首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enfuvirtide and T-1249 are two HIV-1 fusion inhibitor peptides that bind to gp41 and prevent its fusogenic conformation, inhibiting viral entry into host cells. Previous studies established the relative preferences of these peptides for membrane model systems of defined lipid compositions. We aimed to understand the interaction of these peptides with the membranes of erythrocytes and peripheral blood mononuclear cells. The peptide behavior toward cell membranes was followed by di-8-ANEPPS fluorescence, a lipophilic probe sensitive to the changes in membrane dipole potential. We observed a fusion inhibitor concentration-dependent decrease on the membrane dipole potential. Quantitative analysis showed that T-1249 has an approximately eight-fold higher affinity towards cells, when compared with enfuvirtide. We also compared the binding towards di-8-ANEPPS labeled lipid vesicles that model cell membranes and obtained concordant results. We demonstrated the distinct enfuvirtide and T-1249 membranotropism for circulating blood cells, which can be translated to a feasible in vivo scenario. The enhanced interaction of T-1249 with cell membranes correlates with its higher efficacy, as it can increase and accelerate the drug binding to gp41 in its pre-fusion state.  相似文献   

2.
T-20 (also known as enfuvirtide) is a fusion inhibitor peptide known to have some effectiveness in the control of progression of HIV infection by inhibiting the fusion of the HIV envelope with the target cell membrane. Recent results indicate that T-20 is able to interact with membranes in the liquid disordered state but not with membranes in an ordered state, which could be linked to its effectiveness. A detailed molecular picture of the interaction of these molecules with membranes is still lacking. To this effect, extensive molecular dynamics simulations (100 ns) were carried out to investigate the interaction between T-20 and bilayers of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and POPC/cholesterol (1:1). Membrane properties such as area/lipid, density profiles, order parameters and membrane thickness were studied. It was observed that T-20 has the ability to interact to different extents with both model membranes in this study and that peptide interaction with the bilayer surface has a local effect on membrane structure. The formation of hydrogen bonding between certain peptide residues and the POPC phosphate group was observed. However, T-20 showed a more limited extent of interaction with model membranes when compared with other, more efficient, peptides (such as T-1249). This effect is most notable in POPC/Chol membranes in which interaction is especially weak, owing to less peptide residues acting as H bond donors to POPC and virtually no H bonds being formed between T-20 and cholesterol. This lower ability to interact with membranes is probably correlated with its smaller inhibitory efficiency.  相似文献   

3.
Liu S  Lu H  Niu J  Xu Y  Wu S  Jiang S 《The Journal of biological chemistry》2005,280(12):11259-11273
Fuzeon (also known as T-20 or enfuvirtide), one of the C-peptides derived from the HIV-1 envelope glycoprotein transmembrane subunit gp41 C-terminal heptad repeat (CHR) region, is the first member of a new class of anti-HIV drugs known as HIV fusion inhibitors. It has been widely believed that T-20 shares the same mechanism of action with C34, another C-peptide. The C34 is known to compete with the CHR of gp41 to form a stable 6-helix bundle (6-HB) with the gp41 N-terminal heptad repeat (NHR) and prevent the formation of the fusogenic gp41 core between viral gp41 NHR and CHR, thereby inhibiting fusion between viral and target cell membranes. Here we present data to demonstrate that, contrary to this belief, T-20 cannot form stable 6-HB with N-peptides derived from the NHR region, nor can it inhibit the 6-HB formation of the fusogenic core. Instead, it may interact with N-peptides to form unstable or insoluble complexes. Our data suggest that T-20 has a different mechanism of action from C34. The interaction of T-20 with viral NHR region alone may not prevent the formation of the fusion active gp41 core. We also demonstrate that the T-20-mediated anti-HIV activity can be significantly abrogated by peptides derived from the membrane-spanning domain in gp41 and coreceptor binding site in gp120. These new findings imply that T-20 inhibits HIV-1 entry by targeting multiple sites in gp41 and gp120. Further elucidation of the mechanism of action of T-20 will provide new target(s) for development of novel HIV entry inhibitors.  相似文献   

