首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactivities of myeloperoxidase-H2O2-Cl- and sodium hypochlorite with amino acids, uric acid, NADH, ascorbic acid, ADP, albumin, haemoglobin, alpha 1-antitrypsin and some hydroxyl radical scavengers have been compared. The ability of each compound to inhibit chlorination of monochlorodimedon by both oxidants was measured. Relative reaction rates varied over a range of 10(5), but the reactivities of the two oxidants with each compound were very similar, from which it is concluded that the reactions of hypochlorite accurately reflect those of the myeloperoxidase system. Thiol compounds (cysteine and GSH) and methionine were more than 100-times more reactive than other amino acids, which had comparable reactivity to NADH and uric acid. Benzoate, dimethylsulphoxide and formate were very much less reactive. The significance of these reactions of myeloperoxidase in microbial killing and inflammation is discussed.  相似文献   

2.
Hyperuricemia is associated with hypertension, metabolic syndrome, preeclampsia, cardio-vascular disease and renal disease, all conditions associated with oxidative stress. We hypothesized that uric acid, a known antioxidant, might become prooxidative following its reaction with oxidants; and, thereby contribute to the pathogenesis of these diseases. Uric acid and 1,3-15N2-uric acid were reacted with peroxynitrite in different buffers and in the presence of alcohols, antioxidants and in human plasma. The reaction products were identified using liquid chromatography-mass spectrometry (LC-MS) analyses. The reactions generate reactive intermediates that yielded triuret as their final product. We also found that the antioxidant, ascorbate, could partially prevent this reaction. Whereas triuret was preferentially generated by the reactions in aqueous buffers, when uric acid or 1,3-15N2-uric acid was reacted with peroxynitrite in the presence of alcohols, it yielded alkylated alcohols as the final product. By extension, this reaction can alkylate other biomolecules containing OH groups and others containing labile hydrogens. Triuret was also found to be elevated in the urine of subjects with preeclampsia, a pregnancy-specific hypertensive syndrome that is associated with oxidative stress, whereas very little triuret is produced in normal healthy volunteers. We conclude that under conditions of oxidative stress, uric acid can form reactive intermediates, including potential alkylating species, by reacting with peroxynitrite. These reactive intermediates could possibly explain how uric acid contributes to the pathogenesis of diseases such as the metabolic syndrome and hypertension.  相似文献   

3.
1. The kinetics of the reaction of 2,4,6-trinitrobenzenesulphonic acid with various amino acids, peptides and proteins were studied by spectrophotometry. 2. The reaction of the α- and -amino groups in simple amino acids was found to be second-order, and the unprotonated amino group was shown to be the reactive species. 3. By allowing for the concentration of unreactive −NH3+ group, intrinsic reactivities for the free amino groups were derived and shown to be correlated with the basicities. 4. The SH group of N-acetylcysteine was found to be more reactive to 2,4,6-trinitrobenzenesulphonic acid than most amino groups. 5. The reactions of insulin, chymotrypsinogen and ribonuclease with 2,4,6-trinitrobenzenesulphonic acid were analysed in terms of three exponential rate curves, each referring to one or more amino groups of the proteins. 6. The reaction of lysozyme with 2,4,6-trinitrobenzenesulphonic acid was found to display an acceleration effect. 7. From the reaction of 2,4,6-trinitrobenzenesulphonic acid with glutamate dehydrogenase at several enzyme concentrations, it was possible to discern two sets of amino groups of different reactivity, and to show that the number of groups in each set was decreased by aggregation of the enzyme.  相似文献   

