首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Prions are self-propagating, infectious proteins that underlie several neurodegenerative diseases. The molecular basis underlying their sporadic formation is poorly understood. We show that autophagy protects against de novo formation of [PSI+], which is the prion form of the yeast Sup35 translation termination factor. Autophagy is a cellular degradation system, and preventing autophagy by mutating its core components elevates the frequency of spontaneous [PSI+] formation. Conversely, increasing autophagic flux by treating cells with the polyamine spermidine suppresses prion formation in mutants that normally show a high frequency of de novo prion formation. Autophagy also protects against the de novo formation of another prion, namely the Rnq1/[PIN+] prion, which is not related in sequence to the Sup35/[PSI+] prion. We show that growth under anaerobic conditions in the absence of molecular oxygen abrogates Sup35 protein damage and suppresses the high frequency of [PSI+] formation in an autophagy mutant. Autophagy therefore normally functions to remove oxidatively damaged Sup35, which accumulates in cells grown under aerobic conditions, but in the absence of autophagy, damaged/misfolded Sup35 undergoes structural transitions favoring its conversion to the propagatable [PSI+] form.  相似文献   

2.
Chris M Grant 《朊病毒》2015,9(4):257-265
ABSTRACT. The molecular basis by which fungal and mammalian prions arise spontaneously is poorly understood. A number of different environmental stress conditions are known to increase the frequency of yeast [PSI+] prion formation in agreement with the idea that conditions which cause protein misfolding may promote the conversion of normally soluble proteins to their amyloid forms. A recent study from our laboratory has shown that the de novo formation of the [PSI+] prion is significantly increased in yeast mutants lacking key antioxidants suggesting that endogenous reactive oxygen species are sufficient to promote prion formation. Our findings strongly implicate oxidative damage of Sup35 as an important trigger for the formation of the heritable [PSI+] prion in yeast. This review discusses the mechanisms by which the direct oxidation of Sup35 might lead to structural transitions favoring conversion to the transmissible amyloid-like form. This is analogous to various environmental factors which have been proposed to trigger misfolding of the mammalian prion protein (PrPC) into the aggregated scrapie form (PrPSc).  相似文献   

3.
《朊病毒》2013,7(4):257-265
ABSTRACT. The molecular basis by which fungal and mammalian prions arise spontaneously is poorly understood. A number of different environmental stress conditions are known to increase the frequency of yeast [PSI+] prion formation in agreement with the idea that conditions which cause protein misfolding may promote the conversion of normally soluble proteins to their amyloid forms. A recent study from our laboratory has shown that the de novo formation of the [PSI+] prion is significantly increased in yeast mutants lacking key antioxidants suggesting that endogenous reactive oxygen species are sufficient to promote prion formation. Our findings strongly implicate oxidative damage of Sup35 as an important trigger for the formation of the heritable [PSI+] prion in yeast. This review discusses the mechanisms by which the direct oxidation of Sup35 might lead to structural transitions favoring conversion to the transmissible amyloid-like form. This is analogous to various environmental factors which have been proposed to trigger misfolding of the mammalian prion protein (PrPC) into the aggregated scrapie form (PrPSc).  相似文献   

4.
Prions are self‐perpetuating amyloid protein aggregates which underlie various neurodegenerative diseases in mammals and heritable traits in yeast. The molecular basis of how yeast and mammalian prions form spontaneously into infectious amyloid‐like structures is poorly understood. We have explored the hypothesis that oxidative stress is a general trigger for prion formation using the yeast [PSI+] prion, which is the altered conformation of the Sup35 translation termination factor. We show that the frequency of [PSI+] prion formation is elevated under conditions of oxidative stress and in mutants lacking key antioxidants. We detect increased oxidation of Sup35 methionine residues in antioxidant mutants and show that overexpression of methionine sulphoxide reductase abrogates both the oxidation of Sup35 and its conversion to the [PSI+] prion. [PSI+] prion formation is particularly elevated in a mutant lacking the Sod1 Cu,Zn‐superoxide dismutase. We have used fluorescence microscopy to show that the de novo appearance of [PSI+] is both rapid and increased in frequency in this mutant. Finally, electron microscopy analysis of native Sup35 reveals that similar fibrillar structures are formed in both the wild‐type and antioxidant mutants. Together, our data indicate that oxidative stress is a general trigger of [PSI+] formation, which can be alleviated by antioxidant defenses.  相似文献   