4.
Biron Z  Khare S  Quadt SR  Hayek Y  Naider F  Anglister J 《Biochemistry》2005,44(41):13602-13611
The HIV-1 envelope glycoprotein gp41 is responsible for viral fusion with the host cell. The fusion process, as well as the full structure of gp41, is not completely understood. One of the strongest inhibitors of HIV-1 fusion is a 36-residue peptide named T-20, gp41(638-673) (Fuzeon, also called Enfuvirtide or DP-178; residues are numbered according to the HXB2 gp160 variant) now used as an anti HIV-1 drug. This peptide also contains the immunogenic sequences that represent the full or partial recognition epitope for the broadly neutralizing human monoclonal antibodies 2F5 and 4E10, respectively. Due to its hydrophobicity, T-20 tends to aggregate at high concentrations in water, and therefore the structure of this molecule in aqueous solution has not been previously determined. We expressed a uniformly 13C/15N-labeled 42-residue peptide NN-T-20-NITN (gp41(636-677)) and used heteronuclear 2D and 3D NMR methods to determine its structure. Due to the additional gp41-native hydrophilic residues, NN-T-20-NITN dissolved in water, enabling for the first time determination of its secondary structure at near physiological conditions. Our results show that the NN-T-20-NITN peptide is composed of a mostly unstructured N-terminal region and a helical region beginning at the center of T-20 and extending toward the C-terminus. The helical region is found under various conditions and has been observed also in a 13-residue peptide gp41(659-671). We suggest that this helical conformation is maintained in most of the different tertiary structures of the gp41 envelope protein that form during the process of viral fusion. Accordingly, an important element of the immunogenicity of gp41 and the inhibitory properties of Fuzeon may be the propensity of specific sequences in these polypeptides to assume helical structures.  相似文献   

5.
We have previously shown that the first generation human immunodeficiency virus (HIV) fusion inhibitor T20 (Fuzeon) contains a critical lipid-binding domain (LBD), whereas C34, another anti-HIV peptide derived from the gp41 C-terminal heptad repeat, consists of an important pocket-binding domain (PBD), and both share a common 4-3 heptad repeat (HR) sequence (Liu, S., Jing, W., Cheung, B., Lu, H., Sun, J., Yan, X., Niu, J., Farmar, J., Wu, S., and Jiang, S. (2007) J. Biol. Chem. 282, 9612-9620). T1249, the second generation HIV fusion inhibitor, has both LBD and PBD but a different HR sequence, suggesting that these three anti-HIV peptides may have distinct mechanisms of action. Here we rationally designed a set of peptides that contain multiple copies of a predicted HR sequence (5HR) or the HR sequence plus either LBD (4HR-LBD) or PBD (PBD-4HR) or both (PBD-3HR-LBD), and we compared their anti-HIV-1 activity and biophysical properties. We found that the peptide 5HR exhibited low-to-moderate inhibitory activity on HIV-1-mediated cell-cell fusion, whereas addition of LBD and/or PBD to the HR sequence resulted in a significant increase of the anti-HIV-1 activity. The peptides containing PBD, including PBD-4HR and PBD-3HR-LBD, could form a stable six-helix bundle with the N-peptide N46 and effectively blocked the gp41 core formation, whereas the peptides containing LBD, e.g. 4HR-LBD and PBD-3HR-LBD, could interact with the lipid vehicles. These results suggest that the HR sequence in these anti-HIV peptides acts as a structure domain and is responsible for its interaction with the HR sequence in N-terminal heptad repeat, whereas PBD and LBD are critical for interactions with their corresponding targets. T20, C34, and T1249 may function like 4HR-LBD, PBD-4HR, and PBD-3HR-LBD, respectively, to interact with different target sites for inhibiting HIV fusion and entry. Therefore, this study provides important information for understanding the mechanisms of action of the peptic HIV-1 fusion inhibitors and for rational design of novel antiviral peptides against HIV and other viruses with class I fusion proteins.  相似文献   

