首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Differential recruitment of expiratory muscles during opossum development   总被引:2,自引:0,他引:2  
Relationships between time-averaged electromyogram (EMG) discharge in abdominal (ABD) and lateralintercostal (IC) muscles (interspaces 1-10) were evaluated when Inactin-anesthetized supine opossums between 20 and 100 days of age were challenged by positive-pressure breathing (PPB) (3, 6, and 8 cmH2O). Expiratory activity upon initiation of PPB was observed in ABD muscles after the 30th postnatal day; recruitment of IC muscles requires further maturation. For example, at a PPB level of 6 cmH2O, animals up to 50-55 days of age recruited IC muscles from the lowest three interspaces on 44% of the occasions where ABD muscles were activated; in older animals the incidence of IC recruitment increased to 87%. Additionally, the occurrence of IC relative to ABD recruitment increased with increasing levels of PPB; IC muscles of highest interspaces (1-3) were activated less often at all pressures. At the onset of PPB, ABD muscles were usually recruited before IC muscles; this effect was more prominent in the younger animals. During the 5th min of PPB, ABD muscles were recruited earlier in expiration than IC muscles in the majority of animals at all ages. Since IC and ABD motor groups are activated from similar levels of the spinal cord, the delayed maturation of IC muscle responses to PPB may reflect developmental processes involving reflexes from the chest or abdomen, and/or may be a function of nonrespiratory utilization (i.e., postural) of ABD and IC muscles.  相似文献   

2.
The purpose of this study was to determine the extent to which alpha(2)-adrenoceptor (alpha(2)-AR) pathways affect the central motor output to upper airway muscles that regulate airflow. Electromyogram (EMG) measurements were made from posterior cricoarytenoid (PCA), cricothyroid (CT), thyroarytenoid (TA), and middle (MPC) and inferior (IPC) pharyngeal constrictor muscles in awake standing goats. Systemic administration of the alpha(2)-AR agonist clonidine induced a highly dysrhythmic pattern of ventilation in all animals that was characterized by alternating episodes of tachypnea and slow irregular breathing patterns, including prolonged and variable expiratory time intervals. Periods of apnea were commonly observed. Dysrhythmic ventilatory patterns induced by clonidine were associated with differential recruitment of upper airway muscles. alpha(2)-AR stimulation preferentially decreased the activity of the PCA, CT, and IPC muscles while increasing TA and MPC EMG activities. Clonidine-induced apneas were associated with continuous tonic activation of laryngeal (TA) and pharyngeal (MPC) adductors, leading to airway closure and arterial oxygen desaturation. Tonic activation of the TA and MPC muscles was interrupted only during the first inspiratory efforts after central apnea. Laryngeal abductor, diaphragm, and transversus abdominis EMG activities were completely silenced during apneic events. Ventilatory and EMG effects were reversed by selective alpha(2)-AR blockade with SKF-86466. The results demonstrate that alpha(2)-AR pathways are important modulators of central respiratory motor outputs to the upper airway muscles.  相似文献   

3.
Although pharyngeal muscles respond robustly to increasing PCO(2) during wakefulness, the effect of hypercapnia on upper airway muscle activation during sleep has not been carefully assessed. This may be important, because it has been hypothesized that CO(2)-driven muscle activation may importantly stabilize the upper airway during stages 3 and 4 sleep. To test this hypothesis, we measured ventilation, airway resistance, genioglossus (GG) and tensor palatini (TP) electromyogram (EMG), plus end-tidal PCO(2) (PET(CO(2))) in 18 subjects during wakefulness, stage 2, and slow-wave sleep (SWS). Responses of ventilation and muscle EMG to administered CO(2) (PET(CO(2)) = 6 Torr above the eupneic level) were also assessed during SWS (n = 9) or stage 2 sleep (n = 7). PET(CO(2)) increased spontaneously by 0.8 +/- 0.1 Torr from stage 2 to SWS (from 43.3 +/- 0.6 to 44.1 +/- 0.5 Torr, P < 0.05), with no significant change in GG or TP EMG. Despite a significant increase in minute ventilation with induced hypercapnia (from 8.3 +/- 0.1 to 11.9 +/- 0.3 l/min in stage 2 and 8.6 +/- 0.4 to 12.7 +/- 0.4 l/min in SWS, P < 0.05 for both), there was no significant change in the GG or TP EMG. These data indicate that supraphysiological levels of PET(CO(2)) (50.4 +/- 1.6 Torr in stage 2, and 50.4 +/- 0.9 Torr in SWS) are not a major independent stimulus to pharyngeal dilator muscle activation during either SWS or stage 2 sleep. Thus hypercapnia-induced pharyngeal dilator muscle activation alone is unlikely to explain the paucity of sleep-disordered breathing events during SWS.  相似文献   

