首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genomic in situ hybridization (GISH) was used to investigate genomic relationships between different Setaria species of the foxtail millet gene pool (S. italica) and one interspecific F1 hybrid. The GISH patterns obtained on the two diploid species S. viridis (genome A) and S. adhaerans (genome B), and on their F1 hybrid showed clear differentiation between these two genomes except at the nucleolar organizing regions. Similar GISH patterns allowed differentiation of S. italica from S. adhaerans. However, GISH patterns did not distinguish between the genomes of S. italica and its putative wild ancestor S. viridis. GISH was also applied to polyploid Setaria species and enabled confirmation of the assumed allotetraploid nature of S. faberii and demonstration that both S. verticillata and S. verticillata var. ambigua were also allotetraploids. All these tetraploid species contained two sets of 18 chromosomes each, one from genome A and the other from genome B. Only one polyploid species, S. pumila, was shown to bear an unknown genomic composition that is not closely related either to genome A or to genome B.  相似文献   

2.
Soliman MH  Rubiales D  Cabrera A 《Hereditas》2001,135(2-3):183-186
Agropyron (Gaertn) is a genus of Triticeae which includes the crested wheatgrass complex, i.e. A. cristatum (L.) as representative species containing the P genome. This species is an important source for increase the genetic variability of both durum and bread wheat. Among the possible interesting features to be introgressed into wheat are resistance to wheat streak mosaic virus, rust diseases, and tolerance to drought, cold and moderate salinity. By crossing tetraploid wheat (Triticum turgidum conv durum, 2n = 4x = 28; AABB) with a fertile allotetraploid (2n = 4x = 28; DDPP) between diploid wheat (T. tauschii) and crested wheatgrass (A. cristatum L.), amphiploid plants were obtained. Fluorescence in situ hybridization (FISH) using both genomic DNA from A. cristatum and the repetitive probe pAs1, proved that the plants were true amphiploids with a chromosome number 2n = 8x = 56 and genomic constitution AABBDDPP. Using total genomic in situ hybridization (GISH) to study meiotic metaphase I, data on allosyndetic and autosyndetic chromosome pairing were obtained. The amphiploids were perennial like the male parent but their morphology was close to that of the wheat parent. They were resistant to wheat leaf rust and powdery mildew under field conditions.  相似文献   

3.
An improved modification of genomic in situ hybridization (GISH) was proposed. It allows clear and reproducible discrimination between closely related genomes of both tetraploid and hexaploid wheat species due to preannealing of labeled DNA probes and prehybridization of chromosomal samples with blocking DNA. The method was applied to analyze intergenomic translocations 6A:6B and 1A:6B identified in the IG46147 and IG116188 samples of tetraploid wheat Triticum dicoccoides by C-banding. The structure of the rearranged chromosomes was defined for two translocation variants, and the breakpoints were identified on the chromosome arms. Possible application of the developed GISH variant to study genome reorganizations during speciation of allopolyploid plants in evolution is discussed.  相似文献   

4.
The A genome of the tetraploid wheats (AABB, 2n = 28) shows 5-6 bivalents in crosses with Triticum boeoticum (2n = 14) and various Aegilops diploids (2n = 14). The B genome has never been similarly identified with any species, and is commonly thought to have been modified at the tetraploid level. Triticum boeoticum was presumably accepted as the A-genome donor because of its morphological similarity to the wild tetraploids and because it was formerly the only known wild diploid wheat. The B donor has been thought to be Ae. speltoides or another species of the Sitopsis section of Aegilops, but these diploids show pairing affinity with A rather than B. More recently, another diploid wheat, T. urartu, was found to be sympatric with T. boeoticum throughout the natural range of the tetraploids. The synthetic boeoticum-urartu amphiploid was virtually identical morphologically with the wild tetraploid wheats, whereas various boeoticum-Sitopsis amphiploids were markedly different. But the urartu genome, like those of T. boeoticum and Sitopsis, paired with A and not with B. However, cytological evidence also shows (1) that the genomes of any plausible parental combination pair with one another, (2) that the A and B genomes of the tetraploid wheats pair with one another in the absence of the gene Ph, and (3) that homoeologous chromosomes of the tetraploids have differentiated further, presumably as a result of diploidization. Consequently, chromosome pairing at Meiosis I can be expected to give ambiguous evidence regarding the identity of the tetraploid genomes with their parental prototypes. A hypothesis regarding the expected pairing affinities between tetraploid homoeologues that have differentiated from closely related parental chromosomes is advanced to explain the anomalous pairing behavior of the A and B genomes. Triticum boeoticum and T. urartu are inferred to be the parents of the tetraploid wheats.  相似文献   