6.
Alpha-helical peptides, such as T-20 (enfuvirtide) and C34, derived from the gp41 carboxyl-terminal heptad repeat (C-HR) of HIV-1, inhibit membrane fusion of HIV-1 and the target cells. Although T-20 effectively suppresses the replication of multi-drug resistant HIV variants both in vitro and in vivo, prolonged therapy with T-20 induces emergence of T-20 resistant variants. In order to suppress the emergence of such resistant variants, we introduced charged and hydrophilic amino acids, glutamic acid (E) and lysine (K), at the solvent accessible site of C34. In particular, the modified peptide, SC34EK, demonstrates remarkably potent inhibition of membrane fusion by the resistant HIV-1 variants as well as wild-type viruses. The activity was specific to HIV-1 and little influenced by serum components. We found a strong correlation between the anti-HIV-1 activities of these peptides and the thermostabilities of the 6-helix bundles that are formed with these peptides. We also obtained the crystal structure of SC34EK in complex with a 36 amino acid sequence (N36) comprising the amino-terminal heptad repeat of HIV-1. The EK substitutions in the sequence of SC34EK were directed toward the solvent and generated an electrostatic potential, which may result in enhanced alpha-helicity of the peptide inhibitor. The 6-helix bundle complex of SC34EK with N36 appears to be structurally similar to that of C34 and N36. Our approach to enhancing alpha-helicity of the peptide inhibitor may enable future design of highly effective and specific HIV-1 inhibitors.  相似文献   

7.
Human immunodeficiency virus (HIV) gp41 plays a key role in viral fusion; the N- and C-terminal heptad repeats (N-HR and C-HR) of gp41 form a stable 6-helical conformation for fusion. Therefore, HR-derived peptides, such as enfuvirtide (T-20), inhibit HIV-1 fusion by acting as decoys, and have been used for the treatment of HIV-1 infection. However, the efficacy of T-20 is attenuated by resistance mutations in gp41, including V38A and N43D. To suppress the resistant variants, we previously developed electrostatically constrained peptides, SC34 and SC34EK, and showed that both exhibited potent anti-HIV-1 activity against wild-type and T-20-resistant variants. In this study, to clarify the resistance mechanism to this next generation of fusion inhibitors, we selected variants with resistance to SC34 and SC34EK in vitro. The resistant variants had multiple mutations in gp41. All of these mutations individually caused less than 6-fold resistance to SC34 and SC34EK, indicating that there is a significant genetic barrier for high-level resistance. Cross-resistance to SC34 and SC34EK was reduced by a simple difference in the polarity of two intramolecular electrostatic pairs. Furthermore, the selected mutations enhanced the physicochemical interactions with N-HR variants and restored activities of the parental peptide, C34, even to resistant variants. These results demonstrate that our approach of designing gp41-binding inhibitors using electrostatic constraints and information derived from resistance studies produces inhibitors with enhanced activity, high genetic barrier, and distinct resistance profile from T-20 and other inhibitors. Hence, this is a promising approach for the design of future generation peptide fusion inhibitors.  相似文献   

8.
9.
The envelope spike (S) glycoprotein of the severe acute respiratory syndrome associated coronavirus (SARS-CoV) mediates the entry of the virus into target cells. Recent studies point out to a cell entry mechanism of this virus similar to other enveloped viruses, such as HIV-1. As it happens with other viruses peptidic fusion inhibitors, SARS-CoV S protein HR2-derived peptides are potential therapeutic drugs against the virus. It is believed that HR2 peptides block the six-helix bundle formation, a key structure in the viral fusion, by interacting with the HR1 region. It is a matter of discussion if the HIV-1 gp41 HR2-derived peptide T20 (enfuvirtide) could be a possible SARS-CoV inhibitor given the similarities between the two viruses. We tested the possibility of interaction between both T20 (HIV-1 gp41 HR2-derived peptide) and T-1249 with S protein HR1- and HR2-derived peptides. Our biophysical data show a significant interaction between a SARS-CoV HR1-derived peptide and T20. However, the interaction is only moderate (K(B)=(1.1+/-0.3)x10(5) M(-1)). This finding shows that the reasoning behind the hypothesis that T20, already approved for clinical application in AIDS treatment, could inhibit the fusion of SARS-CoV with target cells is correct but the effect may not be strong enough for application.  相似文献   

10.

