首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Bovine pineal gland S-adenosylmethionine: N-acetylserotonin O-methyltransferase has been purified about 2800-fold using cell fractionation, ammonium sulphate treatment, Sephadex G-200 gel filtration and anion exchange chromatography. The enzyme has been found to be a polymer; the smallest unit observed had a mol. wt. of 21,800 and the other polymers' molecular weights were multiples of this figure. In the gland extract polymers of 83,000, 100,000, 125,000 and 150,000 mol. wt. were more abundant than the others; they showed also higher specific activity. One of the products of the reaction, S-adenosylhomocysteine was found to be a potent inhibitor, whereas the other product, melatonin, did not inhibit the bovine pineal gland enzyme, even at much higher concentrations. Homocysteic acid, cysteic acid, GSG and GSSG inhibited the enzyme. The required concentrations for this effect was 100 times higher than that of S-adenosylhomocysteine. The addition of GSH to the medium during purification led to complete loss of activity. Adenosine, homocysteine and other thio compounds had little or no effect. The enzyme was found to be activated by its substrates and also by certain anions. Among various organic acid salts, citric acid cycle intermediates were found to be good activators; their nonsubstituted analogues were not as effective. The activator effect of oxaloacetate and bicarbonate was the highest, and was brought about by relatively low concentrations of these anions (1–5 × 10?3 M), hence their effect was considered specific. The degree of activation caused by oxaloacetate was decreased by increasing substrate concentrations and vice versa. The S-adenosylhomocysteine inhibition could not be reduced by increasing the substrate concentration; S-adenosylhomocysteine also inhibited the oxaloacetate-activated enzyme. These observations have been explained by the allosteric behaviour of the enzyme. The kinetic behaviour of various polymers was also investigated. The highest substrate and oxaloacetate activation and the highest S-adenosylhomocysteine inhibition was observed for polymers of 83,000, 100,000, 125,000 and 150,000 mol. wt. The Km values for S-adenosylmethionine and N-acetylserotonin calculated for the oxaloacetate activated enzyme were also lower for these polymers than others.  相似文献   

2.
To elucidate potential toxic properties of S-adenosylhomocysteine and 5′-methylthioadenosine, we have examined the inhibitory properties of these compounds upon enzymes involved with adenosine metabolism. S-Adenosylhomocysteine, but not S-adenosylmethionine, was a noncompetitive inhibitor of adenosine kinase with Ki values ranging from 100 to 400 μm. Methylthioadenosine competitively inhibited adenosine kinase with variable adenosine below 1 μm with a Ki of 120 μm, increased adenosine kinase activity when the adenosine concentration exceeded 2 μm, and did not appear to be a substrate for adenosine kinase. Methylthioadenosine inactivated S-adenosylhomocysteine hydrolase from erythrocytes, B-lymphoblasts, and T-lymphoblasts with Ki values ranging from 65 to 117 μm and “k2” from 0.30 to 0.55 min?1. Adenosine deaminase was not inhibited by 5′-methylthioadenosine up to 1000 μm. To clarify how 5′-methylthioadenosine might accumulate, 5′-methylthioadenosine phosphorylase was evaluated. This enzyme was not blocked by up to 500 μm adenosine, deoxyadenosine, S-adenosylhomocysteine, or S-adenosylmethionine and was not decreased in erythrocytes from patients with adenosine deaminase deficiency, purine nucleoside phosphorylase deficiency, or hypogammaglobulinemia. These observations suggest that the inhibitory properties of 5′-methylthioadenosine upon adenosine kinase and S-adenosylhomocysteine hydrolase may contribute to the toxicity of the exogenously added compound. The toxicity resulting from S-adenosylhomocysteine accumulation intracellularly may be related to adenosine kinase inhibition in addition to disruption of transmethylation reactions.  相似文献   