5.
The genus Silene is a good model for studying evolution of the sex chromosomes, since it includes species that are hermaphroditic and dioecious, while maintain a basic chromosome number of 2n = 24. For some combinations of Silene species it is possible to construct interspecific hybrids. Here, we present a detailed karyological analysis of a hybrid between the dioecious Silene latifolia as the maternal plant and a related species, hermaphroditic Silene viscosa, used as a pollen partner. Using genomic probes (the genomic in situ hybridization (GISH) technique), we were able to clearly discriminate parental genomes and to show that they are largely separated in distinct nuclear domains. Molecular GISH and fluorescence in situ hybridization (FISH) markers document that the hybrid genome of somatic cells was strictly additive and stable, and that it had 12 chromosomes originating from each parent, including the only X chromosome of S. latifolia. Meiotic analysis revealed that, although related, respective parental chromosomes did not pair or paired only partially, which resulted in frequent chromosome abnormalities such as bridges and irregular non-disjunctions. GISH and FISH markers clearly document that the larger genome of S. latifolia and its largest chromosome component, the X chromosome, were mostly employed in chromosome lagging and misdivision.  相似文献   

6.
Somatic hybrids between the wild incongruent species Solanum bulbocastanum (2n = 2x = 24) and S. tuberosum haploids (2n = 2x = 24) have been characterized for their nuclear and cytoplasmic genome composition. Cytologic observations revealed the recovery of 8 (near-)tetraploid and 3 hexaploid somatic hybrids. Multicolor genomic in situ hybridization (GISH) analysis was carried out to study the genomic dosage of the parental species in 5 somatic hybrids with different ploidy. The GISH procedure used was effective in discriminating parental genomes in the hybrids; most chromosomes were unambiguously colored. Two (near-)tetraploid somatic hybrids showed the expected 2:2 cultivated-to-wild genomic dosage; 2 hexaploids revealed a 4:2 cultivated-to-wild genomic dosage, and 1 hexaploid had a 2:4 cultivated-to-wild genomic dosage. Characterization of hybrid cytoplasmic genomes was performed using gene-specific primers that detected polymorphisms between the fusion parents in the intergenic regions. The analysis showed that most of the somatic hybrids inherited the plastidial and mitochondrial DNA of the cultivated parent. A few hybrids, with a rearranged mitochondrial genome (showing fragments derived from both parents), were also identified. These results confirmed the potential of somatic hybridization in producing new variability for genetic studies and breeding.  相似文献   

7.
The chromosomal locations of the 18S-26S (45S) and 5S rDNA loci in cytotypes AA, BB, and AABB ofScilla scilloides Complex from Korea were physically mapped using multicolor fluorescencein situ hybridization (McFISH). Genomicin situ hybridization (GISH) was also performed to distinguish between the AA and BB genomes in allotetraploid AABB plants. One 18S-26S rDNA locus was detected in both AA (a2) and BB (b1 ); one locus also was found in the allopolyploid AABB (b1 ). This demon-strated the loss of that locus in genome A. GISH with biotin-labeled DNA from the BB genome and digoxigenin-labeled 18S-26S rDNA probes revealed that the 18S-26S rDNA in AABB plants was localized in the nucleolus organizer region (NOR) of genome B. One and two 5S rDNA loci were found in diploids AA and BB, respectively. As expected, all three 5S rDNA loci were detected in the AABB plants. The sequence identities of the 5S rDNA genes among cytotypes AA and BB, AA and AABB, and BB and AABB were 99%, 95%, and 95%, respectively. These authors contributed equally to this paper  相似文献   

8.

Background and Aims

Edible bananas originated mainly from two wild species, Musa acuminata Colla (AA) and Musa balbisiana Colla (BB), and triploid cultivars with an AAA, AAB or ABB genome are the most widely used. In the present study, chromosome pairing affinities are investigated in a sterile AB Indian variety and in its fertile colchicine-induced allotetraploid (AABB) derivative to determine the inheritance pattern of the tetraploid genotype. The potential implications of interspecific recombination and chromosomal composition of diploid gametes for Musa improvement are presented.