Background

The entry of HIV into its host cell is an interesting target for chemotherapeutic intervention in the life-cycle of the virus. During entry, reduction of disulfide bridges in the viral envelope glycoprotein gp120 by cellular oxidoreductases is crucial. The cellular thioredoxin reductase-1 plays an important role in this oxidoreduction process by recycling electrons to thioredoxin-1. Therefore, thioredoxin reductase-1 inhibitors may inhibit gp120 reduction during HIV-1 entry. In this present study, tellurium-based thioredoxin reductase-1 inhibitors were investigated as potential inhibitors of HIV entry.

Results

The organotellurium compounds inhibited HIV-1 and HIV-2 replication in cell culture at low micromolar concentrations by targeting an early event in the viral infection cycle. Time-of-drug-addition studies pointed to virus entry as the drug target, more specifically: the organotellurium compound TE-2 showed a profile similar or close to that of the fusion inhibitor enfuvirtide (T-20). Surface plasmon resonance-based interaction studies revealed that the compounds do not directly interact with the HIV envelope glycoproteins gp120 and gp41, nor with soluble CD4, but instead, dose-dependently bind to thioredoxin reductase-1. By inhibiting the thioredoxin-1/thioredoxin reductase-1-directed oxidoreduction of gp120, the organotellurium compounds prevent conformational changes in the viral glycoprotein which are necessary during viral entry.

Conclusion

Our findings revealed that thioredoxin-1/thioredoxin reductase-1 acts as a cellular target for the inhibition of HIV entry.  相似文献   

11.
Development of HIV fusion inhibitors.   总被引:1,自引:0,他引:1  
In the past 25 years, the worldwide AIDS epidemic has grown such that roughly 38 million people were estimated to be living with the disease worldwide at the end of 2003. The introduction of antiretroviral-based therapies, beginning in 1987, has enabled many to live with HIV as a chronic, rather than terminal, disease. However, the emergence and spread of drug-resistant strains highlights the continued need for new therapies with novel modes of action. In 2003, the FDA and EMEA approved enfuvirtide (Fuzeon), a 36 amino acid peptide derived from the natural gp41 HR2 sequence, as the first HIV fusion inhibitor. T-1249, a 39 amino acid fusion inhibitor, is active against viruses that develop resistance to enfuvirtide. The development of FIs and the processes to manufacture enfuvirtide and T-1249 on an unprecedented scale for peptide therapeutics are presented. Synthetic routes based on a combination of solid phase peptide synthesis and solution phase fragment condensation as well as the analytical controls necessary to insure a robust process are discussed.  相似文献   

12.
T-20 is a synthetic peptide that potently inhibits replication of human immunodeficiency virus type 1 by interfering with the transition of the transmembrane protein, gp41, to a fusion active state following interactions of the surface glycoprotein, gp120, with CD4 and coreceptor molecules displayed on the target cell surface. Although T-20 is postulated to interact with an N-terminal heptad repeat within gp41 in a trans-dominant manner, we show here that sensitivity to T-20 is strongly influenced by coreceptor specificity. When 14 T-20-naive primary isolates were analyzed for sensitivity to T-20, the mean 50% inhibitory concentration (IC(50)) for isolates that utilize CCR5 for entry (R5 viruses) was 0.8 log(10) higher than the mean IC(50) for CXCR4 (X4) isolates (P = 0. 0055). Using NL4.3-based envelope chimeras that contain combinations of envelope sequences derived from R5 and X4 viruses, we found that determinants of coreceptor specificity contained within the gp120 V3 loop modulate this sensitivity to T-20. The IC(50) for all chimeric envelope viruses containing R5 V3 sequences was 0.6 to 0.8 log(10) higher than that for viruses containing X4 V3 sequences. In addition, we confirmed that the N-terminal heptad repeat of gp41 determines the baseline sensitivity to T-20 and that the IC(50) for viruses containing GIV at amino acid residues 36 to 38 was 1.0 log(10) lower than the IC(50) for viruses containing a G-to-D substitution. The results of this study show that gp120-coreceptor interactions and the gp41 N-terminal heptad repeat independently contribute to sensitivity to T-20. These results have important implications for the therapeutic uses of T-20 as well as for unraveling the complex mechanisms of virus fusion and entry.  相似文献   