3.
Glycine betaine is accumulated in cells living in high salt concentrations to balance the osmotic pressure. Glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase (SDMT) of Ectothiorhodospira halochloris catalyze the threefold methylation of glycine to betaine, with S-adenosylmethionine acting as the methyl group donor. These methyltransferases were expressed in Escherichia coli and purified, and some of their enzymatic properties were characterized. Both enzymes had high substrate specificities and pH optima near the physiological pH. No evidence of cofactors was found. The enzymes showed Michaelis-Menten kinetics for their substrates. The apparent Km and Vmax values were determined for all substrates when the other substrate was present in saturating concentrations. Both enzymes were strongly inhibited by the reaction product S-adenosylhomocysteine. Betaine inhibited the methylation reactions only at high concentrations.  相似文献   

4.
《Phytochemistry》1986,25(11):2475-2479
A flavonol O-methyltransferase was partially purified from Chrysosplenium americanum by fractional precipitation with ammonium sulphate followed by gel filtration and chromatofocusing using an FPLC system. The enzyme which was purified 420-fold catalysed the transfer of the methyl group of SAM to the 2′- or 5′-positions of partially methylated flavonol glucosides, the two terminal methylation steps in the biosynthesis of Chrysosplenium flavonoids. The enzyme had a pH optimum of 7 in Pi buffer, a pI of < 5, an M, of 57 000, no Mg2+ requirement and was inhibited by both N-ethylmaleimide and phenylmercuriacetate. The Km value for the flavonol substrate was 2 μM and that for SAM was 100 μM. The role of this enzyme is discussed in relation to the biosynthesis of polymethylated flavonols in this tissue.  相似文献   

5.
A purification procedure for rat and mouse brain histamine N-methyltransferase (HMT, EC 2.1.1.8) is described which achieves the preparation of 87-fold purified rat brain and 166-fold purified mouse brain enzyme. The purified HMT (MW 29,000) is inhibited by a number of physiologically and pharmacologically active amines, among them several methylated indoleamines, at concentrations above 5 ± 10-6M. At concentrations below 1 ± 10-7M, most of the methylated indoleamines stimulate HMT , provided histamine is maintained at, or close to, its optimal concentration as an HMT substrate, namely 1 ± 10-5M. A study of the nature of the inhibitory process revealed a non-competitive inhibition of HMT by dopamine as against a competitive inhibition of the enzyme by most methylated indoleamines. Increasing the concentration of histamine beyond the optimal value, i.e. to inhibitory levels, resulted in less stimulation. The findings support the notion that MSO elicits the formation in selected brain cells of supranormal amounts of several methylated indoleamines which are able to stimulate HMT (and possibly other methyltransferases, see Salas et al., 1977), thereby causing the depletion of the cerebral levels of S-adenosyl-L-methionine, reported previously (Schatz & Sellinger , 1975b).  相似文献   

6.
The use of rat kidney instead of guinea pig brain as the source of histamine-N-methyltransferase for the enzymatic assay of histamine was found to improve the sensitivity of the assay. A partially purified preparation (ammonium sulfate fractionation) of the kidney enzyme was 20- to 50-fold more active than the guinea pig preparation, and sufficient enzyme for 14,000 assays could be prepared from six rats. The kidney enzyme, unlike the guinea pig brain enzyme, was free of interfering enzyme activities and gave low values for assay blanks. The two enzymes otherwise had similar properties. The low blank values permitted direct measurement of histamine in normal plasma without the need to isolate and concentrate histamine from the sample. Plasma histamine levels in normal individuals ranged from 0.2-1.4 (mean 0.6, n = 19) ng/ml.  相似文献   

7.
The control of lysine biosynthesis in maize   总被引:2,自引:0,他引:2  
Aspartate kinase has been partially purified and characterised from germinating maize seedlings. The Km for aspartate was 9 mM. Out of several amino acids which are potential feedback regulators of the enzymes, only lysine is markedly inhibitory, having a Ki of 13 μM and causing 100% inhibition at 0.5 mM. Lysine also protects the enzyme against heat inactivation. Dihydrodipicolinic acid synthase isolated from the same tissue is also inhibited by lysine, 1 mM causing 95% inhibition.  相似文献   