Methods

The pairing of different chromosome sets at diploid and tetraploid levels was investigated through a combination of conventional cytogenetic and genomic in-situ hybridization (GISH) analyses of meiotic chromosomes, leading to a likelihood model of the pairing behaviour. GISH analysis of mitotic chromosomes was also conducted to reveal the chromosome constitution of hybrids derived from crosses involving the allotetraploid genotype.

Key Results

Analysis of chromosome associations at both ploidy levels suggested that the newly formed allotetraploid behaves as a ‘segmental allotetraploid’ with three chromosome sets in a tetrasomic pattern, three sets in a likely disomic pattern and the five remaining sets in an intermediate pattern. Balanced and unbalanced diploid gametes were detected in progenies, with the chromosome constitution appearing to be more homogenous in pollen than in ovules.

Conclusions

Colchicine-induced allotetraploids in Musa provide access to the genetic background of natural AB varieties. The segmental inheritance pattern exhibited by the AABB allotetraploid genotype implies chromosome exchanges between M. acuminata and M. balbisiana species and opens new horizons for reciprocal transfer of valuable alleles.  相似文献   

9.
T Gavrilenko  J Larkka  E Pehu  V M Rokka 《Génome》2002,45(2):442-449
GISH (genomic in situ hybridization) was applied for the analysis of mitotic chromosome constitutions of somatic hybrids and their derivatives between dihaploid clones of cultivated potato (Solanum tuberosum L.) (2n = 2x = 24, AA genome) and the diploid, non-tuberous, wild species Solanum brevidens Phil. (2n = 2x = 24, EE genome). Of the primary somatic hybrids, both tetraploid (2n = 4x) and hexaploid (2n = 6x) plants were found with the genomic constitutions of AAEE and AAEEEE, respectively. Androgenic haploids (somatohaploids) derived from the tetraploid somatic hybrids had the genomic constitutions of AE (2n = 2x = 24) and haploids originating from the hexaploid hybrids were triploid AEE (2n = 3x = 33 and 2n = 3x = 36). As a result of subsequent somatic hybridization from a fusion between dihaploid S. tuberosum (2n = 2x = 24, genome AA) and a triploid somatohaploid (2n = 3x = 33, genome AEE), second-generation somatic hybrids were obtained. These somatic hybrids were pentaploids (2n = 5x, genome AAAEE), but had variable chromosome numbers. GISH analysis revealed that both primary and second-generation somatic hybrids had lost more chromosomes of S. brevidens than of S. tuberosum.  相似文献   

10.
Species boundaries were assessed by phenetic analyses of morphological data for all species of wild potatoes (SOLANUM: section PETOTA:) assigned to ser. LONGIPEDICELLATA: S. fendleri, S. hjertingii, S. matehualae, S. papita, S. polytrichon, and S. stoloniferum. These six tetraploid species grow in the southeastern United States (S. fendleri) and Mexico (all six species). We also analyzed morphologically similar species in ser. DEMISSA: (S. demissum) and ser. TUBEROSA: (S. avilesii, S. gourlayi, S. verrucosum). We chose S. verrucosum and S. demissum as Mexican representatives, and S. avilesii and S. gourlayi as South American representatives of other series that are difficult to distinguish from ser. LONGIPEDICELLATA: We also analyzed morphologically more dissimilar species in ser. TUBEROSA: (S. berthaultii) and ser. YUNGASENSIA: (S. chacoense). The results support only three species in ser. LONGIPEDICELLATA: (1) S. polytrichon, (2) S. hjertingii + S. matehualae, (3) S. fendleri + S. papita + S. stoloniferum. Solanum avilesii, S. gourlayi, and to a lesser extent S. demissum and S. verrucosum are very similar to members of ser. LONGIPEDICELLATA: and are difficult to distinguish practically from them, despite differences in chromosome numbers and crossability relationships. These data help document and explain the extensive taxonomic difficulty in sect. Petota, highlight conflicts between biological and morphological species concepts, and add to a growing body of evidence that too many wild potato species are recognized.  相似文献   