4.
The effects of stimulation of pulmonary C-fiber receptors on the distribution of motor activity to upper airway, rib cage, and abdominal muscles were studied in anesthetized, tracheotomized, spontaneously breathing dogs. Stimulation of pulmonary C-fiber receptors by injection of capsaicin (3-20 micrograms/kg) into the right atrium resulted in complete cessation of electrical activity of the upper airway dilating muscles (UADM) and the inspiratory chest wall pumping muscles. The activity of abdominal muscles was also inhibited. The duration of electrical silence was longer for the diaphragm than for the UADM. Upper airway constricting muscles and expiratory intercostal muscles, including the triangularis sterni, remained tonically active during the apneic period. The responses of these muscles were qualitatively the same when the animals breathed 100% O2, 7% CO2 in O2, or 12% O2 in N2, and without or in the presence of an expiratory threshold load. Bilateral vagotomy abolished the inhibitory effects of capsaicin on UADM, chest wall, and abdominal muscle activity, suggesting that the vagus is the major afferent pathway for the reflex. The qualitative difference in the response of intercostal expiratory muscles and abdominal muscles suggests that these two groups of synergistic muscles may be independently regulated.  相似文献   

5.
The present study was conducted to determine the pattern of activation of the anterolateral abdominal muscles during the cough reflex. Electromyograms (EMGs) of the rectus abdominis, external oblique, internal oblique, transversus abdominis, and parasternal muscles were recorded along with gastric pressure in anesthetized cats. Cough was produced by mechanical stimulation of the lumen of the intrathoracic trachea or larynx. The pattern of EMG activation of these muscles during cough was compared with that during graded expiratory threshold loading (ETL; 1-30 cmH(2)O). ETL elicited differential recruitment of abdominal muscle EMG activity (transversus abdominis > internal oblique > rectus abdominis congruent with external oblique). In contrast, both laryngeal and tracheobronchial cough resulted in simultaneous activation of all four anterolateral abdominal muscles with peak EMG amplitudes 3- to 10-fold greater than those observed during the largest ETL. Gastric pressures during laryngeal and tracheobronchial cough were at least eightfold greater than those produced by the largest ETL. These results suggest that, unlike their behavior during expiratory loading, the anterolateral abdominal muscles act as a unit during cough.  相似文献   

