首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Benzofuroxan (benzofurazan 1-oxide, benzo-2-oxa-1,3-diazole N-oxide) was evaluated as a specific chromophoric oxidizing agent for thiol groups. 2. Aliphatic thiol groups both in low-molecular-weight molecules and in the enzymes papain (EC 3.4.22.2), ficin (EC 3.4.22.3) and bromelain (EC 3.4.22.4) readily reduce benzofuroxan to o-benzoquinone dixime; potential competing reactions of amino groups are negligibly slow. 3. The fate of the thiol depends on its structure: a mechanism is proposed in which the thiol and benzofuroxan form an adduct which, if steric factors permit, reacts with another molecule of thiol to form a disulphide; when the thiol is located in the active site of a thiol proteinase and steric factors preclude enzyme dinner formation, the adduct reacts instead with water or HO- to form a sulphenic acid; attack on the sulphur atom of the adduct by either a sulphur or oxygen nucleophile releases o-benzoquinone dioxine. 4. Benzofuroxan contains n o proton-binding sites with pKa values in the range 3-10 and probably none in the range 0-14; o-benzoquinone dioxine undergoes a one-proton ionization with pKa=6.75.5. o-benzoquinone dioxime absorbs strongly at wavelengths greater than 410nm, where absorption by benzofuroxan, proteins and simple thiol compounds is negligible; 416 nm is an isosbestic point (epsilon 416 = 5110 litre. mol-1-cm-1); epsilon430=3740+[1460/(1+[H+]/Ka)] where pKa=6.75. 6. The possibility of acid-base catalysis of the oxidation by active-centre histidine residues of the thiol proteinases is discussed.  相似文献   

2.
1. The pH-dependences of the second-order rate constants (k) for the alkylation by chloroacetate of the active-centre thiol groups of papain (EC 3.4.22.2) and ficin (EC 3.4.22.3) were determined over a wide range of pH at 25 degrees C at I 0.1. 2. The main feature of both pH-k profiles is a striking rate maximum at pH6 (characterizing parameters in both cases pKI approx. 3.5, pKII approx. 8.4 and pH-independent rate constant approximately kXH 2.5-3.0 M-1 . s-1). 3. The profile for the ficin reaction contains a plateau at high pH, with approximately kX 0.10 M-1 . s-1; if an analogous plateau exists in the papain reaction, approximately kX ix much lower, less than 0.02 M-1 . s-1. 4. Both enzymes appear to contain closely similar thiolate-imidazolium interactive systems at pH6, but differences in their behaviour in more-acidic media and in alkaline media suggest differences in interaction with the postulated carboxylate component of the putative catalytic triad.  相似文献   

3.
1. 4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole (Nbd chloride) was used as a reactivity probe to characterize the active centres of papin (EC 3.4.22.2), ficin (EC 3.4.22.3) and bromelain (EC 3.4.22.4). 2. In the pH range 0-8 Nbd chloride probably exists mainly as a monocation, possibly with the proton located on N-1 of the oxadiazole ring. 3. Spectroscopic evidence is presented for the intermediacy of Meisenheimer-type adducts in the reaction of Nbd chloride with nucleophiles. 4. The pH-dependence of the second-order rate constants (k) of the reactions of the three enzymes with Nbd chloride was determined at 25 degrees C, I = 0.1 mol/litre in 6.7% (v/v) ethanol in the pH range 2.5-5, where, at least for papain and ficin, the reactions occur specifically with their active-centre thiol groups. The pH-k profile for the papain reaction is bell-shaped (pKaI = 3.24, pKaII = 3.44 and k = 86M(-1)-s(-1), whereas that for ficin is sigmoidal (pKa = 3.6, k = 0.36M(-1)-s(-1), the rate increasing with increasing pH. The profile for the bromelain reaction appears to resemble that for the ficin reaction, but is complicated by amino-group labelling. 5. The bell-shaped profile of the papain reaction is considered to arise from the reaction of the thiolate ion of cysteine-25, maintained in acidic media by interaction with the side chain of histidine-159, with the Nbd chloride monocation hydrogen-bonded at its nitro group to the un-ionized form of the carboxyl group of aspartic acid-158. The lack of acid catalysis in the corresponding reactions of ficin and probably of bromelain suggests that these enzymes may lack carboxyl groups conformationally equivalent to that of aspartic acid-158 of papain. The possible consequences of this for the catalytic sites of these enzymes is discussed.  相似文献   