11.
A physical map of the locations of the 5S rDNA genes and their relative positions with respect to 18S-5.8S-26S rDNA genes and a C genome specific repetitive DNA sequence was produced for the chromosomes of diploid, tetraploid, and hexaploid oat species using in situ hybridization. The A genome diploid species showed two pairs of rDNA loci and two pairs of 5S loci located on both arms of one pair of satellited chromosomes. The C genome diploid species showed two major pairs and one minor pair of rDNA loci. One pair of subtelocentric chromosomes carried rDNA and 5S loci physically separated on the long arm. The tetraploid species (AACC genomes) arising from these diploid ancestors showed two pairs of rDNA loci and three pairs of 5S loci. Two pairs of rDNA loci and 2 pairs of 5S loci were arranged as in the A genome diploid species. The third pair of 5S loci was located on one pair of A-C translocated chromosomes using simultaneous in situ hybridization with 5S rDNA genes and a C genome specific repetitive DNA sequence. The hexaploid species (AACCDD genomes) showed three pairs of rDNA loci and six pairs of 5S loci. One pair of 5S loci was located on each of two pairs of C-A/D translocated chromosomes. Comparative studies of the physical arrangement of rDNA and 5S loci in polyploid oats and the putative A and C genome progenitor species suggests that A genome diploid species could be the donor of both A and D genomes of polyploid oats. Key words : oats, 5S rDNA genes, 18S-5.8S-26S rDNA genes, C genome specific repetitive DNA sequence, in situ hybridization, genome evolution.  相似文献   

12.
Chromosome identification using fluorescence in situ hybridization (FISH) is widely used in cytogenetic research. It is a diagnostic tool helpful in chromosome identification. It can also be used to characterize alien introgressions, when exercised in a combination with genomic in situ hybridization (GISH). This work aims to find chromosome identification of Aegilops species and Aegilops × Secale amphiploids, which can be used in cereal breeding as a source of favourable agronomic traits. Four diploid and two tetraploid Aegilops species and three Aegilops × Secale hybrids were analysed using FISH with pSc119.2, pAs1, 5S rDNA and 25S rDNA clones to differentiate the U-, M-, Ssh- and D-subgenome chromosomes of Aegilops genus. Additionally, GISH for chromosome categorization was carried out. Differences in the hybridization patterns allowed to identify all U-, M-, Ssh- and D-subgenome chromosomes. Some differences in localization of the rDNA, pSc119.2 and pAs1 sequences between analogue subgenomes in diploid and tetraploid species and Aegilops × Secale hybrids were detected. The hybridization pattern of the M and S genome was more variable than that of the U and D genome. An importance of the cytogenetic markers in plant breeding and their possible role in chromosome structure, function and evolution is discussed.  相似文献   

13.
Arachis hypogaea is a natural, well-established allotetraploid (AABB) with 2n = 40. However, researchers disagree on the diploid genome donor species and on whether peanut originated by a single or multiple events of polyploidization. Here we provide evidence on the genetic origin of peanut and on the involved wild relatives using double GISH (genomic in situ hybridization). Seven wild diploid species (2n = 20), harboring either the A or B genome, were tested. Of all genomic DNA probe combinations assayed, A. duranensis (A genome) and A. ipaensis (B genome) appeared to be the best candidates for the genome donors because they yielded the most intense and uniform hybridization pattern when tested against the corresponding chromosome subsets of A. hypogaea. A similar GISH pattern was observed for all varieties of the cultigen and also for A. monticola. These results suggest that all presently known subspecies and varieties of A. hypogaea have arisen from a unique allotetraploid plant population, or alternatively, from different allotetraploid populations that originated from the same two diploid species. Furthermore, the bulk of the data demonstrated a close genomic relationship between both tetraploids and strongly supports the hypothesis that A. monticola is the immediate wild antecessor of A. hypogaea.  相似文献   