6.
Human upper airway dilator muscles are clearly influenced by chemical stimuli such as hypoxia and hypercapnia. Whether in humans there are upper airway receptors capable of modifying the activity of such muscles is unclear. We studied alae nasi electromyography (EMG) in normal men in an attempt to determine 1) whether increasing negative intraluminal pressure influences the activity of the alae nasi muscle, 2) whether nasal airway feedback mechanisms modify the activity of this muscle, and 3) if so, whether these receptor mechanisms are responding to mucosal temperature/pressure changes or to airway deformation. Alae nasi EMG was recorded in 10 normal men under the following conditions: 1) nasal breathing (all potential nasal receptors exposed), 2) oral breathing (nasal receptors not exposed), 3) nasal breathing with splints (airway deformation prevented), and 4) nasal breathing after nasal anesthesia (mucosal receptors anesthetized). In addition, in a separate group, the combined effects of anesthesia and nasal splints were assessed. Under each condition, EMG activity was monitored during basal breathing, progressive hypercapnia, and inspiratory resistive loading. Under all four conditions, both load and hypercapnia produced a significant increase in alae nasi EMG, with hypercapnia producing a similar increment in EMG regardless of nasal receptor exposure. On the other hand, loading produced greater increments in EMG during nasal than during oral breathing, with combined anesthesia plus splinting producing a load response similar to that observed during oral respiration. These observations suggest that nasal airway receptors have little effect on the alae nasi response to hypercapnia but appear to mediate the alae nasi response to loading or negative airway pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The neonatal ventilatory response to hypoxia is characterized by initial transient stimulation and subsequent respiratory depression. It is unknown, however, whether this response is also exhibited by the upper airway muscles that regulate nasal, laryngeal, and pharyngeal patency. We therefore compared electromyogram (EMG) amplitudes and minute EMGs for the diaphragm (DIA), alae nasi (AN), posterior cricoarytenoid (PCA), and genioglossus (GG) muscles in 12 anesthetized spontaneously breathing piglets during inhalation of 12% O2 over 10 min. Minute EMG for the DIA responded to hypoxia with an initial transient increase and subsequent return to prehypoxia levels by 10 min. Hypoxia also stimulated all three upper airway muscles. In contrast to the DIA EMG, however, AN, PCA, and GG EMGs all remained significantly above prehypoxia levels after 10 min of hypoxia. We have thus demonstrated that the initial stimulation and subsequent depression of the DIA EMG after 12% O2 inhalation contrast with the sustained increase in AN, PCA, and GG EMGs during hypoxia. We speculate that 1) central inhibition during neonatal hypoxia is primarily distributed to the motoneuron pools regulating DIA activation and 2) peripheral chemoreceptor stimulation and/or central disinhibition induced by hypoxia preferentially influence those motoneuron pools that regulate upper airway muscle activation, causing the different hypoxic responses of these muscle groups in the young piglet.  相似文献   

8.
A cardiorespiratory model incorporating control of the human upper airway during sleep is described. Most previous models have not considered the possibility that the upper airway could be a limiting factor for gas exchange. Our model was developed to also predict certain pathophysiological phenomena in the cardiorespiratory system that characterize heavy snoring or sleep apnea. We started by adapting our collapsible upper airway model to include the impact of nasal passage and larynx, and extended the model with equations for gas exchange in the lungs. A feedback loop both to the respiratory pump and the upper airway dilator muscles was included. The model enabled successful breath-by-breath simulations of obstructive events of the upper airway. Although the model incorporates several physiologically relevant components of the system, the simulation results suggest that only few parameters suffice to predict the key adjustments that the cardiorespiratory system is known to make in patients with heavy snoring.  相似文献   

9.
Breathing is a complex act requiring the coordinated activity of multiple groups of muscles. Thoracic and abdominal respiratory muscles expand and contract the lungs, whereas pharyngeal and laryngeal respiratory muscles maintain upper airway patency and regulate upper airway resistance. An appreciation of the importance of the latter muscle group in maintaining ventilatory homeostasis and in the pathophysiology of sleep apnea has led to extensive studies examining the neural regulation of pharyngeal dilator muscles. The present review examines the role of heterogeneity in motoneuron and muscle properties in determining the diversity in the electrical and mechanical behaviors of thoracic compared with pharyngeal muscle groups. Specifically, phrenic and hypoglossal motoneuron electrophysiological properties influence whether and the extent to which these neurons will fire in response to a given synaptic input arising from chemo- and mechanoreceptors and from respiratory and nonrespiratory pattern generators. Furthermore, thoracic and pharyngeal muscle properties determine the mechanical response to motoneuronal activity, including the speed of contraction, relationships between motoneuron firing frequency and force production, and whether force is maintained during repetitive activation. Heterogeneity in the functional capabilities of these motoneurons and muscles is in turn determined by diversity of their structural and biochemical properties. Thus, intrinsic properties of respiratory motoneurons and muscles act in concert with neuronal drives in defining the complex electrical and mechanical behavior of pharyngeal and thoracic respiratory motor systems.  相似文献   

