首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a model that provides a unified framework for studying Ca2+ sparks and Ca2+ waves in cardiac cells. The model is novel in combining 1) use of large currents (approximately 20 pA) through the Ca2+ release units (CRUs) of the sarcoplasmic reticulum (SR); 2) stochastic Ca2+ release (or firing) of CRUs; 3) discrete, asymmetric distribution of CRUs along the longitudinal (separation distance of 2 microm) and transverse (separated by 0.4-0.8 microm) directions of the cell; and 4) anisotropic diffusion of Ca2+ and fluorescent indicator to study the evolution of Ca2+ waves from Ca2+ sparks. The model mimics the important features of Ca2+ sparks and Ca2+ waves in terms of the spontaneous spark rate, the Ca2+ wave velocity, and the pattern of wave propagation. Importantly, these features are reproduced when using experimentally measured values for the CRU Ca2+ sensitivity (approximately 15 microM). Stochastic control of CRU firing is important because it imposes constraints on the Ca2+ sensitivity of the CRU. Even with moderate (approximately 5 microM) Ca2+ sensitivity the very high spontaneous spark rate triggers numerous Ca2+ waves. In contrast, a single Ca2+ wave with arbitrarily large velocity can exist in a deterministic model when the CRU Ca2+ sensitivity is sufficiently high. The combination of low CRU Ca2+ sensitivity (approximately 15 microM), high cytosolic Ca2+ buffering capacity, and the spatial separation of CRUs help control the inherent instability of SR Ca2+ release. This allows Ca2+ waves to form and propagate given a sufficiently large initiation region, but prevents a single spark or a small group of sparks from triggering a wave.  相似文献   

2.
Ca2+ sparks of membrane-permeabilized rat muscle cells were analyzed to derive properties of their sources. Most events identified in longitudinal confocal line scans looked like sparks, but 23% (1,000 out of 4,300) were followed by long-lasting embers. Some were preceded by embers, and 48 were "lone embers." Average spatial width was approximately 2 microm in the rat and 1.5 microm in frog events in analogous solutions. Amplitudes were 33% smaller and rise times 50% greater in the rat. Differences were highly significant. The greater spatial width was not a consequence of greater open time of the rat source, and was greatest at the shortest rise times, suggesting a wider Ca2+ source. In the rat, but not the frog, spark width was greater in scans transversal to the fiber axis. These features suggested that rat spark sources were elongated transversally. Ca2+ release was calculated in averages of sparks with long embers. Release current during the averaged ember started at 3 or 7 pA (depending on assumptions), whereas in lone embers it was 0.7 or 1.3 pA, which suggests that embers that trail sparks start with five open channels. Analysis of a spark with leading ember yielded a current ratio ranging from 37 to 160 in spark and ember, as if 37-160 channels opened in the spark. In simulations, 25-60 pA of Ca2+ current exiting a point source was required to reproduce frog sparks. 130 pA, exiting a cylindric source of 3 microm, qualitatively reproduced rat sparks. In conclusion, sparks of rat muscle require a greater current than frog sparks, exiting a source elongated transversally to the fiber axis, constituted by 35-260 channels. Not infrequently, a few of those remain open and produce the trailing ember.  相似文献   

3.
sparks and waves play important roles in calcium release and calcium propagation during the excitation-contraction (EC) coupling process in cardiac myocytes. Although the classical Fick’s law is widely used to model sparks and waves in cardiac myocytes, it fails to reasonably explain the full-width at half maximum(FWHM) paradox. However, the anomalous subdiffusion model successfully reproduces sparks of experimental results. In this paper, in the light of anomalous subdiffusion of sparks, we develop a mathematical model of calcium wave in cardiac myocytes by using stochastic release of release units (CRUs). Our model successfully reproduces calcium waves with physiological parameters. The results reveal how concentration waves propagate from an initial firing of one CRU at a corner or in the middle of considered region, answer how large in magnitude of an anomalous spark can induce a wave. With physiological currents (2pA) through CRUs, it is shown that an initial firing of four adjacent CRUs can form a wave. Furthermore, the phenomenon of calcium waves collision is also investigated.  相似文献   