14.
The genome constitution of Icelandic Elymus caninus, E. alaskanus, and Elytrigia repens was examined by fluorescence in situ hybridization using genomic DNA and selected cloned sequences as probes. Genomic in situ hybridization (GISH) of Hordeum brachyantherum ssp. californicum (diploid, H genome) probe confirmed the presence of an H genome in the two tetraploid Elymus species and identified its presence in the hexaploid Elytrigia repens. The H chromosomes were painted uniformly except for some chromosomes of Elytrigia repens which showed extended unlabelled pericentromeric and subterminal regions. A mixture of genomic DNA from H. marinum ssp. marinum (diploid, Xa genome) and H. murinum ssp. leporinum (tetraploid, Xu genome) did not hybridize to chromosomes of the Elymus species or Elytrigia repens, confirming that these genomes were different from the H genome. The St genomic probe from Pseudoroegneria spicata (diploid) did not discriminate between the genomes of the Elymus species, whereas it produced dispersed and spotty hybridization signals most likely on the two St genomes of Elytrigia repens. Chromosomes of the two genera Elymus and Elytrigia showed different patterns of hybridization with clones pTa71 and pAes41, while clones pTa1 and pSc119.2 hybridized only to Elytrigia chromosomes. Based on FISH with these genomic and cloned probes, the two Elymus species are genomically similar, but they are evidently different from Elytrigia repens. Therefore the genomes of Icelandic Elymus caninus and E. alaskanus remain as StH, whereas the genomes of Elytrigia repens are proposed as XXH.  相似文献   

15.
Physical mapping of rDNA loci in Brassica species.   总被引:8,自引:0,他引:8  
The number of major rDNA loci (the genes coding for 18S-5.8S-26S rRNA) was investigated in the economically important Brassica species and their wild relatives by in situ hybridization of an rDNA probe to metaphase chromosomes and interphase nuclei. The diploid species B. nigra (B genome) has two major pairs of rDNA loci, B. oleracea (C genome) has two major pairs and one minor pair of loci, while B. campestris (A genome) has five pairs of loci. Among the three tetraploid species arising from these three diploid ancestors, B. carinata (BBCC genomes) has four loci, B. juncea (AABB genomes) has five major pairs and one minor pair of loci, and B. napus (AACC genomes) has six pairs of loci, indicating that the number of loci has been reduced during evolution. The complexity of the known rDNA restriction fragment length polymorphism patterns gave little indication of number of rDNA loci. It is probable that chromosome rearrangements have occurred during evolution of the amphidiploid species. The data will be useful for physical mapping of genes relative to rDNA loci, micro- and macro-evolutionary studies and analysis of aneuploids including addition and substitution lines used in Brassica breeding programs.  相似文献   

16.
Howell EC  Kearsey MJ  Jones GH  King GJ  Armstrong SJ 《Genetics》2008,180(4):1849-1857
The two genomes (A and C) of the allopolyploid Brassica napus have been clearly distinguished using genomic in situ hybridization (GISH) despite the fact that the two extant diploids, B. rapa (A, n = 10) and B. oleracea (C, n = 9), representing the progenitor genomes, are closely related. Using DNA from B. oleracea as the probe, with B. rapa DNA and the intergenic spacer of the B. oleracea 45S rDNA as the block, hybridization occurred on 9 of the 19 chromosome pairs along the majority of their length. The pattern of hybridization confirms that the two genomes have remained distinct in B. napus line DH12075, with no significant genome homogenization and no large-scale translocations between the genomes. Fluorescence in situ hybridization (FISH)-with 45S rDNA and a BAC that hybridizes to the pericentromeric heterochromatin of several chromosomes-followed by GISH allowed identification of six chromosomes and also three chromosome groups. Our procedure was used on the B. napus cultivar Westar, which has an interstitial reciprocal translocation. Two translocated segments were detected in pollen mother cells at the pachytene stage of meiosis. Using B. oleracea chromosome-specific BACs as FISH probes followed by GISH, the chromosomes involved were confirmed to be A7 and C6.  相似文献   

17.
Fluorescence in situ hybridization (FISH) was used to study the presence of alien chromatin in interspecific hybrids and one introgressed line (S.288) derived from crosses between the cultivated species Coffea arabica and the diploid relatives C. canephora and C. liberica. In situ hybridization using genomic DNA from C. canephora and C. arabica as probes showed elevated cross hybridization along the hybrid genome, confirming the weak differentiation between parental genomes. According to our genomic in situ hybridization (GISH) data, the observed genomic resemblance between the modern C. canephora genome (C) and the C. canephora-derived subgenome of C. arabica (Ca) appears rather considerable. Poor discrimination between C and Ca chromosomes supports the idea of low structural modifications of both genomes since the C. arabica speciation, at least in the frequency and distribution of repetitive sequences. GISH was also used to identify alien chromatin segments on chromosome spreads of a C. liberica-introgressed line of C. arabica. Further, use of GISH together with BAC-FISH analysis gave us additional valuable information about the physical localization of the C. liberica fragments carrying the SH3 factor involved in resistance to the coffee leaf rust. Overall, our results illustrate that FISH analysis is a complementary tool for molecular cytogenetic studies in coffee, providing rapid localization of either specific chromosomes or alien chromatin in introgressed genotypes derived from diploid species displaying substantial genomic differentiation from C. arabica.  相似文献   

