首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to evaluate possible health effects of environmental exposure of humans towards methyl mercury species, relevant exposure experiments using methyl mercury chloride in aqueous solution and Chinese hamster ovary (CHO) cells were performed. The solution was monitored for the presence of monomethyl, dimethyl and elemental mercury by several analytical techniques including chromatographic as well as atomic absorption and mass spectrometric methods. Methyl mercury induces structural chromosomal aberrations (CA) and sister chromatid exchanges (SCE) in CHO cells. At a concentration of methyl mercury in the culture medium of 1.0 x 10(-6) M where the frequencies of CA and SCE are significantly elevated, the intracellular concentration was 1.99 x 10(-16) mol/cell. Possible biochemical processes leading to the cytogenetic effects are discussed together with toxicological consequences, when humans (e.g. workers at waste deposits) are exposed to environmental concentrations of methyl mercury.  相似文献   

2.
Summary In a previous report, we described the selection and partial characterization of three methotrexate (Mtx)-resistant Chinese hamster ovary cells (CHO) (1). Class I cells contained an apparent structural alteration in dihydrofolate reductase. Class II cells had an alteration affecting the permeability of the drug. Class III cells, selected from Class I cells, had an increased activity of the altered enzyme. In the work described here, it has been shown that the spontaneous mutation rate to Class I resistance is in the order of 2 × 10−9 mutations per locus per generation and that in single-step mutagenized selections the number of resistant colonies of Classes I and II are about equal. Class I and Class III resistance is expressed codominantly in somatic cell hybrids, whereas the Class II resistant marker is a recessive trait. Presented in the formal symposium on Somatic Cell Genetics at the 27th Annual Meeting of the Tissue Culture Association, Philadelphia, Pennsylvania, June 7–10, 1976. This research was supported by the Medical Research Council of Canada, the National Cancer Institute of Canada and the National Institutes of Health of the United States. W. F. was a Postdoctoral Fellow of the Medical Research Council of Canada.  相似文献   

3.
The degradation of environmental conditions, such as nutrient depletion and accumulation of toxic waste products over time, often lead to premature apoptotic cell death in mammalian cell cultures and suboptimal protein yield. Although apoptosis has been extensively researched, the changes in the whole cell proteome during prolonged cultivation, where apoptosis is a major mode of cell death, have not been examined. To our knowledge, the work presented here is the first whole cell proteome analysis of non-induced apoptosis in mammalian cells. Flow cytometry analyses of various activated caspases demonstrated the onset of apoptosis in Chinese hamster ovary cells during prolonged cultivation was primarily through the intrinsic pathway. Differential in gel electrophoresis proteomic study comparing protein samples collected during cultivation resulted in the identification of 40 differentially expressed proteins, including four cytoskeletal proteins, ten chaperone and folding proteins, seven metabolic enzymes and seven other proteins of varied functions. The induction of seven ER chaperones and foldases is a solid indication of the onset of the unfolded protein response, which is triggered by cellular and ER stresses, many of which occur during prolonged batch cultures. In addition, the upregulation of six glycolytic enzymes and another metabolic protein emphasizes that a change in the energy metabolism likely occurred as culture conditions degraded and apoptosis advanced. By identifying the intracellular changes during cultivation, this study provides a foundation for optimizing cell line-specific cultivation processes, prolonging longevity and maximizing protein production.  相似文献   

4.
We determined the kinetics of the induction of chromosomal aberrations and micronuclei (MN) by mitomycin C (MMC, 0.1 µg/ml) in Chinese hamster ovary (CHO) cells treated with cytochalasin B (Cyt-B, 3 µg/ml). In cells treated with Cyt-B as well as with Cyt-B plus MMC the highest yield of binucleated cells was obtained 24 h after treatment. After 40 h of treatment with Cyt-B the frequency of MN in binucleated cells was significantly higher than that observed at previous times in the same cultures as well as in controls. In cultures treated with MMC the frequency of MN increased with time, reaching the highest value at 24 h. The frequency of chromosomal aberrations was also significantly higher in cells treated both with Cyt-B and Cyt-B plus MMC than in controls and exceeded that of MN in parallel cultures. These data confirm the capacity of MMC to induce chromosomal alterations in mammalian cells; in particular they indicate that Cyt-B is able to induce cytogenetic effects in CHO cells. Using immunofluorescence microscopy, after reaction with CREST antikinetochore antibodies, we found that in cells treated with Cyt-B or Cyt-B plus MMC the frequency of MN without kinetochore was, respectively, about 70 and 85%, indicating that under our experimental conditions MN originate mainly from acentric chromatid fragments. Present data suggest that the method based on the blockage of cytokinesis by Cyt-B normally used in the MN assay should be reconsidered.  相似文献   