4.
The properties of Ca(2+) sparks in frog intact skeletal muscle fibers depolarized with 13 mM [K(+)] Ringer's are well described by a computational model with a Ca(2+) source flux of amplitude 2.5 pA (units of current) and duration 4.6 ms (18 degrees C; Model 2 of Baylor et al., 2002). This result, in combination with the values of single-channel Ca(2+) current reported for ryanodine receptors (RyRs) in bilayers under physiological ion conditions, 0.5 pA (Kettlun et al., 2003) to 2 pA (Tinker et al., 1993), suggests that 1-5 RyR Ca(2+) release channels open during a voltage-activated Ca(2+) spark in an intact fiber. To distinguish between one and greater than one channel per spark, sparks were measured in 8 mM [K(+)] Ringer's in the absence and presence of tetracaine, an inhibitor of RyR channel openings in bilayers. The most prominent effect of 75-100 microM tetracaine was an approximately sixfold reduction in spark frequency. The remaining sparks showed significant reductions in the mean values of peak amplitude, decay time constant, full duration at half maximum (FDHM), full width at half maximum (FWHM), and mass, but not in the mean value of rise time. Spark properties in tetracaine were simulated with an updated spark model that differed in minor ways from our previous model. The simulations show that (a) the properties of sparks in tetracaine are those expected if tetracaine reduces the number of active RyR Ca(2+) channels per spark, and (b) the single-channel Ca(2+) current of an RyR channel is 相似文献   

5.
Cardiomyocytes from terminally failing hearts display significant abnormalities in e-c-coupling, contractility and intracellular Ca(2+) handling. This study is the first to demonstrate the influence of end-stage heart failure on specific properties of Ca(2+) sparks in human ventricular cardiomyocytes. We investigated the frequency and characteristics of spontaneously arising Ca(2+) sparks in single isolated human myocytes from terminally failing (HF) and non-failing (NF) control myocardium by using the Ca(2+) indicator Fluo-3. The Ca(2+) sparks were recorded by line-scan images along the longitudinal axis of the myocytes at a frequency of 250Hz. After loading the sarcoplasmic reticulum (SR) with Ca(2+) by repetitive field stimulation (10 pulses at 1Hz) the frequency of the Ca(2+) sparks immediately after stimulation (t = 0s) was reduced significantly in HF compared to NF (4.15 +/- 0.42 for NF vs. 2.81 +/- 0.20 for HF sparks s(-1), P = 0.05). This difference was present constantly in line-scan recordings up to 15s duration (t = 15s: 2.75 +/- 0.65 for NF vs. 1.36 +/- 0.34 for HF sparks s(-1), P = 0.05). The relative amplitude (F/F(0)) of Ca(2+) sparks was also significantly lower in HF cardiomyocytes (1.33 +/- 0.015 NF vs. 1.19 +/- 0.003 HF, t = 0s) and during subsequent recordings of 15s. Significant differences between HF and NF were also present in calculations of specific spark properties. The time to peak was estimated at 25.75 +/-0.88ms in HF and 18.68 +/- 0.45ms in NF cardiomyocytes (P = 0.05). Half-time of decay was 66.48 +/- 1.89ms (HF) vs. 44.15 +/- 1.65ms (NF, P < 0.05), and the full width at half-maximum (FWHM) was 3.99 +/- 0.06 microm (HF) vs. 3.5 +/- 0.07 microm (NF, P < 0.05). These data support the hypothesis that even in the absence of cardiac disease, Ca(2+) sparks from human cardiomyocytes differ from previous results of animal studies with respect to the time-to-peak, half-time of decay and FWHM. The role of elevated external Ca(2+) in HF was studied by recording Ca(2+) sparks in HF cardiomyocytes with 10mmol external Ca(2+) concentration. Under these conditions, the average spark amplitude was increased from 1.19 +/- 0.003 (F/F(0), 2mmol Ca(2+)) to 1.26 +/- 0.01 (F/F(0), 10mmol Ca(2+)). We conclude that human heart failure causes distinct changes in Ca(2+) spark frequency and characteristics comparable to results established in animal models of heart failure. A reduced Ca(2+) load of the SR alone is unlikely to account for the observed differences between HF and NF and additional alterations in intracellular Ca(2+) release mechanisms must be postulated.  相似文献   