18.
In this study, the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA in the tetraploid wheats, Triticum turgidum (AABB) and Triticum timopheevii (AAGG), their possible diploid donors, i.e., Triticum monococcum (AA), Triticum urartu (AA), and five species in Aegilops sect. Sitopsis (SS genome), and a related species Aegilops tauschii were cloned and sequenced. ITS1 and ITS2 regions of 24 clones from the above species were compared. Phylogenetic analysis demonstrated that Aegilops speltoides was distinct from other species in Aegilops sect. Sitopsis and was the most-likely donor of the B and G genomes to tetraploid wheats. Two types of ITS repeats were cloned from Triticum turgidum ssp. dicoccoides, one markedly similar to that from T. monococcum ssp. boeoticum (AA), and the other to that from Ae. speltoides (SS). The former might have resulted from a recent integression event. The results also indicated that T. turgidum and T. timopheevii might have simultaneously originated from a common ancestral tetraploid species or be derived from two hybridization events but within a very short interval time. ITS paralogues in tetraploid wheats have not been uniformly homogenized by concerted evolution, and high heterogeneity has been found among repeats within individuals of tetraploid wheats. In some tetraploid wheats, the observed heterogeneity originated from the same genome (B or G). Three kinds of ITS repeats from the G genome of an individual of T. timopheevii ssp. araraticum were more divergent than that from inter-specific taxa. This study also demonstrated that hybridization and polyploidization might accelerate the evolution rate of ITS repeats in tetraploid wheats.  相似文献   

19.
Genomic in situ hybridization (GISH) methods were used to detect different genome components within Brassica amphidiploid species and to identify donor chromatin in hybrids between Brassica napus and Raphanus sativus. In Brassica juncea and Brassica carinata the respective diploid donor genomes could be reliably distinguished by GISH, as could all R-genome chromosomes in the intergeneric hybrids. The A- and C-genome components in B. napus could not be clearly distinguished from one another using GISH, confirming the considerable homoeology between these genomes. GISH methods will be extremely beneficial for monitoring chromatin transfer and introgression in interspecific Brassica hybrids. Received: 20 May 1997 / Accepted: 28 July 1997  相似文献   

20.
重复DNA沿染色体的分布是认识植物基因组的组织和进化的要素之一。本研究采用一种改良的基因组原位杂交程序,对基因组大小和重复DNA数量不同的6种植物进行了自身基因组原位杂交(self-genomic in situ hybridization,self-GISH)。在所有供试物种的染色体都观察到荧光标记探针DNA的不均匀分布。杂交信号图型在物种间有明显的差异,并与基因组的大小相关。小基因组拟南芥的染色体几乎只有近着丝粒区和核仁组织区被标记。基因组相对较小的水稻、高粱、甘蓝的杂交信号分散分布在染色体的全长,但在近着丝粒区或近端区以及某些异染色质臂的分布明显占优势。大基因组的玉米和大麦的所有染色体都被密集地标记,并在染色体全长显示出强标记区与弱标记或不标记区的交替排列。此外,甘蓝染色体的所有近着丝粒区和核仁组织区、大麦染色体的所有近着丝粒区和某些臂中间区还显示了增强的信号带。大麦增强的信号带带型与其N-带带型一致。水稻自身基因组原位杂交图型与水稻Cot-1DNA在水稻染色体上的荧光原位杂交图型基本一致。研究结果表明,自身基因组原位杂交信号实际上反映了基因组重复DNA序列对染色体的杂交,因而自身基因组原位杂交技术是显示植物基因组中重复DNA聚集区在染色体上的分布以及与重复DNA相关联的染色质分化的有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号