4.
Hypochlorous acid (HOCl) and N-chloramines are produced by myeloperoxidase (MPO) as part of the immune response to destroy invading pathogens. However, MPO also plays a detrimental role in inflammatory pathologies, including atherosclerosis, as inappropriate production of oxidants, including HOCl and N-chloramines, causes damage to host tissue. Low molecular mass thiol compounds, including glutathione (GSH) and methionine (Met), have demonstrated efficacy in scavenging MPO-derived oxidants, which prevents oxidative damage in vitro and ex vivo. Selenium species typically have greater reactivity toward oxidants compared to the analogous sulfur compounds, and are known to be efficient scavengers of HOCl and other hypohalous acids produced by MPO. In this study, we examined the efficacy of a number of sulfur and selenium compounds to scavenge a range of biologically relevant N-chloramines and oxidants produced by both isolated MPO and activated neutrophils and characterized the resulting selenium-derived oxidation products in each case. A dose-dependent decrease in the concentration of each N-chloramine was observed on addition of the sulfur compounds (cysteine, methionine) and selenium compounds (selenomethionine, methylselenocysteine, 1,4-anhydro-4-seleno-L-talitol, 1,5-anhydro-5-selenogulitol) studied. In general, selenomethionine was the most reactive with N-chloramines (k2 0.8–3.4×103 M–1 s–1) with 1,5-anhydro-5-selenogulitol and 1,4-anhydro-4-seleno-L-talitol (k2 1.1–6.8×102 M–1 s–1) showing lower reactivity. This resulted in the formation of the respective selenoxides as the primary oxidation products. The selenium compounds demonstrated greater ability to remove protein N-chloramines compared to the analogous sulfur compounds. These reactions may have implications for preventing cellular damage in vivo, particularly under chronic inflammatory conditions.  相似文献   

5.
When uric acid-2-14C was injected into the boll weevil, Anthonomus grandis, it was metabolized to RNA, DNA, amino acid, and 14CO2 at the end of 2 hr. The free amino acids, lipoamino acids, and protein amino acids were all labelled with the free amino acids showing the highest specific activity. Incorporation in DNA was slight, but it was extensive in RNA; cytidylic acid showed the greatest amount of incorporation.  相似文献   

6.
Human 5-lipoxygenase (5-LOX) oxidizes arachidonic acid to 5S-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-HpETE) and leukotriene (LT) A4. In neutrophils, LTA4 is further converted to the potent chemoattractant LTB4. These cells also contain the heme enzyme myeloperoxidase (MPO), which produces several potent oxidants such as hypochlorous acid (HOCl), which are involved in pathogen defense and immune regulation. Here, we addressed the question whether MPO-derived oxidants are able to affect the activity of 5-LOX and the product profile of this enzyme. Human 5-LOX was incubated with increasing amounts of HOCl or HOBr. Afterward, arachidonic acid metabolites of 5-LOX were analyzed by reverse-phase high-performance liquid chromatography as well as by liquid chromatography–electrospray ionization–tandem mass spectrometry. The incubation of 5-LOX with the MPO-derived oxidants significantly changed the product profile of 5-LOX. Thereby, HOCl and HOBr increased the ratio of 5-H(p)ETE to 6-trans-LTB4 in a concentration-dependent manner. At low oxidant concentrations, there was a strong decrease in the yield of 6-trans-LTB4, whereas 5-HpETE did not change or increased. Additionally, the formation of 8-HpETE and 12-HpETE by 5-LOX rose slightly with increasing HOCl and HOBr. Comparable results were obtained with the MPO–H2O2–Cl system when glucose oxidase and glucose were applied as a source of H2O2. This was necessary because of a strong impairment of 5-LOX activity by H2O2. In summary, MPO-derived oxidants showed a considerable impact on 5-LOX, impairing the epoxidation of 5-HpETE, whereas the hydroperoxidation of arachidonic acid was unaffected. Apparently, this was caused by an oxidative modification of critical amino acid residues of 5-LOX. Further work is necessary to assess the specific type and position of oxidation in the substrate-binding cavity of 5-LOX and to specify whether this interaction between 5-LOX and MPO-derived oxidants also takes place in stimulated neutrophils.  相似文献   