5.
Douglas R. Lyke 《朊病毒》2017,11(5):332-337
Prions are misfolded, aggregated, infectious proteins found in a range of organisms from mammals to bacteria. In mammals, prion formation is difficult to study because misfolding and aggregation take place prior to symptom presentation. The study of the yeast prion [PSI+], which is the misfolded infectious form of Sup35p, provides a tractable system to monitor prion formation in real time. Recently, we showed that the de novo formation of prion aggregates begins with the appearance of highly mobile cytoplasmic foci, called early foci, which assemble into larger ring or dot structures. We also observed SDS-resistant oligomers during formation, and lysates containing newly formed oligomers can convert [psi?] cells to the [PSI+] state, suggesting that these oligomers have infectious potential. Here, we further characterize two aspects of prion formation: spatial sequestration of early foci and oligomerization of endogenous Sup35p. Our data provides important insights into the process of prion formation and explores the minimal oligomer requirement for infectivity.  相似文献   

6.
7.
8.
The [PSI(+)] prion of the yeast Saccharomyces cerevisiae was first identified by Brian Cox some 40 years ago as a non-Mendelian genetic element that modulated the efficiency of nonsense suppression. Following the suggestion by Reed Wickner in 1994 that such elements might be accounted for by invoking a prion-based model, it was subsequently established that the [PSI(+)] determinant was the prion form of the Sup35p protein. In this article, we review how a combination of classical genetic approaches and modern molecular and biochemical methods has provided conclusive evidence of the prion basis of the [PSI(+)] determinant. In so doing we have tried to provide a historical context, but also describe the results of more recent experiments aimed at elucidating the mechanism by which the [PSI(+)] (and other yeast prions) are efficiently propagated in dividing cells. While understanding of the [PSI(+)] prion and its mode of propagation has, and will continue to have, an impact on mammalian prion biology nevertheless the very existence of a protein-based mechanism that can have a beneficial impact on a cell's fitness provides equally sound justification to fully explore yeast prions.  相似文献   

9.
10.
Takao Ishikawa 《Mycoscience》2008,49(4):221-228
Prion diseases such as bovine spongiform encephalopathy or Creutzfeldt-Jakob disease have been extensively studied in recent years. Research in this field is being done in highly secured laboratories because of potential transmission of prions to humans. Emerging similarities between mammalian and yeast prions allow using yeast-based assays to examine the activity of anti-prion drugs. Besides the intensively studied clinical aspects of prion diseases, the evolutionary aspects of prion proteins present in the yeast Saccharomyces cerevisiae are also extensively investigated. One of the key feature of prions, the ability to be stable in two alternative conformations, seems to play an important role in the evolution of this fungi, although some authors point out the negative influence of these particles upon yeast physiology. In this review, the most intensively studied fields of the research carried out on [PSI+] prion in yeast are summarized.  相似文献   

11.
The [PSI(+)] prion in yeast has been shown to improve short-term growth in some environments, but its effects on rates of adaptation have not been assessed before now. We adapted three yeast genotypes to three novel environments in the presence and the absence of the prion. There were significant differences in adaptation rates between lines with different combinations of genotype, environment, and prion status. We saw no consistent effect, however, of the prion on the rate of adaptation to new environments. A major factor affecting the rate of adaptation was initial fitness in the new environment: lines with low initial fitness evolved faster than lines with high initial fitness.  相似文献   