13.
Entry inhibitors of human immunodeficiency virus, type 1 (HIV-1) have been the focus of much recent research. C34, a potent fusion inhibitor derived from the HR2 region of gp41, was engineered into a 1:1 human serum albumin conjugate through stable covalent attachment of a maleimido-C34 analog onto cysteine 34 of albumin. This bioconjugate, PC-1505, was designed to require less frequent dosing and less peptide than T-20 and was assessed for its antifusogenic activity both in vitro and in vivo in the SCID-hu Thy/Liv mouse model. PC-1505 was essentially equipotent to the original C34 peptide and to T-20 in vitro. In HIV-1-infected SCID-hu Thy/Liv mice, T-20 lost activity with infrequent dosing, whereas the antiviral potency of PC-1505 was sustained, and PC-1505 was active against T-20-resistant ("DIV") virus with a G36D substitution in gp41. The in vivo results are the direct result of a significantly improved pharmacokinetic profile for the C34 peptide following albumin conjugation. Contrary to previous reports that the gp41 NHR trimer is poorly accessible to C34 fused to protein cargoes of increasing size (Hamburger, A. E., Kim, S., Welch, B. D., and Kay, M. S. (2005) J. Biol. Chem. 280, 12567-12572), these results are the first demonstration of the capacity for a large, endogenous serum protein to gain unobstructed access to the transient gp41 intermediates that exist during the HIV fusion process, and it supports further development of albumin conjugation as a promising approach to inhibit HIV-1 entry.  相似文献   

14.
The human immunodeficiency virus (HIV) envelope glycoprotein forms trimers on the virion surface, with each monomer consisting of two subunits, gp120 and gp41. The gp120 envelope component binds to CD4 on target cells and undergoes conformational changes that allow gp120 to interact with certain G-protein-coupled receptors (GPCRs) on the same target membranes. The GPCRs that function as HIV coreceptors were found to be chemokine receptors. The primary coreceptors are CCR5 and CXCR4, but several other chemokine receptors were identified as "minor coreceptors", indicating their ability support entry of some HIV strains in tissue cultures. Formation of the tri-molecular complexes stabilizes virus binding and triggers a series of conformational changes in gp41 that facilitate membrane fusion and viral cell entry. Concerted efforts are underway to decipher the specific interactions between gp120/CD4, gp120/coreceptors, and their contributions to the subsequent membrane fusion process. It is hoped that some of the transient conformational intermediates in gp120 and gp41 would serve as targets for entry inhibitors. In addition, the CD4 and coreceptors are primary targets for several classes of inhibitors currently under testing. Our review summarizes the current knowledge on the interactions of HIV gp120 with its receptor and coreceptors, and the important properties of the chemokine receptors and their regulation in primary target cells. We also summarize the classes of coreceptor inhibitors under development.  相似文献   