4.
A series of alkyl aryl sulfates has been investigated as inhibitors of papain and ficin activity. The results show that the percentage of residual enzymatic activity depends on several factors, including the solvolytic reactivity of the alkylating agent. It is possible to correlate the reactivities of the sulfates with a selectivity parameter which is based on product ratio results. The resulting correlations indicate that the reactivity-selectivity principle is applicable to this system. It is shown, however, from the results of amino acid analyses that specific methylation of active-site cysteine or histidine residues is not effective with the enzymes in the native or denatured state. This phenomenon contrasts with reported work on methyl p-nitrobenzenesulfonate in which extensive methylation of papain in the denatured state was observed. The finding that the nonspecific methylation of the enzymes by the alkyl aryl sulfates leads to inhibition of enzymic activity is discussed in terms of conformational and other effects.  相似文献   

5.
The resonance Raman spectra of several enzyme-substrate intermediates of papain, chymopapain, ficin and bromelain are reported. The intermediates are dithioacyl enzymes formed during the catalyzed hydrolysis of N-acylglycine thionoester substrates. Interpretation of the resonance Raman spectra allows us to compare, for the first time, the substrate geometries in a series of functioning intermediates from different enzymes. The substrates assume essentially identical conformations for papain, chymopapain and ficin and a similar, but not identical, conformation in the active site of bromelain. Each dithioacyl enzyme population appears to be made up of a single homogeneous conformational state. This state has been characterised in earlier studies of dithioacyl papains. It is designated as conformer B and is characterized by an attractive contact between the substrate's glycinic N atom and the active site cysteine S atom. It is now apparent that conformer B is of general significance in the mechanism of cysteine proteases.  相似文献   

6.
The second-order rate constants (k) for the reactions of 2,2'-dipyridyl disulphide (pKa2,45) with 2-mercaptoethanol (pKa9.6) and with benzimidazol-2-ylmethanethiol (pKa values 5.6 and 8.3) were determined at 25 degrees C at I 0.1 by stopped-flow spectral analysis over a wide range of pH. These were used to calculate the pH-independent second-order rate constants (k) for the reactions of neutral 2,2'-dipyridyl disulphide and of its monocation with the 2-mercaptoethanol thiolate anion (associated pKa9.6) and with the benzimidazol-2-ylmethanethiol zwitterion (associated pKa5.6). For both thiolate ions, the rate-enhancement factor (kmonocation/kneutral disulphide) is about 1.5x10(3). The dependence on pH in acidic media of k for the reaction of 2,2'-dipyridyl disulphide with actinidin, the thiol proteinase from Actinidia chinensis, was shown to differ from the forms of pH-dependence observed for the analogous reactions with papain (EC 3.4.22.2) and ficin (3.4.22.3). The reactivity of the 2,2'-dipyridyl disulphide dication and its apparent sensitivity to the presence and location of a positive charge in the attacking thiol are discussed.  相似文献   

7.
1. Fully active ficin (EC 3.4.22.3) containing 1 mol of thiol with high reactivity towards 2,2'-dipyridyl disulphide (2-Py-S-S-2-Py) at pH4.5 per mol of protein was prepared from the dried latex of Ficus glabrata by covalent chromatography on a Sepharose-glutathione-2-pyridyl disulphide gel. 2. Ficin thus prepared is a mixture of ficins I-IV and ficin G, in which ficins II and III predominate. The various ficins exhibit similar reactivity characteristics towards 2-Py-S-S-2-Py. 3. Use of 2-Py-S-S-2-Py as a reactivity probe demonstrates (a) that in ficin, as in papain (EC 3.4.22.2), the active-centre thiol and imidazole groups interact to provide a nucleophilic state at pH values of approx. 6 additional to the uncomplicated thiolate ion that predominates at pH values over 9, and (b) a structural difference between ficin and papain that leads to a much higher rate of reaction of 2-Py-S-S-2-Py with ficin than with papain at pH values 3-4. This difference is suggested to include a lack in ficin of a carboxyl group conformationally equivalent to that of aspartic acid-158 in papain. 4. The high electrophilicity of the 2-Py-S-S-2PyH+ monocation allows directly the detection of the exposure of the buried thiol group of ficin at pH values below 4.  相似文献   