10.
An imbalance in the amplitude of electrical activity of the upper airway and chest wall inspiratory muscles is associated with both collapse and reopening of the upper airway in obstructive sleep apnea (OSA). The purpose of this study was to examine whether timing of the phasic activity of these inspiratory muscles also was associated with changes in upper airway caliber in OSA. We hypothesized that activation of upper airway muscle phasic electrical activity before activation of the chest wall pump muscles would help preserve upper airway patency. In contrast, we anticipated that the reversal of this pattern with delayed activation of upper airway inspiratory muscles would be associated with upper airway narrowing or collapse. Therefore the timing and amplitude of midline transmandibular and costal margin moving time average (MTA) electromyogram (EMG) signals were analyzed from 58 apnea cycles in stage 2 sleep in six OSA patients. In 86% of the postapnea breaths analyzed the upper airway MTA peak activity preceded the chest wall peak activity. In 86% of the obstructed respiratory efforts the upper airway MTA peak activity followed the chest wall peak activity. The onset of phasic electrical activity followed this same pattern. During inspiratory efforts when phasic inspiratory EMG amplitude did not change from preapnea to apnea, the timing changes noted above occurred. Even within breaths the relative timing of the upper airway and chest wall electrical activities was closely associated with changes in the pressure-flow relationship. We conclude that the relative timing of inspiratory activity of the upper airway and chest wall inspiratory muscles fluctuates during sleep in OSA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The neural control of the accessory respiratory muscles regulating upper airway patency is poorly understood. This is particularly true with regard to the declines in electromyographic (EMG) activity of upper airway muscles during sleep. To specify the cellular mechanisms causing decreased upper airway muscle tone during sleep, we used an established pharmacological model of rapid eye movement (REM) sleep. With this model, a REM sleep-like state was reliably produced by microinjecting the cholinergic agonist carbachol directly into the pontine reticular formation of the cat. EMG recording were taken from the posterior cricoarytenoid (PCA) muscles of the larynx during wakefulness and the carbachol-induced, REM sleep-like state. This experimental model had not been previously used to study the neuropharmacological control of the upper airway. The results revealed a dose-dependent decrease in PCA muscle tone caused by pontine microinjections of carbachol. To investigate the cholinergic specificity of these effects, the muscarinic cholinergic antagonist pirenzepine was centrally administered before carbachol. Pirenzepine pretreatment effectively blocked the carbachol-induced, REM sleep-like state and attendant changes in muscle tone. These results specify for the first time that muscarinic cholinergic mechanisms within the pontine reticular formation can causally mediate state-dependent hypotonia in accessory respiratory muscles of the upper airway.  相似文献   

12.
Hypoxia can depress ventilation, respiratory load sensation, and the cough reflex, and potentially other protective respiratory reflexes such as respiratory muscle responses to increased respiratory load. In sleep-disordered breathing, increased respiratory load and hypoxia frequently coexist. This study aimed to examine the effects of hypoxia on the reflex responses of 1) the genioglossus (the largest upper airway dilator muscle) and 2) the scalene muscle (an obligatory inspiratory muscle) to negative-pressure pulse stimuli during wakefulness and sleep. We hypothesized that hypoxia would impair these reflex responses. Fourteen healthy men, 19-42 yr old, were studied on two separate occasions, approximately 1 wk apart. Bipolar fine-wire electrodes were inserted orally into the genioglossus muscle, and surface electrodes were placed overlying the left scalene muscle to record EMG activity. In random order, participants were exposed to mild overnight hypoxia (arterial oxygen saturation approximately 85%) or medical air. Respiratory muscle reflex responses were elicited via negative-pressure pulse stimuli (approximately -10 cmH(2)O at the mask, 250-ms duration) delivered in early inspiration during wakefulness and sleep. Negative-pressure pulse stimuli resulted in a short-latency activation followed by a suppression of the genioglossus EMG that did not alter with hypoxia. Conversely, the predominant response of the scalene EMG to negative-pressure pulse stimuli was suppression followed by activation with more pronounced suppression during hypoxia compared with normoxia (mean +/- SE suppression duration 64 +/- 6 vs. 38 +/- 6 ms, P = 0.006). These results indicate differential sensitivity to the depressive effects of hypoxia in the reflex responsiveness to sudden respiratory loads to breathing between these two respiratory muscles.  相似文献   