6.
Ryanodine receptor (RyR) channels from mammalian cardiac and amphibian skeletal muscle were incorporated into planar lipid bilayers. Unitary Ca2+ currents in the SR lumen-to-cytosol direction were recorded at 0 mV in the presence of caffeine (to minimize gating fluctuations). Currents measured with 20 mM lumenal Ca2+ as exclusive charge carrier were 4.00 and 4.07 pA, respectively, and not significantly different. Currents recorded at 1-30 mM lumenal Ca2+ concentrations were attenuated by physiological [K+] (150 mM) and [Mg2+] (1 mM), in the same proportion (approximately 55%) in mammalian and amphibian channels. Two amplitudes, differing by approximately 35%, were found in amphibian channel studies, probably corresponding to alpha and beta RyR isoforms. In physiological [Mg2+], [K+], and lumenal [Ca2+] (1 mM), the Ca2+ current was just less than 0.5 pA. Comparison of this value with the Ca2+ flux underlying Ca2+ sparks suggests that sparks in mammalian cardiac and amphibian skeletal muscles are generated by opening of multiple RyR channels. Further, symmetric high concentrations of Mg2+ substantially reduced the current carried by 10 mM Ca2+ (approximately 40% at 10 mM Mg2+), suggesting that high Mg2+ may make sparks smaller by both inhibiting RyR gating and reducing unitary current.  相似文献   

7.
Ca(2+)-induced Ca(2+) release (CICR) is a ubiquitous mechanism by which Ca(2+) release from the endoplasmic reticulum amplifies the trigger Ca(2+) entry and generates propagating Ca(2+) waves. To elucidate the mechanisms that control this positive feedback, we investigated the spatial and temporal kinetics and measured the gain function of CICR in small sensory neurons from mammalian dorsal root ganglions (DRGs). We found that subsurface Ca(2+) release units (CRUs) are under tight local control by Ca(2+) entry, whereas medullar CRUs as a "common pool" system are recruited by inwardly propagating CICR. Active CRUs often displayed repetitive Ca(2+) sparks, conferring the ability to encode a "memory" of neuronal activity well beyond the duration of an action potential. Store Ca(2+) reserve was able to support all CRUs each to fire approximately 15 sparks, excluding use-dependent inactivation or store depletion as the major CICR termination mechanism. Importantly, CICR in DRG neurons operated in a low gain, linear regime (gain = 0.54), which conferred intrinsic stability to CICR. Combined with high Ca(2+) current density (-156 pA/pF at -10 mV), such a low gain CICR system generated large intracellular Ca(2+) transients without jeopardizing the stability. These findings provide the first demonstration that CICR operating in a low gain regime can be harnessed to provide a robust and graded amplification of Ca(2+) signal in the absence of counteracting inhibitory mechanism.  相似文献   

8.
In smooth muscle cells, localized intracellular Ca2+ transients, termed "Ca2+ sparks," activate several large-conductance Ca2+-activated K+ (KCa) channels, resulting in a transient KCa current. In some smooth muscle cell types, a significant proportion of Ca2+ sparks do not activate KCa channels. The goal of this study was to explore mechanisms that underlie fractional Ca2+ spark-KCa channel coupling. We investigated whether membrane depolarization or ryanodine-sensitive Ca2+ release (RyR) channel activation modulates coupling in newborn (1- to 3-day-old) porcine cerebral artery myocytes. At steady membrane potentials of -40, 0, and +40 mV, mean transient KCa current frequency was approximately 0.18, 0.43, and 0.26 Hz and KCa channel activity [number of KCa channels activated by Ca2+ sparksxopen probability of KCa channels at peak of Ca2+ sparks (NPo)] at the transient KCa current peak was approximately 4, 12, and 24, respectively. Depolarization between -40 and +40 mV increased KCa channel sensitivity to Ca2+ sparks and elevated the percentage of Ca2+ sparks that activated a transient KCa current from 59 to 86%. In a Ca2+-free bath solution or in diltiazem, a voltage-dependent Ca2+ channel blocker, steady membrane depolarization between -40 and +40 mV increased transient KCa current frequency up to approximately 1.6-fold. In contrast, caffeine (10 microM), an RyR channel activator, increased mean transient KCa current frequency but did not alter Ca2+ spark-KCa channel coupling. These data indicate that coupling is increased by mechanisms that elevate KCa channel sensitivity to Ca2+ sparks, but not by RyR channel activation. Overall, KCa channel insensitivity to Ca2+ sparks is a prominent factor underlying fractional Ca2+ spark uncoupling in newborn cerebral artery myocytes.  相似文献   