8.
1. 5′-Methylthioformycin, a structural analog of 5′-methylthioadenosine in which the N-C glycosidic bond is substituted by a C-C bond, has been synthesized by a newly developed procedure. 2. Membrane permeability of the molecule has been compared to that of methylthioadenosine in intact human erythrocytes and Friend erythroleukemia cells. The formycinyl compound is taken up with a rate significantly lower than that of 5′-methylthioadenosine and is not metabolized by the cells. 3. 5′-Methylthioformycin inhibits Friend erythroleukemia cells' growth: the effect is dose-dependent, fully reversible and not caused by cytotoxicity. 4. Several enzymes related to methylthioadenosine metabolism are inhibited by methylthioformycin. Rat liver methylthioadenosine phosphorylase is competitively inhibited with a Ki value of 2 μM. Among the propylamine transferases tested only rat brain spermine synthase is significantly inhibited, while rat brain spermidine synthase is less sensitive. Rat liver S-adenosylhomocysteine hydrolase is irreversibly inactivated with 50% inhibition at 400 μM methylthioformycin. 5′-Methylthioformycin does not exert any significant effect on protein carboxyl-O-methyltransferase. Inferences about the mechanism of the antiproliferative effect of the drug have been drawn from the above results.  相似文献   

9.
Tetrahydrofolic acid exerts a product inhibition on the methyltetrahydrofolic acid-mediated methylation of indolethylamines. Kinetic studies showed that this inhibition was competitive with respect to methyltetrahydrofolic acid and non-competitive with respect to N-methylserotonin. Chromatographic separation of S-adenosylmethioniee-dependent indolethylamine N-methyltransferase and methyltetrahydrofolic acid-dependent methyltransferase from rabbit lung was obtained. There was no cross reaction of the two enzymes to tetrahydrofolic acid, S-adenosylhomocysteine, N,N-dimethyltryptamine or bufotenin.  相似文献   

10.
N-Methyl-d-aspartate (NMDA), which is a selective agonist for the NMDA receptor, has recently been shown to be present in various biological tissues. In mammals, the activity of d-aspartate N-methyltransferase (DDNMT), which produces NMDA from d-aspartate, has been detected only in homogenates prepared from rat tissues. Moreover, the enzymatic properties of DDNMT have been poorly studied and its molecular entity has not yet been identified. In this report, we show for the first time that the activity of DDNMT is present in mouse tissues and succeed in obtaining a partially purified enzyme preparation from a mouse tissue homogenate with a purification fold of 1900 or more, and have characterized the enzymatic activity of this preparation. The results indicate that DDNMT, which is highly specific for d-aspartate and is S-adenosyl-l-methionine-dependent, is a novel enzyme that clearly differs from the known methylamine-glutamate N-methyltransferase (EC 2.1.1.21) and glycine N-methyltransferase (EC 2.1.1.20).  相似文献   

11.
Summary Histamine N-methyltransferase (S-adenosylmethionine: histamine N-methyltransferase, E.C. 2.1.1.8) was purified to homogeneity from rat kidney, and antibody was raised against it in guinea pigs. The antibody immunoprecipitated histamine N-methyltransferase. Immunofluorescent histochemical studies with anti-histamine N-methyltransferase antibody as the first antibody and goat antiguinea pig IgG conjugated with fluorescein isothiocyanate as the second, showed the presence of immunoreactive structures in the proximal tubules of rat kidney. The brain showed no immunoreaction with the antibody.  相似文献   

12.
An O-methyltransferase which catalyses the methylation of caffeic acid to ferulic acid using S-adenosyl-l-methionine as methyl donor has been isolated and purified ca 70-fold from root nodules of alfalfa. The enzyme also catalysed the methylation of 5-hydroxyferulic acid. Chromatography on 1,6-diaminohexane agarose (AH-Sepharose-4B) linked with S-adenosyl-l-homocysteine (SAH) gave 35% recovery of enzyme activity. The Km values for caffeic acid and S-adenosyl-l-methionine were 58 and 4.1 μM, respectively. S-Adenosyl-l-homocysteine was a potent competitive inhibitor of S-adenosyl-l-methionine with a Ki of 0.44 μM. The MW of the enzyme was ca 103 000 determined by gel filtration chromatography.  相似文献   