15.
Qiang W  Yang J  Weliky DP 《Biochemistry》2007,46(17):4997-5008
Human immunodeficiency virus (HIV) infection begins with fusion between viral and host cell membranes and is catalyzed by the HIV gp41 fusion protein. The approximately 20 N-terminal apolar residues of gp41 are called the HIV fusion peptide (HFP), interact with the host cell membrane, and play a key role in fusion. In this study, the membrane location of peptides which contained the HFP sequence (AVGIGALFLGFLGAAGSTMGARS) was probed in samples containing either only phospholipids or phospholipids and cholesterol. Four HFPs were examined which each contained 13CO labeling at three sequential residues between G5 and G16. The 13CO chemical shifts indicated that HFP had predominant beta strand conformation over the labeled residues in the samples. The internuclear distances between the HFP 13CO groups and the lipid 31P atoms were measured using solid-state nuclear magnetic resonance rotational-echo double-resonance experiments. The shortest 13CO-31P distances of 5-6 A were observed for HFP labeled between A14 and G16 and correlated with intimate association of beta strand HFP and membranes. These results were confirmed with measurements using HFPs singly labeled with 13CO at A6 or A14. To our knowledge, these data are the first measurements of distances between HIV fusion peptide nuclei and lipid P, and qualitative models of the membrane location of oligomeric beta strand HFP which are consistent with the experimental data are presented. Observation of intimate contact between beta strand HFP and membranes provides a rationale for further investigation of the relationship between structure and fusion activity for this conformation.  相似文献   

16.
The human immunodeficiency virus (HIV) envelope glycoprotein forms trimers on the virion surface, with each monomer consisting of two subunits, gp120 and gp41. The gp120 envelope component binds to CD4 on target cells and undergoes conformational changes that allow gp120 to interact with certain G-protein-coupled receptors (GPCRs) on the same target membranes. The GPCRs that function as HIV coreceptors were found to be chemokine receptors. The primary coreceptors are CCR5 and CXCR4, but several other chemokine receptors were identified as “minor coreceptors”, indicating their ability support entry of some HIV strains in tissue cultures. Formation of the tri-molecular complexes stabilizes virus binding and triggers a series of conformational changes in gp41 that facilitate membrane fusion and viral cell entry. Concerted efforts are underway to decipher the specific interactions between gp120/CD4, gp120/coreceptors, and their contributions to the subsequent membrane fusion process. It is hoped that some of the transient conformational intermediates in gp120 and gp41 would serve as targets for entry inhibitors. In addition, the CD4 and coreceptors are primary targets for several classes of inhibitors currently under testing. Our review summarizes the current knowledge on the interactions of HIV gp120 with its receptor and coreceptors, and the important properties of the chemokine receptors and their regulation in primary target cells. We also summarize the classes of coreceptor inhibitors under development.  相似文献   

17.
He Y  Cheng J  Li J  Qi Z  Lu H  Dong M  Jiang S  Dai Q 《Journal of virology》2008,82(13):6349-6358
Human immunodeficiency virus type 1 (HIV-1) entry into the host cell involves a cascade of events and currently represents one of most attractive targets in the search for new antiviral drugs. The fusion-active gp41 core structure is a stable six-helix bundle (6-HB) folded by its trimeric N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR). Peptides derived from the CHR region of HIV-1 gp41 are potent fusion inhibitors that target the NHR to block viral and cellular membrane fusion in a dominant negative fashion. However, all CHR peptides reported to date are derived primarily from residues 628 to 673 of gp41; little attention has been paid to the upstream sequence of the pocket binding domain (PBD) in the CHR. Here, we have identified a motif ((621)QIWNNMT(627)) located at the upstream region of the gp41 CHR, immediately adjacent to the PBD ((628)WMEWEREI(635)). Biophysical characterization demonstrated that this motif is critical for the stabilization of the gp41 6-HB core. The peptide CP621-652, containing the (621)QIWNNMT(627) motif, was able to interact with T21, a counterpart peptide derived from the NHR, to form a typical 6-HB structure with a high thermostability (thermal unfolding transition [T(m)] value of 82 degrees C). In contrast, the 6-HB formed by the peptides N36 and C34, which has been considered to be a core structure of the fusion-active gp41, had a T(m) of 64 degrees C. Different from T-20 (brand name Fuseon), which is the first and only HIV-1 fusion inhibitor approved for clinical use, CP621-652 could efficiently block 6-HB formation in a dose-dependent manner. Significantly, CP621-652 had potent inhibitory activity against HIV-1-mediated cell-cell fusion and infection, especially against T-20- and C34-resistant virus. Therefore, our works provide important information for understanding the core structure of the fusion-active gp41 and for designing novel anti-HIV peptides.  相似文献   