8.
9.
4-(N-Aminoethyl 4-pyridyl disulphide)-7-nitrobenzo-2-oxa-1,3-diazole was synthesized and evaluted as a two-protonic-state reactivity probe by kinetic study of its reactions with papain (EC 3.4.22.2) and with benzimidazol-2-ylmethanethiol. Evidence is presented to suggest that: (i) both this probe molecule and its 2-pyridyl isomer bind to papain; (ii) the binding is followed by a change in the environment of the thiol group of cysteine-25; (iii) the striking rate maximum in neutral media observed in the reaction of papain with the 2-pyridyl isomer but not with the 4-pyridyl isomer arises from association of the 2-pyridyl leaving group with the imidazolium ion of histidine-159.  相似文献   

10.
11.
12.
Thiol oxidation by hypochlorous acid and chloramines is a favorable reaction and may be responsible for alterations in regulatory or signaling pathways in cells exposed to neutrophil oxidants. In order to establish the mechanism for such changes, it is necessary to appreciate whether these oxidants are selective for different thiols as compared with other scavengers. We have measured rate constants for reactions of amino acid chloramines with a range of thiols, methionine, and ascorbate, using a combination of stopped-flow and competitive kinetics. For HOCl, rate constants are too fast to measure directly by our system and values relative to reduced glutathione were determined by competition with methionine. For taurine chloramine, the rate constants for reaction with 5-thio-2-nitrobenzoic acid, GSH, methionine, and ascorbate at pH 7.4 were 970, 115, 39, and 13 M(-1) s(-1), respectively. Values for 10 thiols varied by a factor of 20 and showed an inverse relationship to the pK(a) of the thiol group. Rate constants for chloramines of glycine and N-alpha-acetyl-lysine also showed these relationships. Rates increased with decreasing pH, suggesting a mechanism involving acid catalysis. For hypochlorous acid, rates of reaction with 5-thio-2-nitrobenzoic acid, GSH, cysteine, and most of the other thiols were very similar. Relative reactivities varied by less than 5 and there was no dependence on thiol pK(a). Chloramines have the potential to be selective for different cellular thiols depending on their pK(a). For HOCl to be selective, other factors must be important, or its reactions could be secondary to chloramine formation.  相似文献   

13.
14.
The kinetics of the reactions of the active-centre thiol groups of papain (EC 3.4.22.2) and ficin (EC 3.4.22.3) with the two-protonic-state reactivity probes 2,2'-dipyridyl disulphide, n-propyl 2-pyridyl disulphide and 4-(N-aminoethyl 2'-pyridyl disulphide)- 7-nitrobenzo-2-oxa-1,3-diazole (compound I) were studied over a wide range of pH. Differences between the reactivities of ficin and papain towards the cationic forms of the alkyl 2-pyridyl disulphide probes suggest that ficin contains a cationic site without exact analogue in papain, and the striking difference in the shapes of the pH-rate profiles for the reactions of the two enzymes with compound (1) suggests differences in the mobilities or dispositions of the active-centre histidine imidazole groups with respect to relevant hydrophobic binding areas. The evidence from reactivity-probe studies that the papain catalytic mechanism involves substantial repositioning of the active-centre imidazole group during the catalytic act does not apply also to ficin. If ficin contains an aspartic acid residue analogous to aspartic acid-158 in papain, the pKa of its carboxy group is probably significantly lower than the pKa of the analogous group in papain.  相似文献   

15.
Rodis P  Hoff JE 《Plant physiology》1984,74(4):907-911
Protein crystals isolated from potato tubers were found to consist of a proteinase inhibitor active against the cysteine proteinases papain, chymopapain, and ficin. The molecular weight as determined by gel filtration at pH 4.3 or by gel electrophoresis in the presence of dodecylsulfate was 80 kilodaltons. When the inhibitor was evaluated at pH 8.4 in a linear concentration (4-30% polyacrylamide) under nondenaturing conditions, it appeared as two bands of approximately 320 to 350 kilodaltons indicating that the inhibitor forms tetrameric aggregates in neutral or weakly alkaline media, while the monomeric form predominates under acidic conditions. Gel filtration in the presence of varying amounts of papain suggested that the monomer combines with four papain molecules. The inhibitor contains no cystine.  相似文献   

16.
17.
A Surface Plasmon Resonance Imaging (SPRI) sensor based on bromelain or chymopapain or ficin has been developed for specific cystatin determination. Cystatin was captured from a solution by immobilized bromelain or chymopapain or ficin due to the formation of an enzyme-inhibitor complex on the biosensor surface. The influence of bromelain, chymopapain or ficin concentration, as well as the pH of the interaction on the SPRI signal, was investigated and optimized. Sensor dynamic response range is between 0-0.6 μg/ml and the detection limit is equal to 0.1 μg/ml. In order to demonstrate the sensor potential, cystatin was determined in blood plasma, urine and saliva, showing good agreement with the data reported in the literature.  相似文献   