7.
We redirect attention to contributions to the energization of the active transport of amino acids in the Ehrlich cell, beyond the known energization by down-gradient comigration of Na+, beyond possible direct energization by coupling to ATP breakdown, and beyond known energization by exchange with prior accumulations of amino acids. We re-emphasize the uphill operation of System L, and by prior depletion of cellular amino acids show that this system must receive energy beyond that made available by their coupled exodus. After this depletion the Na+-independent accumulation of the norbornane amino acid, 2-aminobicycloheptane-2-carboxylic acid becomes strongly subject to stimulation by incubation with glucose. Energy transfer between Systems A and L through the mutual substrate action of ordinary amino acids was minimized although not entirely avoided by the use of amino acid analogs specific to each system.When 2,4-dinitrophenol was included in the depleting treatment, and pyruvate, phenazine methosulfate, or glucose used for restoration, recovery of uptake of the norbornane amino acid was independent of external Na+ or K+ levels. Restoration of the uptake of 2-(methylamino)isobutyric acid was, however, decreased by omission of external K+. Contrary to an earlier finding, restoration of uptake of each of these amino acids was associated with distinct and usually correlated rises in cellular ATP levels. ATP addition failed to stimulate exodus of the norbornane amino acid from plasma membrane vesicles, although either NADH or phenazine methosulfate did stimulate exodus. ATP production and use is thus associated with transport energization, although evidence for a direct role failed to appear.  相似文献   

8.
This paper describes a system for continuous synthesis of 15N-labeled l-alanine from lactic acid, 15NH4Cl and NADH, which uses immobilized alanine dehydrogenase and soluble lactate dehydrogenase as enzyme sources. Lactic acid acts both as hydrogen donor for the regeneration of NADH and as pyruvate source, thus providing the carbon skeleton of l-alanine. Citrobacter freundi grown on synthetic media containing 17 unlabeled amino acids and l-(15N)alanine as nitrogen source, incorporated 66% of 15N into alanine found in bacterial proteins. When 15N-labeled glutamic acid, aspartic acid or glycocol were added to the synthetic growth media, their 15N was “diluted” among different amino acids of bacterial proteins. Isotope enrichment of l-(15N)lysine found in newly synthesized proteins of C. freundi was practically unchanged as compared to the isotope content of free amino acid in the growth medium.  相似文献   

9.
Activated white cells use oxidants generated by the heme enzyme myeloperoxidase to kill invading pathogens. This enzyme utilizes H2O2 and Cl, Br, or SCN to generate the oxidants HOCl, HOBr, and HOSCN, respectively. Whereas controlled production of these species is vital in maintaining good health, their uncontrolled or inappropriate formation (as occurs at sites of inflammation) can cause host tissue damage that has been associated with multiple inflammatory pathologies including cardiovascular diseases and cancer. Previous studies have reported that sulfur-containing species are major targets for HOCl but as the reactions are fast the only physiologically relevant kinetic data available have been extrapolated from data measured at high pH (>10). In this study these values have been determined at pH 7.4 using a newly developed competition kinetic approach that employs a fluorescently tagged methionine derivative as the competitive substrate (k(HOCl + Fmoc-Met), 1.5×108 M−1 s−1). This assay was validated using the known k(HOCl + NADH) value and has allowed revised k values for the reactions of HOCl with Cys, N-acetylcysteine, and glutathione to be determined as 3.6×108, 2.9×107, and 1.24×108 M−1 s−1, respectively. Similar experiments with methionine derivatives yielded k values of 3.4×107 M−1 s−1 for Met and 1.7×108 M−1 s−1 for N-acetylmethionine. The k values determined here for the reaction of HOCl with thiols are up to 10-fold higher than those previously determined and further emphasize the critical importance of reactions of HOCl with thiol targets in biological systems.  相似文献   

10.
Human myeloperoxidase (MPO) uses hydrogen peroxide generated by the oxidative burst of neutrophils to produce an array of antimicrobial oxidants. During this process MPO is irreversibly inactivated. This study focused on the unknown role of hydrogen peroxide in this process. When treated with low concentrations of H2O2 in the absence of reducing substrates, there was a rapid loss of up to 35% of its peroxidase activity. Inactivation is proposed to occur via oxidation reactions of Compound I with the prosthetic group or amino acid residues. At higher concentrations hydrogen peroxide acts as a suicide substrate with a rate constant of inactivation of 3.9 × 10−3 s−1. Treatment of MPO with high H2O2 concentrations resulted in complete inactivation, Compound III formation, destruction of the heme groups, release of their iron, and detachment of the small polypeptide chain of MPO. Ten of the protein’s methionine residues were oxidized and the thermal stability of the protein decreased. Inactivation by high concentrations of H2O2 is proposed to occur via the generation of reactive oxidants when H2O2 reacts with Compound III. These mechanisms of inactivation may occur inside neutrophil phagosomes when reducing substrates for MPO become limiting and could be exploited when designing pharmacological inhibitors.  相似文献   