5.
External ATP causes passive permeability change in several transformed cells, but not in untransformed cells. We studied the effect of external ATP on the passive permeability of CHO-K1 cells, a transformed clone of Chinese hamster ovary cells. Treatment of the cells with external ATP alone did not produce a permeability change, and this was observed only when a mitochondrial inhibitor, such as rotenone or oligomycin, was present together with ATP. These inhibitors reduced the concentration of intracellular ATP and a permeability change by external ATP was observed when intracellular ATP was decreased more than 70%. This requirement for permeability change of CHO-K1 cells was quite unique, since passive permeability change of other transformed cells so far tested was induced by ATP alone. Treatment of CHO-K1 cells with cyclic AMP analogues increased their sensitivity to external ATP about 2-fold. The roles of external and intracellular ATP in controlling passive permeability are discussed.  相似文献   

6.
Chinese hamster ovary cells continuously secrete a cysteine endopeptidase   总被引:1,自引:0,他引:1  
Summary The protease activity in serum-free conditioned medium of chinese hamster ovary (CHO) cells was measured using peptidyl (or aminoacyl)-4-methylcoumaryl-7-amides (MCAs) as the substrates. Aminopeptidase increased in level as amounts of nonviable cells increased during cultivation in serum-free medium, indicating that the activity seems to be originated from intracellular proteases. The activity toward Boc-Leu-Arg-Arg-MCA, which was strongly inhibited by p-chloromercuribenzonate and N-ethylmaleimide, was the strongest among those toward peptidyl-MCAs in the conditioned medium within 48 h-cultivation in serum-free medium. In contrast to the case of aminopeptidase activity, the endopeptidase activity decreased in level after 48 h-cultivation although amounts of nonviable cells increases. Thus, CHO cells continuously secrete the cysteine proteases. This work was supported by the management of the Research Association for Biotechnology as a part of the R&D of Basic Technology for Future Industries sponsored by NEDO (New Energy and Industrial Technology Development Organization).  相似文献   

7.
Sodium butyrate (NaBu), which is widely used in recombinant Chinese hamster ovary cell (rCHO) cultures for high-level expression of therapeutic proteins, is known to induce apoptosis in a dose-dependent manner. Lately, the significance of autophagy has increased in the field of CHO cell culture due to the fact that autophagy is related to the programmed cell death mechanism. To determine the effect of NaBu on autophagy as well as apoptosis of rCHO cells, rCHO cells producing erythropoietin were subjected to NaBu treatment. NaBu treatment up to 5 mM increased cleaved forms of PARP, caspase-3, and Annexin V positive population, confirming the previous results that NaBu induces apoptosis. Concurrently, NaBu treatment increased the level of accumulation of the autophagic marker, LC3-II, independently of nutrient depletion, suggesting that NaBu induces autophagy. To elucidate the potential role of autophagy induced by NaBu, a representative autophagy inducer (rapamycin) or an inhibitor (bafilomycin A1) was added to cultures together with NaBu. It was found that autophagy had the potential role of a positive cell survival mechanism under NaBu treatment. Furthermore, gradual reduction in mitochondrial membrane potential/mass and recruitment of a mitophagy protein, Parkin, to the mitochondria were observed under NaBu treatment, suggesting that this positive function of autophagy might be mediated by the autophagic removal of damaged mitochondria. Taken together, autophagy was observed in rCHO cell culture under NaBu treatments and the results obtained here support the positive effects of autophagy induced by NaBu treatments.  相似文献   

8.
9.
10.
The effects of fish serum on cell growth and human granulocyte-macrophage colony-stimulating factor (hGM-CSF) production in an adhesion culture of Chinese hamster ovary (CHO) cells DR1000L4N were investigated and compared with those of fetal calf serum (FCS). Although fish serum did not stimulate the initial adhesion of CHO cells to culture dishes, it prompted cell growth after cell adhesion with FCS for 24 h. The cell density in the fish serum medium reached 75% that in the FCS medium. Fish serum promoted cell adhesion to and cell growth on collagen-coated dishes. The cell-specific production rate of hGM-CSF in the fish serum medium on collagen-coated dishes was almost the same as that in the FCS medium.  相似文献   

11.
12.
13.
14.
We have analysed the recovery of individual CHO-derived mutants during the generations immediately following their induction. This characteristic, which we call persistence, was measured by propagating mutagenized cultures in non-selective medium after subdivision into many very small populations, each containing either zero or one mutant. The recovery of most hypoxanthine phosphoribosyltransferase (hprt)-deficient mutants induced by ethyl methanesulphonate was low, and we have previously shown that this was usually due to an apparent rapid loss of the mutant phenotype with continued culture in non-selective medium (Bradley, 1980). A minority of about 15% manifest high persistence. We now show that most adenine phosphoribosyltransferase (aprt)-deficient mutants and some ouabain-resistant mutants had low persistence. Mutants induced by UV irradiation also generally exhibited low persistence but those induced by X-irradiation had significantly higher persistence than what was seen among EMS-induced mutants. Among various sublines of CHO cells which were tested for persistence of induced mutants, only one group consistently yielded mutants of high persistence. These were lines which carried glucose-6-phosphate dehydrogenase mutations which themselves had been originally induced by EMS.  相似文献   