9.
Ca2+ sparks are miniature Ca2+ release events from the sarcoplasmic reticulum of muscle cells. We examined the kinetics of Ca2+ sparks in excitation-contraction uncoupled myotubes from mouse embryos lacking the beta1 subunit and mdg embryos lacking the alpha1S subunit of the dihydropyridine receptor. Ca2+ sparks occurred spontaneously without a preferential location in the myotube. Ca2+ sparks had a broad distribution of spatial and temporal dimensions with means much larger than those reported in adult muscle. In normal myotubes (n = 248 sparks), the peak fluorescence ratio, DeltaF/Fo, was 1.6 +/- 0.6 (mean +/- SD), the full spatial width at half-maximal fluorescence (FWHM) was 3.6 +/- 1.1 micrometer and the full duration of individual sparks, Deltat, was 145 +/- 64 ms. In beta-null myotubes (n = 284 sparks), DeltaF/Fo = 1.9 +/- 0.4, FWHM = 5.1 +/- 1.5 micrometer, and Deltat = 168 +/- 43 ms. In mdg myotubes (n = 426 sparks), DeltaF/Fo = 1 +/- 0.5, the FWHM = 2.5 +/- 1.1 micrometer, and Deltat = 97 +/- 50 ms. Thus, Ca2+ sparks in mdg myotubes were significantly dimmer, smaller, and briefer than Ca2+ sparks in normal or beta-deficient myotubes. In all cell types, the frequency of sparks, DeltaF/Fo, and FWHM were gradually decreased by tetracaine and increased by caffeine. Both results confirmed that Ca2+ sparks of resting embryonic muscle originated from spontaneous openings of ryanodine receptor channels. We conclude that dihydropyridine receptor alpha1S and beta1 subunits participate in the control of Ca2+ sparks in embryonic skeletal muscle. However, excitation-contraction coupling is not essential for Ca2+ spark formation in these cells.  相似文献   

10.
Calcium sparks were studied in frog intact skeletal muscle fibers using a home-built confocal scanner whose point-spread function was estimated to be approximately 0.21 microm in x and y and approximately 0.51 microm in z. Observations were made at 17-20 degrees C on fibers from Rana pipiens and Rana temporaria. Fibers were studied in two external solutions: normal Ringer's ([K(+)] = 2.5 mM; estimated membrane potential, -80 to -90 mV) and elevated [K(+)] Ringer's (most frequently, [K(+)] = 13 mM; estimated membrane potential, -60 to -65 mV). The frequency of sparks was 0.04-0.05 sarcomere(-1) s(-1) in normal Ringer's; the frequency increased approximately tenfold in 13 mM [K(+)] Ringer's. Spark properties in each solution were similar for the two species; they were also similar when scanned in the x and the y directions. From fits of standard functional forms to the temporal and spatial profiles of the sparks, the following mean values were estimated for the morphological parameters: rise time, approximately 4 ms; peak amplitude, approximately 1 DeltaF/F (change in fluorescence divided by resting fluorescence); decay time constant, approximately 5 ms; full duration at half maximum (FDHM), approximately 6 ms; late offset, approximately 0.01 DeltaF/F; full width at half maximum (FWHM), approximately 1.0 microm; mass (calculated as amplitude x 1.206 x FWHM(3)), 1.3-1.9 microm(3). Although the rise time is similar to that measured previously in frog cut fibers (5-6 ms; 17-23 degrees C), cut fiber sparks have a longer duration (FDHM, 9-15 ms), a wider extent (FWHM, 1.3-2.3 microm), and a strikingly larger mass (by 3-10-fold). Possible explanations for the increase in mass in cut fibers are a reduction in the Ca(2+) buffering power of myoplasm in cut fibers and an increase in the flux of Ca(2+) during release.  相似文献   