18.
The fusion peptides of HIV and influenza virus are crucial for viral entry into a host cell. We report the membrane-perturbing and structural properties of fusion peptides from the HA fusion protein of influenza virus and the gp41 fusion protein of HIV. Our goals were to determine: 1), how fusion peptides alter structure within the bilayers of fusogenic and nonfusogenic lipid vesicles and 2), how fusion peptide structure is related to the ability to promote fusion. Fluorescent probes revealed that neither peptide had a significant effect on bilayer packing at the water-membrane interface, but both increased acyl chain order in both fusogenic and nonfusogenic vesicles. Both also reduced free volume within the bilayer as indicated by partitioning of a lipophilic fluorophore into membranes. These membrane ordering effects were smaller for the gp41 peptide than for the HA peptide at low peptide/lipid ratio, suggesting that the two peptides assume different structures on membranes. The influenza peptide was predominantly helical, and the gp41 peptide was predominantly antiparallel beta-sheet when membrane bound, however, the depths of penetration of Trps of both peptides into neutral membranes were similar and independent of membrane composition. We previously demonstrated: 1), the abilities of both peptides to promote fusion but not initial intermediate formation during PEG-mediated fusion and 2), the ability of hexadecane to compete with this effect of the fusion peptides. Taken together, our current and past results suggest a hypothesis for a common mechanism by which these two viral fusion peptides promote fusion.  相似文献   

19.
Previous studies showed that apoA1, the major protein component of HDL (High Density Lipoprotein), inhibited HIV infectivity and virus-induced syncytia formation. The mechanism of inhibition is unknown. We bring here evidence that the amphipathic helices of apoA1 interact with the N-terminal peptides of SIV gp32 and HIV gp41. These peptides have been shown to be associated with the initial steps of the fusion between the host cell and the virus. Binding of apoA1 to these peptides prevents the insertion of the fusogenic domains into the cell membrane and inhibits the fusion and the entry of the virus into the host cell.  相似文献   

20.
C-peptides derived from the HIV envelope glycoprotein transmembrane subunit gp41 C-terminal heptad repeat (C-HR) region are potent HIV fusion inhibitors. These peptides interact with the gp41 N-terminal heptad repeat (N-HR) region and block the gp41 six-helix bundle formation that is required for fusion. However, the parameters that govern this inhibition have yet to be elucidated. We address this issue by comparing the ability of C34, derived from HIV-1, HIV-2 and SIV gp41, to inhibit HIV-1, HIV-2 and SIV envelope-mediated fusion and the ability of these peptides to form stable six-helix bundles with N36 peptides derived from gp41 of these three viruses. The ability to form six-helix bundles was examined by circular dichroism spectroscopy, and HIV/SIV Env-mediated membrane fusion was monitored by a dye transfer assay. HIV-1 N36 formed stable helix bundles with HIV-1, HIV-2 and SIV C34, which all inhibited HIV-1 Env-mediated fusion at IC(50)<10nM. The three C34 peptides were poor inhibitors of HIV-2 and SIV fusion (IC(50)>100nM), although HIV-2 and SIV N36 formed stable helix bundles with SIV C34. Priming experiments with sCD4 indicate that, in contrast to HIV-1, HIV-2 and SIV Env do not expose their N-HR region to SIV C34 following CD4 binding, but rapidly proceed to co-receptor engagement and six-helix bundle formation resulting in fusion. Our results suggest that several factors, including six-helix bundle stability and the ability of CD4 to destabilize the envelope glycoprotein, serve as determinants of sensitivity to entry inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号