11.
(1) Only (R,S)2′,3′-epoxypropyl β-d-glucopyranoside of the complete series of mono (R,S)2′.3′-epoxypropyl ethers and glycosides of d-glucopyranose significantly inactivated yeast hexokinase.(2) (R,S)2′,3′-Epoxypropyl β-d-glucopyranoside inactivates yeast hexokinase in the absence of MgATP2?, The rate of inactivation is unaffected by MgATP2?.(3) The rate of inactivation of hexokinase with (R,S)2′,3′-epoxypropyl β-d-ilucopyranoside was much greater when hexokinase was present in a monomeric form than when it was present in a dimeric form.(4) (R,S)2′,3′-Epoxypropyl β-d-glucopyranoside has a high Kt (0.38 M) and at a saturating concentrarion, the first order rate constant for the inactivation of monomeric hexokinase is 8.3 · 10?4 sec.(5) d-Glucose protects against this inactivation and this was used to derive a dissocistion constant of 0.21 mM for d-glucose in the absence of MgATP2?.(6) The alkylation of yeast hexokinase by (R,S)2′,3′-epoxypropyl β-d-gluco-pyranoside was not specific to the active site. When the concentration of (R,S)2′,3′-epoxypropyl β-d-glucopyranoside was 50 mM two thiol groups outside the active site were also alkylated.(7) The reaction between 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) and yeast hexokinase was examined in detail. Two thiol groups per monomer (mol. wt. 50000) reacted with a second order rate constant of 27 1 mole?1 sec?1. A third thiol group reacted more slowly with a second-order rate constant of 1.6 1 mole?1 sec?1 and a fourth thiol group reacted very slowly with inactivation of the enzyme. Tue second-order rate constant in this case was 0.1 1 mole?1 sec?1.  相似文献   

12.
Effects of various kinds of dietary protein on growth of the silkworm, Bombyx mori, were determined using semi-synthetic diets. Also, the ingestion, digestion and utilization of dry matter and of nitrogen were measured. Nutritive effects of dietary proteins and supplementation of limiting amino acids on haemolymph protein and amino acids pattern were also investigated. Larval growth was largely dependent on the dietary proteins. When the larvae were reared on a diet containing weakly nutritive proteins such as gluten and zein, haemolymph protein was decreased and uric acid excretion was markedly accelerated. The free amino acid composition of the haemolymph manifested characteristic patterns according to the kinds of dietary protein.The supplementation of gluten and zein with their limiting amino acids resulted in a rise of haemolymph protein and a drop in uric acid excretion. The amino acid patterns in the haemolymph were greatly changed according to supplementation.  相似文献   

13.
A key function of neutrophil myeloperoxidase (MPO) is the synthesis of hypochlorous acid (HOCl), a potent oxidizing agent that plays a cytotoxic role against invading bacteria and viruses at inflammatory sites and in phagosomes. MPO displayed a chlorinating activity preferably at acidic pH but at neutral pH MPO catalyzes mainly reactions of the peroxidase cycle. In the present work effects of tyrosine on the chlorinating activity of MPO were studied. At pH 7.4 we detected an increased HOCl production in the presence of tyrosine not only by the MPO-H2O2-Cl- system but also in suspensions of zymosan-activated neutrophils. An excess of H2O2 is known to cause an accumulation of compound II of MPO blocking the generation of HOCl at neutral pH. As evidenced by spectral changes, tyrosine-induced activation of MPO to synthesize HOCl was due to the ability of tyrosine to reduce compound II back to the native state, thus accelerating the enzyme turnover. MPO-induced oxidation of tyrosine is relevant to what can be in vivo; we detected MPO-catalyzed formation of dityrosine in the presence of plasma under experimental conditions when tyrosine concentration was about three magnitudes of order less than the Cl concentration. At acidic pH formation of compound II was impaired in the presence of chloride and dityrosine couldn't be detected in plasma. In conclusion, the ability of tyrosine to increase the chlorinating activity of MPO at neutral pH and enhanced values of H2O2 may be very effective for the specific enhancement of HOCl production under acute inflammation.  相似文献   