11.
Ca(2+) sparks are highly localized, transient releases of Ca(2+) from sarcoplasmic reticulum through ryanodine receptors (RyRs). In smooth muscle, Ca(2+) sparks trigger spontaneous transient outward currents (STOCs) by opening nearby clusters of large-conductance Ca(2+)-activated K(+) channels, and also gate Ca(2+)-activated Cl(-) (Cl((Ca))) channels to induce spontaneous transient inward currents (STICs). While the molecular mechanisms underlying the activation of STOCs by Ca(2+) sparks is well understood, little information is available on how Ca(2+) sparks activate STICs. In the present study, we investigated the spatial organization of RyRs and Cl((Ca)) channels in spark sites in airway myocytes from mouse. Ca(2+) sparks and STICs were simultaneously recorded, respectively, with high-speed, widefield digital microscopy and whole-cell patch-clamp. An image-based approach was applied to measure the Ca(2+) current underlying a Ca(2+) spark (I(Ca(spark))), with an appropriate correction for endogenous fixed Ca(2+) buffer, which was characterized by flash photolysis of NPEGTA. We found that I(Ca(spark)) rises to a peak in 9 ms and decays with a single exponential with a time constant of 12 ms, suggesting that Ca(2+) sparks result from the nonsimultaneous opening and closure of multiple RyRs. The onset of the STIC lags the onset of the I(Ca(spark)) by less than 3 ms, and its rising phase matches the duration of the I(Ca(spark)). We further determined that Cl((Ca)) channels on average are exposed to a [Ca(2+)] of 2.4 microM or greater during Ca(2+) sparks. The area of the plasma membrane reaching this level is <600 nm in radius, as revealed by the spatiotemporal profile of [Ca(2+)] produced by a reaction-diffusion simulation with measured I(Ca(spark)). Finally we estimated that the number of Cl((Ca)) channels localized in Ca(2+) spark sites could account for all the Cl((Ca)) channels in the entire cell. Taken together these results lead us to propose a model in which RyRs and Cl((Ca)) channels in Ca(2+) spark sites localize near to each other, and, moreover, Cl((Ca)) channels concentrate in an area with a radius of approximately 600 nm, where their density reaches as high as 300 channels/microm(2). This model reveals that Cl((Ca)) channels are tightly controlled by Ca(2+) sparks via local Ca(2+) signaling.  相似文献   

12.
Large-conductance Ca(2+)-dependent K(+) (BK(Ca)) channels play a critical role in regulating urinary bladder smooth muscle (UBSM) excitability and contractility. Measurements of BK(Ca) currents and intracellular Ca(2+) revealed that BK(Ca) currents are activated by Ca(2+) release events (Ca(2+) sparks) from ryanodine receptors (RyRs) in the sarcoplasmic reticulum. The goals of this project were to characterize Ca(2+) sparks and BK(Ca) currents and to determine the voltage dependence of the coupling of RyRs (Ca(2+) sparks) to BK(Ca) channels in UBSM. Ca(2+) sparks in UBSM had properties similar to those described in arterial smooth muscle. Most Ca(2+) sparks caused BK(Ca) currents at all voltages tested, consistent with the BK(Ca) channels sensing approximately 10 microM Ca(2+). Membrane potential depolarization from -50 to -20 mV increased Ca(2+) spark and BK(Ca) current frequency threefold. However, membrane depolarization over this range had a differential effect on spark and current amplitude, with Ca(2+) spark amplitude increasing by only 30% and BK(Ca) current amplitude increasing 16-fold. A major component of the amplitude modulation of spark-activated BK(Ca) current was quantitatively explained by the known voltage dependence of the Ca(2+) sensitivity of BK(Ca) channels. We, therefore, propose that membrane potential, or any other agent that modulates the Ca(2+) sensitivity of BK(Ca) channels, profoundly alters the coupling strength of Ca(2+) sparks to BK(Ca) channels.  相似文献   