13.
The single glutathione S-transferase (EC 2.5.1.18) present in rat erythrocytes was purified to apparent homogeneity by affinity chromatography on glutathione-Sepharose and hydroxyapatite chromatography. Approx. 1.86 mg enzyme is found in 100 ml packed erythrocytes and accounts for about 0.01% of total soluble protein. The native enzyme (Mr 48 000) displays a pI of 5.9 and appears to possess a homodimeric structure with a subunit of Mr 23 500. Enzyme activities with ethacrynic acid and cumene hydroperoxide were 24 and 3%, respectively, of that with 1-chloro-2,4-dinitrobenzene. The Km values for 1-chloro-2,4-dinitrobenzene and glutathione were 1.0 and 0.142 mM, respectively. The concentrations of certain compounds required to produce 50% inhibition (I50) were as follows: 12 μM bromosulphophthalein, 34 μM S-hexylglutathione, 339 μM oxidized glutathione and 1.5 mM cholate. Bromosulphophthalein was a noncompetitive inhibitor with respect to 1-chloro-2,4-dinitrobenzene (Ki = 8 μM) and glutathione (Kis = 4 μM; Kii = 11.5 μM) while S-hexylglutathione was competitive with glutathione (Ki = 5 μM).  相似文献   

14.
The d-methionine- and 2-methyl-dl-methionine analogs of the enzymatic methyl donor, (?)S-adenosyl-l-methionine, were synthesized by methylation of S-adenosyl-d-homocysteine and S-adenosyl-2-methyl-dl-homocysteine with methyl iodide. By chromatographic purification, S-adenosyl-d-methionine and S-adenosyl-2-methyl-dl-methionine were obtained. The structure of the latter was ascertained by hydrolysis to 2-methylmethionine in strong acid, and to 5′-methylthioadenosine and 2-methylhomoserine at pH 4. Reference material of the latter compound was obtained by alkaline hydrolysis of 2-methylmethionine methylsulfonium iodide. The sulfonium compounds were tested as methyl donors with N-acetylserotonin O-methyltransferase, l-homocysteine S-methyltransferase, histamine N-methyltransferase, and guanidinoacetate N-methyltransferase. In most instances, methyl donor activity was observed.  相似文献   

15.
A single-isotope enzyme assay for histamine   总被引:2,自引:0,他引:2  
A simple, rapid, and sensitive radioenzymic method for histamine is described. The method utilizes a specific histamine enzyme, histamine N-methyltransferase, isolated from guinea pig brains and high specific activity tritiated S-adenosylmethionine. The sensitivity of the method as described, under best conditions, is 0.1 ng. All reagents are stable, readily prepared, and/or commercially available.  相似文献   

16.
Changes in the activity of the tRNA methyltransferases have been found in all differentiating systems studied. Activity was examined in extracts of Rana pipiens embryos and in larval and adult liver by in vitro assay using S-adenosyl-l-[methyl-14C]methionine as the methyl donor. Specific activities of tRNA methyltransferases decreased, beginning with the time of feeding, when using high concentrations of the crude liver enzyme. A new methyltransferase activity, glycine N-methyltransferase, appeared at the time of feeding. Apparently, the glycine methyltransferase is active before the onset of any of the characteristic metamorphic changes of other liver enzymes. Using partially purified enzyme from adult liver, the Km of glycine methyltransferase for S-adenosylmethionine is 0.3 mM and the Ki for S-adenosylhomocysteine, a competitive inhibitor, is 0.08 mM.  相似文献   