13.
Alae nasi electromyographic activity and timing in obstructive sleep apnea   总被引:1,自引:0,他引:1  
The alae nasi is an accessible dilator muscle of the upper airway located in the nose. We measured electromyograms (EMG) of the alae nasi to determine the relationship between their activity and timing to contraction of the rib cage muscles and diaphragm during obstructive apnea in nine patients. Alae nasi EMG were measured with surface electrodes and processed to obtain a moving time average. Contraction of the rib cage and diaphragm during apneas was detected with esophageal pressure. During non-rapid-eye-movement (NREM) sleep, there was a significant correlation in each patient between alae nasi EMG activity and the change in esophageal pressure. During rapid-eye-movement (REM) sleep, correlations were significantly lower than during NREM sleep. As the duration of each apnea increased, the activation of alae nasi EMG occurred progressively earlier than the change in esophageal pressure. We conclude that during obstructive apneas in NREM sleep, activity of the alae nasi increases when diaphragm and rib cage muscle force increases and the activation occurs earlier as each apneic episode progresses.  相似文献   

14.
Although deficits in the activation of abdominal muscles are present in people with low back pain (LBP), this can be modified with motor training. Training of deep abdominal muscles in isolation from the other trunk muscles, as an initial phase of training, has been shown to improve the timing of activation of the trained muscles, and reduce symptoms and recurrence of LBP. The aim of this study was to determine if training of the trunk muscles in a non-isolated manner can restore motor control of these muscles in people with LBP. Ten subjects with non-specific LBP performed a single session of training that involved three tasks: “abdominal curl up”, “side bridge” and “birdog”. Electromyographic activity (EMG) of trunk and deltoid muscles was recorded with fine-wire and surface electrodes during rapid arm movements and walking, before and immediately following the intervention. Onset of trunk muscle EMG relative to that of the prime mover (deltoid) during arm movements and the mean, standard deviation (SD) and coefficient of variation of abdominal muscle EMG during walking were calculated. There was no significant change in the times of onset of trunk muscle EMG during arm movements nor was there any change in the variability of EMG of the abdominal muscles during walking. However, the mean amplitude and SD of abdominal EMG was reduced during walking after training. The results of this study suggest that unlike isolated voluntary training, co-contraction training of the trunk muscles does not restore the motor control of the deep abdominal muscles in people with LBP after a single session of training.  相似文献   