18.
In apoferritin, but not in ferritin, 1.0 +/- 0.1 cysteine residue per subunit can be modified. In ferritin 3.3 +/- 0.3 lysine residues and 7.1 +/- 0.7 carboxyl groups per subunit can be modified, whilst the corresponding values for apoferritin are 4.4 +/- 0.4 lysine residues and 11.0 +/- 0.4 carboxyl groups per subunit. Modification of lysine residues which maleic anhydride and carboxyl groups with glycineamide in apoferritin which has been dissociated and denatured in guanidine hydrochloride leads to the introduction of 9.1 +/- 0.5 maleyl groups per subunit and 22.0 +/- 0.9 glycineamide residues per subunit. Whereas unmodified apoferritin subunit can be reassociated from guanidine hydrochloride to apoferritin monomer, the ability of maleylated apoferritin to reassociate is impaired. Apoferritin in which all the carboxyl groups have been blocked with glycineamide cannot be reassociated to apoferritin and exists in solution as stable subunits. The modification of one cysteine residue per subunit, of 3 or 4 lysine residues per subunit or of 7 carboxyl groups per subunit has no effect on the catalytic activity of apoferritin. In contrast the modification of 11 carboxyl groups per subunit completely abolishes the catalytic properties of the protein. We conclude that one or more carboxyl groups are essential for the catalytic activity of horse spleen apoferritin.  相似文献   

19.
The capability of the cysteine proteases ficin, papain and clostripain to form peptide bonds in frozen aqueous solutions was investigated. Freezing the reaction mixture resulted in increased peptide yields in kinetically controlled coupling of Bz–Arg–OEt with various amino acid amides and dipeptides. Under these conditions, peptide yields increased up to 70% depending on the enzyme and the amino component used. Enzyme-catalysed peptide syntheses were carried out under optimized reaction conditions (temperature, amino component concentration and pH before freezing) using the condensation of Bz–Arg–OEt and H–Leu–NH2 as a model reaction.  相似文献   

20.
The reactivity of several thiols, including glutathione, dihydrolipoic acid, cysteine, N-acetyl cysteine, and ergothioneine, as well as several disulfides, toward different redox states of myoglobin, mainly met-myoglobin (HX-FeIII) and ferrylmyoglobin (HX-FeIV=O), was evaluated by optical spectral analysis, product formation, and thiyl free radical generation. Only dihydrolipoic acid reduced met-myoglobin to oxy-myoglobin, whereas all the other thiols tested did not interact with met-myoglobin. Although the redox transitions involved in the former reduction were expected to yield the dihydrolipoate thiyl radical, the reaction was EPR silent. Conversely, all thiols interacted to different extent with the high oxidation state of myoglobin, i.e. ferrylmyoglobin, via two processes. First, direct electron transfer to heme iron in ferrylmyoglobin (HX-FeIV=O) with formation of met-myoglobin (HX-FeIII) or oxymyoglobin (HX-FeIIO2); the former transition was effected by all thiols except dihydrolipoate, which facilitated the latter, i.e. the formation of the two-electron reduction product of ferrylmyoglobin. Second, nucleophilic addition onto a pyrrole in ferrylmyoglobin with subsequent formation of sulfmyoglobin. The contribution of either direct electron transfer to the heme iron or nucleophilic addition depended on the physicochemical properties of the thiol involved and on the availability of H2O2 to reoxidize met-myoglobin to ferrylmyoglobin. The thiyl radicals of glutathione, cysteine, and N-acetylcysteine were formed during the interaction of the corresponding thiols with ferrylmyoglobin and detected by EPR in conjunction with the spin trap 5,5'-dimethyl-1-pyroline-N-oxide. The intensity of the EPR signal was insensitive to superoxide dismutase and it was decreased, but not suppressed, by catalase. The disulfides of glutathione and cysteine did not react with ferrylmyoglobin, but the disulfide bridge in lipoic acid interacted efficiently with the ferryl species by either reducing directly the heme iron to form met-myoglobin or adding onto a pyrrole ring to form sulfmyoglobin; either process depended on the presence or absence of catalase (to eliminate the excess of H2O2) in the reaction mixture, respectively. The biological significance of the above results is discussed in terms of the occurrence and distribution of high oxidation states of myoglobin, its specific participation in cellular injury, and its potential interaction with biologically important thiols leading to either recovery of myoglobin or generation of nonfunctional forms of the hemoprotein as sulfmyoglobin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号