17.
S-adenosylmethionine synthetase was studied from bloodstream forms of Trypanosoma brucei brucei, the agent of African sleeping sickness. Two isoforms of the enzyme were evident from Eadie Hofstee and Hanes-Woolf plots of varying ATP or methionine concentrations. In the range 10–250 μM the Km for methionine was 20 μM, and this changed to 200 μM for the range 0.5–5.0 mM. In the range 10–250 μM the Km for ATP was 53 μM, and this changed to 1.75 mM for the range 0.5–5.0 mM. The trypanosome enzyme had a molecular weight of 145 kDa determined by agarose gel filtration. Methionine analogs including selenomethionine, L-2-amino-4-methoxy-cis but-3-enoic acid and ethionine acted as competitive inhibitors of methionine and as weak substrates when tested in the absence of methionine with [14C]ATP. The enzyme was not inducible in procyclic trypomastigotes in vitro, and the enzyme half-life was > 6 h. T. b. brucei AdoMet synthetase was inhibited by AdoMet (Ki 240 μM). The relative insensitivity of the trypanosome enzyme to control by product inhibition indicates it is markedly different from mammalian isoforms of the enzyme which are highly sensitive to AdoMet. Since trypanosomes treated with the ornithine decarboxylase antagonist DL-α-difluoromethylornithine accumulate AdoMet and dcAdoMet (final concentration ≈ 5 mM), this enzyme may be the critical drug target linking inhibition of polyamine synthesis to disruption of AdoMet metabolism.  相似文献   

18.
A rapid, efficient method is described for the enzymatic conversion of S-adenosyl-l-[2(n)-3H]methionine to S-adenosyl-l-[2(n)-3H]homocysteine. Partially purified glycine N-methyltransferase is used in the reaction which yields 98% conversion. The product is purified using high-pressure liquid chromatography and is concentrated by lyophilization. S-Adenosyl-l-[2(n)-3H]homocysteine synthesized by this method is an active substrate for S-adenosylhomocysteine (SAH) hydrolase. A novel assay procedure for SAH hydrolase is also described, in which unreacted S-adenosyl-l-[2(n)-3H]homocysteine is removed by adsorption to dextran-coated charcoal.  相似文献   

19.
The effect of the cell cycle and differentiation on S-adenosylmethionine (SAM) metabolism in HL-60 cells has been investigated. Synthesis and pool sizes of SAM and S-adenosylhomocysteine (SAH) were cell-cycle-independent (SAM, 315, μM; SAH, 4.6 μM). The SAM-synthase (ATP: l-methionine S-adenosyltransferase) of HL-60 cells has a Km for methionine of 12.8±2.0 μM and thus appears to be of the intermediate Km type found in other malignant tissues. The enzyme does not show cell-cycle regulation. Treatment of cells with DMSO resulted in a rapid and marked decrease of SAM and SAH levels without affecting pool turnover or the SAM/SAH ratio. A decrease in SAM concentration could also be observed in a variant cell line resistant to differentiation with DMSO. DMSO inhibited SAM-synthase in cell-free extracts. This inhibition was noncompetitive with respect to l-methionine. Inhibition of SAM-synthase by cycloleucine lowered SAM levels in intact cells, but resulted in differentiation of only a minor percentage of cells. These data indicate that changes in SAM and SAH levels in HL-60 cells seem to be a consequence rather than a cause of differentiation.  相似文献   

20.
Periodate-oxidized adenosine has previously been shown to be a potent inhibitor in vitro of S-adenosylhomocysteine hydrolase (E.C. 3.3.1.1). This paper describes the inhibition of this enzyme in liver following injection of mice with periodate-oxidized adenosine. A maximally effective dose of 100 nmol/g of this compound causes liver S-adenosylhomocysteine to increase from 12 to 600 nmol/g within 30 min. This accumulation of S-adenosylhomocysteine provides an estimate of the rates of transmethylation, as well as adenosine and homocysteine production, as being at least 20 nmol/min/g liver. A doubling of S-adenosylmethionine in the liver of mice treated with periodate-oxidized adenosine suggests that the high levels of S-adenosylhomocysteine inhibit some transmethylation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号