15.
We investigated the mechanisms of airway protection and bolus transport during retching and vomiting by recording responses of the pharyngeal, laryngeal, and hyoid muscles and comparing them with responses during swallowing and responses of the gastrointestinal tract. Five dogs were chronically instrumented with electrodes on the striated muscles and strain gauges on smooth muscles. Retching and vomiting were stimulated by apomorphine (5-10 ug/kg iv). During retching, the hyoid and thyroid descending and laryngeal abductor muscles were activated; between retches, the hyoid, thyroid, and pharyngeal elevating, and laryngeal adductor muscles were activated. Vomiting always occurred during the ascending phase of retching and consisted of three sequential phases of hyoid and pharyngeal muscle activation culminating in simultaneous activation of all recorded elevating and descending laryngeal, hyoid, and pharyngeal muscles. Retrograde activation of esophagus and pharyngeal muscles occurred during the later phases, and laryngeal adductor was maximally activated in all phases of the vomit. During swallowing, the laryngeal adductor activation was followed immediately by brief activation of the laryngeal abductor. We concluded that retching functions to mix gastric contents with refluxed intestinal secretions and to impart an orad momentum to the bolus before vomiting. During retches, the airway is protected by glottal closure, and between retches, it is protected by ascent of the larynx and closure of the upper esophageal sphincter. The airway is protected by maximum glottal closure during vomiting. During swallowing, the airway is protected by laryngeal elevation and glottal closure followed by brief opening of the glottis, which may release subglottal pressure expelling material from the laryngeal vestibule.  相似文献   

16.
Here we review the influence of bronchopulmonary receptors (slowly and rapidly adapting pulmonary stretch receptors, and pulmonary/bronchial C-fiber receptors) on respiratory-related motor output to upper airway muscles acting on the larynx, tongue, and hyoid arch. Review of the literature shows that all muscles in all three regions are profoundly inhibited by lung inflation, which excites slowly adapting pulmonary stretch receptors. This widespread coactivation includes the recruitment of muscles that have opposing mechanical actions, suggesting that the stiffness of upper airway muscles is highly regulated. A profound lack of information on the modulation of upper airway muscles by rapidly adapting receptors and bronchopulmonary C-fiber receptors prohibits formulation of a conclusive opinion as to their actions and underscores an urgent need for new studies in this area. The preponderance of the data support the view that discharge arising in slowly adapting pulmonary stretch receptors plays an important role in the initiation of the widespread and highly coordinated recruitment of laryngeal, tongue, and hyoid muscles during airway obstruction.  相似文献   

17.
Effect of upper airway pressure changes on thoracic inspiratory muscles has been shown to depend on the time of application during the breathing cycle. The present study was designed to investigate the importance of the time of application of upper airway negative pressure pulses on upper airway muscles. The upper airway was functionally isolated into a closed system in 24 anesthetized spontaneously breathing rabbits. Negative pressure pulses were applied in early (within the first 200 ms) and late (greater than or equal to 200 ms) inspiration, while electromyograms (EMG) of the diaphragm (Dia), genioglossus (GG), alae nasi (AN), and/or posterior cricoarytenoid (PCA) muscles were simultaneously monitored. When negative pressure pulse was applied in early inspiration, the increase in GG activity was greater [0.49 +/- 0.37 to 4.24 +/- 3.71 arbitrary units (AU)] than when negative pressure was applied in late inspiration (0.44 +/- 0.29 to 2.64 +/- 3.05 AU). Similarly, increased activation of AN (2.63 +/- 1.01 to 4.26 +/- 1.69 AU) and PCA (3.46 +/- 1.16 to 6.18 +/- 2.93 AU) was also observed with early inspiratory application of negative pressure pulses; minimal effects were seen in these muscles with late application. An inhibitory effect on respiratory timing consisting of a prolongation in inspiration (TI) and a decrease in peak Dia EMG/TI was observed as previously reported. These results indicate that the time of application of negative pressure during the breathing cycle is an important variable in determining the magnitude of the response of upper airway muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
To assess the effect of diaphragmatic ischemia on the inspiratory motor drive, we studied the in situ isolated and innervated left diaphragm in anesthetized, vagotomized, and mechanically ventilated dogs. The arterial and venous vessels of the left diaphragm were catheterized and isolated from the systemic circulation. Inspiratory muscle activation was assessed by recording the integrated electromyographic (EMG) activity of the left and right costal diaphragms and parasternal intercostal and alae nasi muscles. Tension generated by the left diaphragm during spontaneous breathing attempts was also measured. In eight animals, left diaphragmatic ischemia was induced by occluding the phrenic artery for 20 min, followed by 10 min of reperfusion. This elicited a progressive increase in EMG activity of the left and right diaphragms and parasternal and alae nasi muscles to 170, 157, 152, and 128% of baseline values, respectively, an increase in the frequency of breathing efforts, and no change in left diaphragmatic spontaneous tension. Thus the ratio of left diaphragmatic EMG to tension rose progressively during ischemia. During reperfusion, only the frequency of breathing efforts and alae nasi EMG recovered completely. In four additional animals, left diaphragmatic ischemia was induced after the left phrenic nerve was sectioned. Neither EMG activity of inspiratory muscles nor respiratory timing changed significantly during ischemia. In conclusion, diaphragmatic ischemia increases inspiratory motor drive through activation of phrenic afferents. The changes in alae nasi activity and respiratory timing indicate that this influence is achieved through supraspinal pathways.  相似文献   

