, but not by Cu2+ and Mg2+.  相似文献   

16.
Abstract Electron microscopic cytochemistry shows that following transfer of mycelium from nitrogen-rich to nitrogen-free medium, the NADP-linked glutamate dehydrogenase activity, which is known to be derepressed by such treatment, is localised in the vicinity of the cell membrane and the nucleus. Detection of similar cytochemical reaction products in material subjected to lengthened incubation in the original medium, rather than to transfer (which showed no significant change in the level of spectrophotometrically-detectable enzyme activity) implies that regulation of the enzyme may include an activation process which is mimicked by the preparation methods employed for electron microscopy.  相似文献   

17.
为了探究斑马鱼(Danio rerio)热耐受性对温度驯化的响应及其性别差异,将性成熟斑马鱼分别于适温(28℃)、低温(20℃)和高温(34℃)下驯化14 d,之后测定不同温度驯化下雌鱼和雄鱼的临界高温(critical thermal maxima,CTmax)、致死高温(lethal thermal maxima,LTmax)、临界低温(critical thermal minima,CTmin)、致死低温(lethal thermal minima,LTmin)等热耐受性参数.结果表明:驯化温度对雄鱼和雌鱼的所有热忍耐参数(CTmax、LTmax、CTmin和LTmin)均影响显著(P<0.05),并且驯化温度和性别对热耐受性参数的影响具有交互作用(P<0.05).适温(28℃)驯化下,雌鱼与雄鱼各个热忍耐参数相比无显著差异(P> 0.05);低温(20℃)驯化下雌鱼的耐高温能力强于雄鱼,而高温(34℃)驯化下雌鱼的耐低温能力弱于雄鱼.结果提示:繁殖适温下雌雄斑马鱼的热耐受性趋于一致,而非繁殖适温下二者的热耐受性出现分化.  相似文献   

18.
In this paper, glutamate dehydrogenase (Gldh) is reported to efficiently display on Escherichia coli cell surface by using N-terminal region of ice the nucleation protein as an anchoring motif. The presence of Gldh was confirmed by SDS-PAGE and enzyme activity assay. Gldh was detected mainly in the outer membrane fraction, suggesting that the Gldh was displayed on the bacterial cell surface. The optimal temperature and pH for the bacteria cell-surface displayed Gldh (bacteria-Gldh) were 70 °C and 9.0, respectively. Additionally, the fusion protein retained almost 100% of its initial enzymatic activity after 1 month incubation at 4 °C. Transition metal ions could inhibit the enzyme activity to different extents, while common anions had little adverse effect on enzyme activity. Importantly, the displayed Gldh is most specific to l-glutamate reported so far. The bacterial Gldh was enabled to catalyze oxidization of l-glutamate with NADP+ as cofactor, and the resultant NADPH can be detected spectrometrically at 340 nm. The bacterial-Gldh based l-glutamate assay was established, where the absorbance at 340 nm increased linearly with the increasing l-glutamate concentration within the range of 10  400 μM. Further, the proposed approach was successfully applied to measure l-glutamate in real samples.  相似文献   

19.
Glutamate Dehydrogenase 1 (GDH), encoded by the Glud1 gene in rodents, is a mitochondrial enzyme critical for maintaining glutamate homeostasis at the tripartite synapse. Our previous studies indicate that the hippocampus may be particularly vulnerable to GDH deficiency in central nervous system (CNS). Here, we first asked whether mice with a homozygous deletion of Glud1 in CNS (CNS‐Glud1 ?/? mice) express different levels of glutamate in hippocampus, and found elevated glutamate as well as glutamine in dorsal and ventral hippocampus, and increased glutamine in medial prefrontal cortex (mPFC). l ‐serine and d ‐serine, which contribute to glutamate homeostasis and NMDA receptor function, are increased in ventral but not dorsal hippocampus, and in mPFC. Protein expression levels of the GABA synthesis enzyme glutamate decarboxylase (GAD) GAD67 were decreased in the ventral hippocampus as well. Behavioral analysis revealed deficits in visual, spatial and social novelty recognition abilities, which require intact hippocampal‐prefrontal cortex circuitry. Finally, hippocampus‐dependent contextual fear retrieval was deficient in CNS‐Glud1 ?/? mice, and c‐Fos expression (indicative of neuronal activation) in the CA1 pyramidal layer was reduced immediately following this task. These data point to hippocampal subregion‐dependent disruption in glutamate homeostasis and excitatory/inhibitory balance, and to behavioral deficits that support a decline in hippocampal‐prefrontal cortex connectivity. Together with our previous data, these findings also point to different patterns of basal and activity‐induced hippocampal abnormalities in these mice. In sum, GDH contributes to healthy hippocampal and PFC function; disturbed GDH function is relevant to several psychiatric and neurological disorders.  相似文献   

20.
The studies were performed on young triticale seedlings grown on a mineral medium containing 5 mM NO 3 as the nitrogen source, with the addition of 0.5 mM CdCl2. It was determined that cadmium ions accumulated mainly in the plant roots. Decreases in nitrate concentrations both in the roots and shoots of seedlings, as well as decreases in soluble protein contents with simultaneous increases in endopeptidase activity were also observed. Both in roots and shoots significant decreases in glutamic acid were noted. Toxic cadmium ion accumulation in seedlings significantly modified activity of primary nitrogen assimilating enzymes, i.e. glutamine synthetase (GS, EC 6.3.1.2) and glutamate dehydrogenase (GDH, EC 1.4.1.2). There was a significant decrease in GS activity both in roots and in shoots of the stressed plants, in comparison to plants grown without cadmium. In shoots of the control plants and plants subjected to stress two GS isoforms were discovered: cytoplasmatic (GS1) and chloroplastic (GS2). Substantial decreases in total glutamine synthetase activity in green parts of seedlings, occurring under stress conditions, result from dramatic decrease in GS2 activity (by 60 % in relation to the control plants); despite simultaneous increases in the cytoplasmatic isoform (GS1) activity by approx. 96 %. Cadmium ions accumulating in roots and shoots of seedlings not only increased GDH activity, but also modified its coenzymatic specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号