15.
16.
Angiopoietin-2 (Ang2) is a complex regulator of vascular remodeling that plays a role in both blood vessel sprouting and blood vessel regression through its receptor Tie2. Recombinant Chinese hamster ovary (rCHO) cell lines expressing a high level (20 microg/mL) of recombinant human Ang2 protein (rhAng2) with an amino-terminal FLAG-tag was constructed by transfecting the expression vectors into dihydrofolate reductase (dhfr)-deficient CHO cells and the subsequent gene amplification in medium containing stepwise increments in methotrexate level such as 0.02, 0.08, and 0.32 microM. The rhAng2 secreted from rCHO cells was purified at a purification yield of 53.6% from the cultured medium using an anti-FLAG M2 agarose affinity gel. SDS-PAGE and Western blot analyses showed that rCHO cells secret rhAng2 as a homodimeric glycoprotein form. Furthermore, rhAng2 binds to the Tie2 receptor and phosphorylates Tie2 in a concentration-dependent manner. Therefore, our rhAng2 could be useful for clarifying biological effect of exogenous Ang2 in the future.  相似文献   

17.
Summary Lipopolysaccharide (LPS), the active component of bacterial endotoxin, caused no significant increase in ornithine decarboxylase (ODC) activity in serum-starved, Chinese hamster ovary fibroblasts. However, concurrent addition of LPS with 10% fetal bovine serum caused a synergistic 30 to 40-fold increase in enzyme activity as compared to the 10 to 20-fold increase seen after addition of serum alone. This synergism was not due to an alteration in the time course of enzyme induction after serum addition. The LPS-induced synergy of ODC induction by serum was inhibited by the concurrent addition of the specific LPS-antagonist, Polymyxin B. This investigation was supported by PHS Grant CA32444, awarded by the National Cancer Institute. A. R. L. G. is a recipient of a USPHS fellowship, GM09226-01, and S. M. T. was supported by NIH training Grant AMO 7282.  相似文献   

18.
为了研究不同方向的嵌合体内含子对重组神经生长因子 (Nerve growth factor,NGF) 基因表达的影响,以人β-珠蛋白第一内含子5?端剪接序列和人免疫球蛋白重链可变区内含子3?端剪接序列组合而成的嵌合体内含子作为研究对象,在NGF基因5?端插入不同方向的嵌合体内含子,构建含不同方向内含子的NGF基因表达载体。转染至CHO细胞后,G418筛选稳定转染的细胞,荧光定量PCR、ELISA和Western blotting检测不同载体NGF基因的表达情况。结果显示内含子可以大幅度提高NGF基因的表达,且正向内含子对NGF基因表达的增强作用无论是在mRNA水平还是在蛋白水平都要高于反向内含子。所以内含子能够提高外源NGF基因的表达,且内含子调控转基因表达具有方向性。  相似文献   

19.
Angiopoietin-1 (Ang1) is an essential molecule for blood vessel formation. In an effort to produce large quantities of Ang1, recombinant Chinese hamster ovary (rCHO) cells expressing a high level of recombinant human Ang1 protein (rhAng1) with an amino terminal FLAG-tag were constructed by transfecting the expression vector into dihydrofolate reductase-deficient CHO cells and subsequent gene amplification in a medium containing step-wise increments of methotrexate, such as 0.02, 0.08, and 0.32 μM. The rhAng1 secreted from rCHO cells was purified at a purification yield of 18.4% from the cultured medium using an anti-FLAG M2 agarose affinity gel. SDS-PAGE and Western blot analyses showed that rCHO cells secret rhAng1 as heterogeneous multimers. Moreover, rhAng1 expressed in rCHO cells is biologically active in vitro as demonstrated by its ability to bind to the Tie2 receptor and to phosphorylate Tie2. Therefore, the rhAng1 produced from CHO cells could be useful for clarifying the biological effects of exogenous rhAng1 in the future.  相似文献   

20.
We generated a series of adherent gene-amplified CHO clones expressing human secreted alkaline phosphatase (SEAP) as a model for heterologous protein production. Clones demonstrate a 26- to 52-fold increase in productivity compared to controls after dhfr/methotrexate-mediated gene amplification and clone selection. SEAP is stably expressed in these clones over at least a 6-week period without significant productivity loss. Two-dimensional protein electrophoresis identified 21 proteins that exhibited altered expression in clones of increasing SEAP productivity. Based on MALDI TOF/TOF mass spectrometry of relevant protein spots, changes in translation, energy pathways, chaperones, regulatory proteins, and cytoskeletal proteins were observed, including a 4-fold expression increase in actin capping protein. We hypothesized that an alteration of the actin cytoskeleton using cytochalasin D as a mimic for actin-capping protein could have a beneficial effect on heterologous protein secretion. Treatment with 0.5 mug/mL cytochalasin D increased SEAP productivity 2- to 3-fold compared to an amplified control which resulted in an increase in productivity from 52- to 150-fold compared to a nonamplified parent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号