12.
The yeast prions [PSI+] and [PIN+] are self-propagating amyloid aggregates of the Gln/Asn-rich proteins Sup35p and Rnq1p, respectively. Like the mammalian PrP prion "strains," [PSI+] and [PIN+] exist in different conformations called variants. Here, [PSI+] and [PIN+] variants were used to model in vivo interactions between co-existing heterologous amyloid aggregates. Two levels of structural organization, like those previously described for [PSI+], were demonstrated for [PIN+]. In cells with both [PSI+] and [PIN+] the two prions formed separate structures at both levels. Also, the destabilization of [PSI+] by certain [PIN+] variants was shown not to involve alterations in the [PSI+] prion size. Finally, when two variants of the same prion that have aggregates with distinct biochemical characteristics were combined in a single cell, only one aggregate type was propagated. These studies demonstrate the intracellular organization of yeast prions and provide insight into the principles of in vivo amyloid assembly.  相似文献   

13.
Yeast prions are superb models for understanding the mechanisms of self‐perpetuating protein aggregates formation. [PSI+] stands among the most documented yeast prions and results from self‐assembly of the translation termination factor Sup35p into protein fibrils. A plethora of cellular factors were shown to affect [PSI+] formation and propagation. Clearance of Sup35p prion particles is however poorly understood and documented. Here, we investigated the role of the proteasome in the degradation of Sup35p and in [PSI+] prion propagation. We found that cells lacking the RPN4 gene, which have reduced intracellular proteasome pools, accumulated Sup35p and have defects in [PSI+] formation and propagation. Sup35p is degraded in vitro by the 26S and 20S proteasomes in a ubiquitin‐independent manner, generating an array of amyloidogenic peptides derived from its prion‐domain. We also demonstrate the formation of a proteasome‐resistant fragment spanning residues 83–685 which is devoid of the prion‐domain that is essential for [PSI+] propagation. Most important was the finding that the 26S and 20S proteasomes degrade Sup35p fibrils in vitro and abolish their infectivity. Our results point to an overlooked role of the proteasome in clearing toxic protein aggregates, and have important implications for a better understanding of the life cycle of infectious protein assemblies.  相似文献   

14.
Yeast prions are inherited through proteins that exist in alternate, self-perpetuating conformational states. The mechanisms by which these states arise and are maintained are still poorly defined. Here we demonstrate for the first time that Sis1, a member of the Hsp40 chaperone family, plays a critical role in the maintenance of a prion. The prion [RNQ+] is formed by Rnq1, which is present in the same physical complex as Sis1, but only when Rnq1 is in the prion state. The G/F domain of Sis1 is dispensable for rapid growth on rich medium, but is required for [RNQ+] maintenance, distinguishing essential regions of Sis1 from those needed for prion interaction. A specific Sis1 deletion mutant altered the physical aggregation pattern of Rnq1 without curing the prion. This variant state propagated in a heritable fashion after wild-type Sis1 function was restored, indicating that multiple physical states are compatible with prion maintenance and that changes in chaperone activity can create prion variants. Using a prion chimera we demonstrate that the prion-determinant domain of Rnq1 is genetically sufficient for control by Sis1.  相似文献   

15.
为系统研究菲啶对酵母朊病毒的治愈效果,借助表达融合蛋白GFP-Sup35p的酵母朊病毒模型(NGMC),引入半变性琼脂糖凝胶电泳技术和荧光漂白后恢复技术在蛋白和细胞水平定量分析了菲啶对酵母朊病毒的治愈效果。结果表明,蛋白和细胞水平采用的定量分析方法能够精确定量菲啶对酵母朊病毒的治愈作用,菲啶作用酵母朊病毒[PSI+]1~5 d的治愈率分别为0%、0%、51.7%、87.5%和94.4%。另外,菲啶作用酵母朊病毒[PSI+]细胞1~2 d后出现的粉色菌落中朊病毒的聚集状态与[PSI+]相似,而3~5 d后出现的粉色菌落中朊病毒的状态与[psi-]相似。  相似文献   