13.
Calcium (Ca) sparks are elementary events of biological Ca signaling. A normal Ca spark has a brief duration in the range of 10 to 100 ms, but long-lasting sparks with durations of several hundred milliseconds to seconds are also widely observed. Experiments have shown that the transition from normal to long-lasting sparks can occur when ryanodine receptor (RyR) open probability is either increased or decreased. Here, we demonstrate theoretically and computationally that long-lasting sparks emerge as a collective dynamical behavior of the network of diffusively coupled Ca release units (CRUs). We show that normal sparks occur when the CRU network is monostable and excitable, while long-lasting sparks occur when the network dynamics possesses multiple metastable attractors, each attractor corresponding to a different spatial firing pattern of sparks. We further highlight the mechanisms and conditions that produce long-lasting sparks, demonstrating the existence of an optimal range of RyR open probability favoring long-lasting sparks. We find that when CRU firings are sparse and sarcoplasmic reticulum (SR) Ca load is high, increasing RyR open probability promotes long-lasting sparks by potentiating Ca-induced Ca release (CICR). In contrast, when CICR is already strong enough to produce frequent firings, decreasing RyR open probability counter-intuitively promotes long-lasting sparks by decreasing spark frequency. The decrease in spark frequency promotes intra-SR Ca diffusion from neighboring non-firing CRUs to the firing CRUs, which helps to maintain the local SR Ca concentration of the firing CRUs above a critical level to sustain firing. In this setting, decreasing RyR open probability further suppresses long-lasting sparks by weakening CICR. Since a long-lasting spark terminates via the Kramers’ escape process over a potential barrier, its duration exhibits an exponential distribution determined by the barrier height and noise strength, which is modulated differently by different ways of altering the Ca release flux strength.  相似文献   

14.
An algorithm for the calculation of Ca2+ release flux underlying Ca2+ sparks (Blatter, L.A., J. Hüser, and E. Ríos. 1997. Proc. Natl. Acad. Sci. USA. 94:4176-4181) was modified and applied to sparks obtained by confocal microscopy in single frog skeletal muscle fibers, which were voltage clamped in a two-Vaseline gap chamber or permeabilized and immersed in fluo-3-containing internal solution. The performance of the algorithm was characterized on sparks obtained by simulation of fluorescence due to release of Ca2+ from a spherical source, in a homogeneous three-dimensional space that contained components representing cytoplasmic molecules and Ca2+ removal processes. Total release current, as well as source diameter and noise level, was varied in the simulations. Derived release flux or current, calculated by volume integration of the derived flux density, estimated quite closely the current used in the simulation, while full width at half magnitude of the derived release flux was a good monitor of source size only at diameters >0. 7 micrometers. On an average of 157 sparks of amplitude >2 U resting fluorescence, located automatically in a representative voltage clamp experiment, the algorithm reported a release current of 16.9 pA, coming from a source of 0.5 micrometer, with an open time of 6.3 ms. Fewer sparks were obtained in permeabilized fibers, so that the algorithm had to be applied to individual sparks or averages of few events, which degraded its performance in comparable tests. The average current reported for 19 large sparks obtained in permeabilized fibers was 14.4 pA. A minimum estimate, derived from the rate of change of dye-bound Ca2+ concentration, was 8 pA. Such a current would require simultaneous opening of between 8 and 60 release channels with unitary Ca2+ currents of the level recorded in bilayer experiments. Real sparks differ from simulated ones mainly in having greater width. Correspondingly, the algorithm reported greater spatial extent of the source for real sparks. This may again indicate a multichannel origin of sparks, or could reflect limitations in spatial resolution.  相似文献   

15.
The relationship between Ca2+ release (“Ca2+ sparks”) through ryanodine-sensitive Ca2+ release channels in the sarcoplasmic reticulum and KCa channels was examined in smooth muscle cells from rat cerebral arteries. Whole cell potassium currents at physiological membrane potentials (−40 mV) and intracellular Ca2+ were measured simultaneously, using the perforated patch clamp technique and a laser two-dimensional (x–y) scanning confocal microscope and the fluorescent Ca2+ indicator, fluo-3. Virtually all (96%) detectable Ca2+ sparks were associated with the activation of a spontaneous transient outward current (STOC) through KCa channels. A small number of sparks (5 of 128) were associated with currents smaller than 6 pA (mean amplitude, 4.7 pA, at −40 mV). Approximately 41% of STOCs occurred without a detectable Ca2+ spark. The amplitudes of the Ca2+ sparks correlated with the amplitudes of the STOCs (regression coefficient 0.8; P < 0.05). The half time of decay of Ca2+ sparks (56 ms) was longer than the associated STOCs (9 ms). The mean amplitude of the STOCs, which were associated with Ca2+ sparks, was 33 pA at −40 mV. The mean amplitude of the “sparkless” STOCs was smaller, 16 pA. The very significant increase in KCa channel open probability (>104-fold) during a Ca2+ spark is consistent with local Ca2+ during a spark being in the order of 1–100 μM. Therefore, the increase in fractional fluorescence (F/Fo) measured during a Ca2+ spark (mean 2.04 F/Fo or ∼310 nM Ca2+) appears to significantly underestimate the local Ca2+ that activates KCa channels. These results indicate that the majority of ryanodine receptors that cause Ca2+ sparks are functionally coupled to KCa channels in the surface membrane, providing direct support for the idea that Ca2+ sparks cause STOCs.  相似文献   