14.
Oxidation of the reactive site methionine (Met) in α-1-proteinase inhibitor (α-1-PI) to methionine sulfoxide (Met(O)) is known to cause depletion of its elastase inhibitory activity. To estimate the selectivity of different oxidants in converting Met to Met(O) in α-1-PI, we measured the molar ratio Met(O)/α-1-PI at total inactivation. This ratio was determined to be 1.2 for both the myeloperoxidase/H2O2/chloride system and the related compound NH2Cl. With taurine monochloramine, another myeloperoxidase-related oxidant, 1.05 mol Met(O) were generated per mol α-1-PI during inactivation. These oxidants attack preferentially one Met residue in α-1-PI, which is identical with Met 358, as concluded from the parallelism of loss of elastase inhibitory activity and oxidation of Met. A similar high specificity for Met oxidation was determined for the xanthine oxidase-derived oxidants. In contrast, the ratio found for ozone and m-chloroperoxybenzoic acid was 6.0 and 5.0, respectively, indicating oxidation of additional Met residues besides the reactive site Met in α-1-PI, i.e. unselective action of these oxidants. Further studies were performed on the efficiency of oxidants for total depletion of the elastase inhibitory capacity of α-1-PI. Ozone and m-chloroperoxybenzoic acid were 10-fold less effective and the superoxide anion/hydroxyl radicals were 30–50-fold less effective to inactivate the elastase inhibitory activity as compared to the myeloperoxidase-derived oxidants. The myeloperoxidase-related oxidants are discussed as important regulators of α-1-PI activity in vivo.  相似文献   

15.
Aspartate-β-semialdehyde dehydrogenase (ASADH) from Escherichia coli is inhibited by l- and d-cystine, and by other cystine derivatives. Enzyme inhibition is quantitatively reversed by addition of dithiothreitol (DTT), dithioerythrytol, β-mercaptoethanol, di-mercaptopropanol or glutathione to the cystine-inactivated enzyme. Cystine labeling of the enzyme is a pH dependent process and is optimal at pH values ranging from 7.0 to 7.5. Both the cysteine incorporation profile and the inactivation curve of the enzyme as a function of pH suggest that a group(s) with pKa of 8.5 could be involved in cystine binding. Stoichiometry of the inactivation reaction indicates that one cysteine residue from the enzyme subunit is reactive against cystine, as found by direct incorporation of radioactive cystine into the enzyme and by free-thiol titration of the enzyme with 5,5′-dithiobis-2-nitrobenzoic acid (DTNB) before and after the cystine treatment. One mole of cysteine is released from each mol of cystine after reaction with the enzyme. ASA, NADP and NADPH did not prevent cystine inhibition. The [35S]cysteine-labelled enzyme can be visualized after electrophoresis in polyacrylamide gels and further detection by autoradiography. After pepsin treatment of the [35S]cysteine-inactivated enzyme, a main radioactive peptide was isolated by HPLC. The amino acid sequence of this peptide was determined as FVGGN(Cys)2TVSL, thus demonstrating that the essential 135Cys is the amino acid residue modified by the treatment with cystine.  相似文献   

16.
2(S),3′(S)-N-(3-Amino-3-carboxypropyl)azetidine-2-carboxylic acid and 2(S),3′(S),3″(S)-N-[N-(3-amino-3-carboxypropyl)-3-amino-3-carboxypropyl]azetidine-2-carboxylic acid have been isolated from seeds of Fagus silvatica L. (beechnuts). The structures have been established by PMR- and 13C-NMR-spectroscopy and by synthesis from l-azetidine-2-carboxylic acid. The second of the new amino acids is identical with nicotianamine. previously isolated from Nicotiana tabacum but assigned a different formula. The ring opening reactions of azetidine-2-carboxylic acid in neutral solution have been studied and the chemical and possibly biochemical precursor role of this amino acid for various amino acids including the two new ones described here, nicotianine [N-(3-amino-3-carboxypropyl)nicotinic acid] and methionine is discussed.  相似文献   