16.
The frequency with which the yeast [PSI(+)] prion form of Sup35 arises de novo is controlled by a number of genetic and environmental factors. We have previously shown that in cells lacking the antioxidant peroxiredoxin proteins Tsa1 and Tsa2, the frequency of de novo formation of [PSI(+)] is greatly elevated. We show here that Tsa1/Tsa2 also function to suppress the formation of the [PIN(+)] prion form of Rnq1. However, although oxidative stress increases the de novo formation of both [PIN(+)] and [PSI(+)], it does not overcome the requirement of cells being [PIN(+)] to form the [PSI(+)] prion. We use an anti-methionine sulfoxide antibody to show that methionine oxidation is elevated in Sup35 during oxidative stress conditions. Abrogating Sup35 methionine oxidation by overexpressing methionine sulfoxide reductase (MSRA) prevents [PSI(+)] formation, indicating that Sup35 oxidation may underlie the switch from a soluble to an aggregated form of Sup35. In contrast, we were unable to detect methionine oxidation of Rnq1, and MSRA overexpression did not affect [PIN(+)] formation in a tsa1 tsa2 mutant. The molecular basis of how yeast and mammalian prions form infectious amyloid-like structures de novo is poorly understood. Our data suggest a causal link between Sup35 protein oxidation and de novo [PSI(+)] prion formation.  相似文献   

17.
One of the key feature of prions is the ability to be stable in two alternative conformations. Besides the intensively studied mammalian prions, there are also prion proteins present in the yeast Saccharomyces cerevisiae. Research in this field has lead to opposite hypotheses that explain the sense of presence of [PSI+] prion in yeast cells. Some authors postulate e of role of the prions in the evolution of S. cerevisiae, whereas other investigators point out the negative influence of these particles upon the yeast physiology. In recent years, yeast prions are used for anti-prion drug screening, because of common features with mammalian prions. This work presents the most intensively studied fields of the research carried out on [PSI+] prion in yeast.  相似文献   

18.
19.
Infectious proteins (prions) in yeast or other microorganisms can be identified by genetic methods of rather general applicability. Infection in yeast means transfer by cytoplasmic mixing (cytoduction), a property of all non-chromosomal genetic elements whether plasmids, viruses, or prions. Prions can be diagnosed by reversible curability, increased occurrence when the corresponding protein is overproduced, a requirement for the gene for the corresponding protein for propagation, and, in some cases, similarity of phenotype of: (a) mutations in the gene for the protein and (b) the presence of the prion. This approach is illustrated with [URE3], an amyloid-based prion of the regulator of nitrogen catabolism, Ure2p and [PSI(+)] as a prion of the translation termination factor Sup35p. The prion concept is not limited to infectious amyloids, but includes proteins whose active form is necessary for the activation of the inactive precursor. We detail methods used in studies of [URE3] and [beta], a self-activating protease, some of which are of broad application.  相似文献   

20.
[PSI(+)] yeast, containing the misfolded amyloid conformation of Sup35 prion, is cured by inactivation of Hsp104. There has been controversy as to whether inactivation of Hsp104 by guanidine treatment or by overexpression of the dominant negative Hsp104 mutant, Hsp104-2KT, cures [PSI(+)] by the same mechanism- inhibition of the severing of the prion seeds. Using live cell imaging of Sup35-GFP, overexpression of Hsp104-2KT caused the foci to increase in size, then decrease in number, and finally disappear when the cells were cured, similar to that observed in cells cured by depletion of Hsp104. In contrast, guanidine initially caused an increase in foci size but then the foci disappeared before the cells were cured. By starving the yeast to make the foci visible in cells grown with guanidine, the number of cells with foci was found to correlate exactly with the number of [PSI(+)] cells, regardless of the curing method. Therefore, the fluorescent foci are the prion seeds required for maintenance of [PSI(+)] and inactivation of Hsp104 cures [PSI(+)] by preventing severing of the prion seeds. During curing with guanidine, the reduction in seed size is an Hsp104-dependent effect that cannot be explained by limited severing of the seeds. Instead, in the presence of guanidine, Hsp104 retains an activity that trims or reduces the size of the prion seeds by releasing Sup35 molecules that are unable to form new prion seeds. This Hsp104 activity may also occur in propagating yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号