16.
Ca2+ sparks are the elementary events of intracellular Ca2+ release from the sar-coplasmic reticulum in cardiac myocytes. In order to investigate whether spontaneous L-type Ca2+ channel activation contributes to the genesis of spontaneous Ca2+ sparks, we used confocal laser scanning microscopy and fluo-4 to visualize local Ca2+ sparks in intact rat ventricular myocytes. In the presence of 0.2 mmol/L CdCI2 which inhibits spontaneous L-type Ca2+ channel activation, the rate of occurrence of spontaneous Ca2+ sparks was halved from 4.20 to 2.04 events/(100 μm·s), with temporal and spatial properties of individual Ca2+ sparks unchanged. Analysis of the Cd2+-sensitive spark production revealed an open probability of-10-5 for L-type channels at the rest membrane potentials (-80 mV). Thus, infrequent and stochastic openings of sarcolemmal L-type Ca2+ channels in resting heart cells contribute significantly to the production of spontaneous Ca2+ sparks.  相似文献   

17.
Using a combination of experimental and numerical approaches, we have tested two different approaches to calculating the sarcoplasmic reticulum (SR) Ca2+ release flux, which gives rise to cardiac muscle Ca2+ sparks. By using two-photon excited spot photolysis of DM-Nitrophen, known Ca2+ release flux time courses were generated to provide the first experimental validation of spark flux reconstruction algorithms. These artificial Ca2+ sparks show that it is possible to calculate the SR Ca2+ release waveform with reasonable accuracy, provided the flux equations reasonably reflect the properties of the experimental system. Within cardiac muscle cells, we show that Ca2+ flux reconstruction is complicated by the substantial dye binding to proteins, a factor that has not been adequately addressed in previous flux reconstruction algorithms. Furthermore, our numerical experiments suggest that the calculated time course of release flux inactivation based on conventional flux reconstruction algorithms is likely to be in error. We therefore developed novel algorithms based on an explicit dye binding scheme. When these algorithm were applied to evoked Ca2+ sparks in rat cardiac ventricular myocytes, the reconstructed Ca2+ release waveform peaked in ~5 ms and decayed with a halftime of approximately 5 ms. The peak flux magnitude was 7-12 pA, suggesting that sparks must arise from clusters of >15 ryanodine receptors.  相似文献   

18.
The molecular determinants of a Ca(2+) spark, those events that determine the sudden opening and closing of a small number of ryanodine receptor (RyR) channels limiting Ca(2+) release to a few milliseconds, are unknown. As a first step we investigated which of two RyR isoforms present in mammalian embryonic skeletal muscle, RyR type 1(RyR-1) or RyR type 3 (RyR-3) has the ability to generate Ca(2+) sparks. Their separate contributions were investigated in intercostal muscle cells of RyR-1 null and RyR-3 null mouse embryos. A comparison of Ca(2+) spark parameters of RyR-1 null versus RyR-3 null cells measured at rest with fluo-3 showed that neither the peak fluorescence intensity (DeltaF/F(o) = 1.25 +/- 0.7 vs. 1.55 +/- 0.6), spatial width at half-max intensity (FWHM = 2.7 +/- 1.2 vs. 2.6 +/- 0.6 microm), nor the duration at half-max intensity (FTHM = 45 +/- 49 vs. 43 +/- 25 ms) was significantly different. Sensitivity to caffeine (0.1 mM) was remarkably different, with sparks in RyR-1 null myotubes becoming brighter and longer in duration, whereas those in RyR-3 null cells remained unchanged. Controls performed in double RyR-1/RyR-3 null cells obtained by mice breeding showed that sparks were not observed in the absence of both isoforms in >150 cells imaged. In conclusion, 1) RyR-1 and RyR-3 appear to be the only intracellular Ca(2+) channels that participate in Ca(2+) spark activity in embryonic skeletal muscle; 2) except in their responsiveness to caffeine, both isoforms have the ability to produce Ca(2+) sparks with nearly identical properties, so it is rather unlikely that a single RyR isoform, when others are also present, would be responsible for Ca(2+) sparks; and 3) because RyR-1 null cells are excitation-contraction (EC) uncoupled and RyR-3 null cells exhibit a normal phenotype, Ca(2+) sparks result from the inherent activity of small clusters of RyRs regardless of the participation of these RyRs in EC coupling.  相似文献   