17.
18.
Fatty acid biosynthesis from Na[1-14C]acetate was characterized in plastids isolated from primary roots of 7-day-old germinating pea (Pisum sativum L.) seeds. Fatty acid synthesis was maximum at 82 nanomoles per hour per milligram protein in the presence of 200 micromolar acetate, 0.5 millimolar each of NADH, NADPH, and coenzyme A, 6 millimolar each of ATP and MgCl2, 1 millimolar each of MnCl2 and glycerol-3-phosphate, 15 millimolar KHCO3, 0.31 molar sucrose, and 0.1 molar Bis-Tris-propane, pH 8.0, incubated at 35°C. At the standard incubation temperature of 25°C, fatty acid synthesis was essentially linear for up to 6 hours with 80 to 120 micrograms per milliliter plastid protein. ATP and coenzyme A were absolute requirements, whereas divalent cations, potassium bicarbonate, and reduced nucleotides all variously improved activity two- to 10-fold. Mg2+ and NADH were the preferred cation and nucleotide, respectively. Glycerol-3-phosphate had little effect, whereas dithiothreitol and detergents generally inhibited the incorporation of [14C]acetate into fatty acids. On the average, the principal radioactive products of fatty acid biosynthesis were approximately 39% palmitic, 9% stearic, and 52% oleic acid. The proportions of these fatty acids synthesized depended on the experimental conditions.  相似文献   

19.
A link between neurodegeneration and well-characterized enzymatic and non-enzymatic reactions that produce reactive oxygen species (ROS) from O2 is well established. Several enzymes that contain pyridoxal 5′-phosphate (PLP) or thiamine diphosphate (ThDP) catalyze side reactions (paracatalytic reactions) in the presence of ambient O2. These side reactions produce oxidants such as hydrogen peroxide [H2O2] or extremely reactive peracids [RC(O)OOH]. We hypothesize that although these enzymes normally produce oxidants at low or undetectable levels, changes in substrate levels or disease-induced structural alterations may enhance interactions with O2, thereby generating higher levels of reactive oxidants. These oxidants may damage the enzymes producing them, alter nearby macromolecules and/or destroy important metabolites/coenzymes. We propose that paracatalytic reactions with O2 catalyzed by PLP-dependent decarboxylases and by ThDP-dependent enzymes within the α-keto acid dehydrogenase complexes may contribute to normal cellular signaling and to cellular damage in neurodegenerative diseases. Special issue dedicated to John P. Blass.  相似文献   

20.
The uptake of glycine in rabbit renal brush border membrane vesicles was shown to consist of glycine transport into an intravesicular space. An Na+ electrochemical gradient (extravesicular>intravesicular) stimulated the initial rate of glycine uptake and effected a transient accumulation of intravesicular glycine above the steady-state value. This stimulation could not be induced by the imposition of a K+, Li+ or choline+ gradient and was enhanced as extravesicular Na+ was increased from 10 mM to 100 mM. Dissipation of the Na+ gradient by the ionophore gramicidin D resulted in diminished Na+-stimulated glycine uptake. Na+-stimulated uptake of glycine was electrogenic. Substrate-velocity analysis of Na+-dependent glycine uptake over the range of amino acid concentrations from 25 μM to 10 mM demonstrated a single saturable transport system with apparent Km = 996 μM and Vmax = 348 pmol glycine/mg protein per min. Inhibition observed when the Na+-dependent uptake of 25 μM glycine was inhibited by 5 mM extravesicular test amino acid segregated dibasic amino acids, which did not inhibit glycine uptake, from all other amino acid groups. The amino acids d-alanine, d-glutamic acid, and d-proline inhibited similarly to their l counterparts. Accelerative exchange of extravesicular [3H]glycine was demonstrated when brush border vesicles were preloaded with glycine, but not when they were preloaded with l-alanine, l-glutamic acid, or with l-proline. It is concluded that a single transport system exists at the level of the rabbit renal brush border membrane that functions to reabsorb glycine independently from other groups of amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号