19.
We reasoned that neural information from upper airway (UA) sensory receptors could influence the relationship between UA and diaphragmatic neuromuscular responses to hypercapnia. In this study, the electromyographic (EMG) activities of the alae nasi (AN), genioglossus (GG), and chest wall (CW) or diaphragm (Di) to ventilatory loading were assessed in six laryngectomized, tracheostomized human subjects and in six subjects breathing with an intact UA before and after topical UA anesthesia. The EMG activities of the UA and thoracic muscles increased at similar rates with increasing hypercapnia in normal subjects, in subjects whose upper airways were anesthetized, and in laryngectomized subjects breathing with a cervical tracheostomy. Furthermore, in the laryngectomized subjects, respiratory muscle EMG activation increased with resistive inspiratory loading (15 cmH2O X l-1 X s) applied at the level of a cervical tracheostomy. At an average expired CO2 fraction of 7.0%, resistive loading resulted in a 93 +/- 26.3% (SE) increase in peak AN EMG activity, a 39 +/- 2.0% increase in peak GG EMG activity, and a 43.2 +/- 16.5% increase in peak CW (Di) EMG activity compared with control values. We conclude that the ventilatory responses of the UA and thoracic muscles to ventilatory loading are not substantially influenced by laryngectomy or UA anesthesia.  相似文献   

20.
Obstructive sleep apnea (OSA) is more common in men than in women for reasons that are not clearly understood. An underlying difference between men and women in the respiratory-related neural control of upper airway dilator muscles has been suggested as a possible reason for the gender difference. We have compared three aspects of upper airway dilator muscle function in healthy men and women: 1) resting inspiratory genioglossus electromyogram (EMGgg) activity, 2) the respiratory EMGgg "afterdischarge" after a brief hypoxic stimulus, and 3) the relationship between the EMGgg and pharyngeal airway pressure. Inspired minute ventilation (VI), epiglottic pressure (P(epi)), and EMGgg and diaphragm EMG (EMGdi) activity were measured in 24 subjects (12 men, 12 women in the luteal menstrual phase) and were compared between genders while lying supine awake. Every 7-8 min over 2 h, subjects were exposed to 45-s periods of isocapnic hypoxia (9% O(2) in N(2)) that were abruptly terminated with one breath of 100% O(2). The relationship between P(epi) and EMGgg activity was also compared between genders. The results of 117 trials with satisfactory end-tidal PCO(2) control and no sighs or swallows are reported. There was no gender difference in the resting level of peak inspiratory EMGgg [3.7 +/- 0.8 (women) vs. 3.2 +/- 0.6% maximal activity (men)]. Repeated-measures ANOVA showed no gender or gender-by-time interaction effect between men and women in VI or EMGgg or EMGdi activity during or after the hypoxic stimulus. The relationship between P(epi) and EMGgg was not different between men (slope -0.63 +/- 0.20) and women (slope -0.69 +/- 0.33). These results do not support the hypothesis that the higher prevalence of OSA in men is related to an underlying gender difference in respiratory neural control of upper airway dilator muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号