19.
Parameters (amplitude, width, kinetics) of Ca(2+) sparks imaged confocally are affected by errors when the spark source is not in focus. To identify sparks that were in focus, we used fast scanning (LSM 5 LIVE; Carl Zeiss) combined with fast piezoelectric focusing to acquire x-y images in three planes at 1-μm separation (x-y-z-t mode). In 3,000 x-y scans in each of 34 membrane-permeabilized cat atrial cardiomyocytes, 6,906 sparks were detected. 767 sparks were in focus. They had greater amplitude, but their spatial width and rise time were similar compared with all sparks recorded. Their distribution of amplitudes had a mode at ΔF/F(0) = 0.7. The Ca(2+) release current underlying in-focus sparks was 11 pA, requiring 20 to 30 open channels, a number at the high end of earlier estimates. Spark frequency was greater than in earlier imaging studies of permeabilized ventricular cells, suggesting a greater susceptibility to excitation, which could have functional relevance for atrial cells. Ca(2+) release flux peaked earlier than the time of peak fluorescence and then decayed, consistent with significant sarcoplasmic reticulum (SR) depletion. The evolution of fluorescence and release flux were strikingly similar for in-focus sparks of different rise time (T). Spark termination involves both depletion of Ca(2+) in the SR and channel closure, which may be synchronized by depletion. The observation of similar flux in sparks of different T requires either that channel closure and other termination processes be independent of the determinants of flux (including [Ca(2+)](SR)) or that different channel clusters respond to [Ca(2+)](SR) with different sensitivity.  相似文献   

20.
The interpretation of confocal line-scan images of local [Ca2+]i transients (such as Ca2+ sparks in cardiac muscle) is complicated by uncertainties in the position of the origin of the Ca2+ spark (relative to the scan line) and by the dynamics of Ca(2+)-dye interactions. An investigation of the effects of these complications modeled the release, diffusion, binding, and uptake of Ca2+ in cardiac cells (producing a theoretical Ca2+ spark) and image formation in a confocal microscope (after measurement of its point-spread function) and simulated line-scan images of a theoretical Ca2+ spark (when it was viewed from all possible positions relative to the scan line). In line-scan images, Ca2+ sparks that arose in a different optical section or with the site of origin displaced laterally from the scan line appeared attenuated, whereas their rise times slowed down only slightly. These results indicate that even if all Ca2+ sparks are perfectly identical events, except for their site of origin, there will be an apparent variation in the amplitude and other characteristics of Ca2+ sparks as measured from confocal line-scan images. The frequency distributions of the kinetic parameters (i.e., peak amplitude, rise time, fall time) of Ca2+ sparks were calculated for repetitive registration of stereotyped Ca2+ sparks in two experimental situations: 1) random position of the scan line relative to possible SR Ca(2+)-release sites and 2) fixed position of the scan line going through a set of possible SR Ca(2+)-release sites. The effects of noise were incorporated into the model, and a visibility function was proposed to account for the subjective factors that may be involved in the evaluation of Ca(2+)-spark image parameters from noisy experimental recordings. The mean value of the resulting amplitude distributions underestimates the brightness of in-focus Ca2+ sparks because large numbers of out-of-focus Ca2+ sparks are detected (as small Ca2+ sparks). The distribution of peak amplitudes may split into more than one subpopulation even when one is viewing stereotyped Ca2+ sparks because of the discrete locations of possible SR Ca(2+)-release sites in mammalian ventricular heart cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号