首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L?1 was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L?1. These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.  相似文献   

2.
3.
4.
In a culture ofChlorella kessleri illuminated with a sodium vapour lamp at 33 °C and pH 6.5 the maximum rate of biomass production was 4.5 g L-l d-1. Of the total volume of 3.6 L of the suspension 2.5 L were placed between two glass concentric cylinders surrounding the tube. Examples of the course of speoific growth rate μ in the transient state following jump changes of the dilution rate, pH and temperature are presented. After a jump change of pH or temperature of the suspension maximal and minimal values, respectively, of μ are observed.  相似文献   

5.
All Xanthobacter strains studied are versatile autotrophic bacteria, able to grow on methanol and other substrates. Strain 25a, a yellow-pigmented, pleomorphic, Gram-negative bacterium, capable of autotrophic growth on methanol, formate, thiosulfate, and molecular hydrogen, was isolated from an enrichment culture inoculated with soil from a subtropical greenhouse. Subsequent studies showed that the organism also grows on a wide range of multicarbon substrates. Ammonia, nitrate and molecular nitrogen were used as nitrogen sources. The taxonomic relationship of strains H4-14 and 25a with previously described Xanthobacter strains was studied by numerical classification. Strain H4-14 was identified as a X. flavus strain, but the precise position of strain 25a remained uncertain. It probably belongs to a new species of the genus Xanthobacter. The levels of various enzymes involved in autotrophic and heterotrophic metabolism were determined following growth of strains H4-14 and 25a in batch and continuous cultures. The mechanisms involved in controlling ribulose-1,5-bisphosphate carboxylase/oxygenase synthesis in Xanthobacter strains appear to be comparable to those observed for other autotrophic bacteria, namely repression by organic compounds and derepression by autotrophic energy sources, such as methanol and hydrogen.Abbreviations API appareils et procédés d'identification - CS citrate synthase - ED Entner-Doudoroff pathway - FBP fructose-1,6-bisphosphate - FDH formate dehydrogenase - HPS hexulose-6-phosphate synthase - ICDH isocitrate dehydrogenase - KDPG 2-keto-3-deoxy-6-phosphogluconate - MDH methanol dehydrogenase - PRK phosphoribulokinase - PQQ pyrrolo quinoline quinone - RuBisC/O ribulose-1,5-bisphosphate carboxylase/oxygenase - RuMP ribulose monophosphate  相似文献   

6.
Summary Under low oxygen partial pressure,Alcaligenes eutrophus was cultivated autotrophically in a medium containing perfluorocarbon (PFC) as an oxygen-carrier. In the presence of PFC of more than 70% of the medium volume, enhancement of the growth rate was observed. At 90% PFC, the rate was about 18 times greater than that at 0% PFC.  相似文献   

7.
We tested the influence of different types of food on the fitnessof Daphnia longispina during a period of poor resources by comparingthe growth and reproduction of individuals fed on differentdiets. When Daphnia were under starvation conditions, both dissolvedorganic carbon and metabolic products enhanced bacterial growth,and the cladoceran produced 15 neonates and survived for the55 days of experiment. In the natural water, the edible foodconsisted essentially of bacteria and heterotrophic flagellates,which enabled the cladoceran to grow and reproduce. In waterenriched with Cryptomonas (an alga) or Chilomonas (a heterotrophicflagellate), the daphnid growth rates increased considerablyfrom generation to generation, but later in the time courseof the experiment with Chilomonas than with Cryptomonas. Thisalga enhanced the phosphorus:carbon ratio. The primiparous daphnidsfed with Cryptomonas were smaller than those fed with the heterotrophicflagellate and enrichment with the heterotrophic flagellatealso enhanced reproduction. In Lake Tazenat, when the algalbiomass was insufficient to support the Daphnia life cycle,the heterotrophic organisms were an essential food source. Whenfeeding essentially on bacteria, Daphnia has the capacity togrow and reproduce at very low food concentrations, and thisis important in determining its fitness under competitive conditions.  相似文献   

8.
A chemically-defined culture medium was developed which supported batch growth of Mycobacterium tuberculosis, strain H37Rv, at a minimum doubling time of 14.7 h. This medium also facilitated chemostat culture of M. tuberculosis at a constant doubling time of 24 h. Chemostat growth was optimized at a dissolved oxygen tension of 20% (v/v) and 0.2% (v/v) Tween-80. Chemostat cultures were dispersed suspensions of single bacilli (1.5-3 microm long), or small aggregates, at a mean density of log10 8.3 cfu ml-1. A limited number of amino acids was utilized (alanine, asparagine, aspartate and serine were depleted by >50%; glycine, arginine, isoleucine, leucine and phenylalanine, by approximately 40%). Chemostat-grown cells were pathogenic in aerosol-infected guinea pigs, producing disseminated infection similar to that caused by plate-grown cells. Cells from chemostat culture were significantly more invasive for J774A.1 mouse macrophages than agar- or batch-grown cells. This study demonstrates the suitability of chemostat culture for the growth of pathogenic mycobacteria in a defined physiological state with potential applications for the controlled production of mycobacterial components for therapeutic and vaccine applications.  相似文献   

9.
10.
Among sugars, glucose and mannose were found to be the most suitable substrates for mixotrophic growth, uptake of galactose and its influence on growth was negligible, and sucrose and fructose occupied intermediary positions. The optimum temperature for sugar uptake was 30 degrees C, both under light and in darkness. Enhancement in the photosynthetic oxygen-evolution rate, based on the utilization of substrates, was foremost in the presence of glucose, followed by mannose, sucrose, and fructose. Industrial by-products such as sugarcane molasses also were utilized to increase the algal growth under mixotrophic conditions. A maximum yield in biomass was obtained subsequent to the combined supply of sugarcane molasses with carbon dioxide to indoor as well as outdoor mixotrophic cultures. Doubling the carbon dioxide supply alone above a certain level, under autotrophic and mixotrophic outdoor conditions, did not produce a pronounced increase in the algal growth rate. The results on autotrophic and mixotrophic growth variations are discussed in the article.  相似文献   

11.
D. J. Griffiths 《Planta》1967,75(2):161-163
Summary Peptone is more effective than nitrate as a nitrogen source for heterotrophic cultures of Chlorella vulgaris (Emerson strain). It allows the production of an increased amount of algal material and supports an enhanced rate of cell division. Peptone-supplied heterotrophic cultures have a significantly higher content of protein and of soluble nitrogenous substances. The relation between these observations and the growth behaviour of this strain is referred to.The experimental work described in this communication was carried out whilst the author was on the staff of the Botany Department, University College of North Wales, Bangor.  相似文献   

12.
An investigation of cellulose degradation by the nonruminal, cellulolytic, mesophilic bacterium Clostridium cellulolyticum was performed in cellulose-fed chemostat cultures with ammonium as the growth-limiting nutrient. At any dilution rate (D), acetate was always the main product of the catabolism, with a yield of product from substrate ranging between 37.7 and 51.5 g per mol of hexose equivalent fermented and an acetate/ethanol ratio always higher than 1. As D rose, the acetyl coenzyme A was rerouted in favor of ethanol pathways, and ethanol production could represent up to 17.7% of the carbon consumed. Lactate was significantly produced, but with increasing D, the specific lactate production rate declined, as did the specific rate of production of extracellular pyruvate. The proportion of the original carbon directed towards phosphoglucomutase remained constant, and the carbon surplus was balanced mainly by exopolysaccharide and glycogen biosyntheses at high D values, while cellodextrin excretion occurred mainly at lower ones. With increasing D, the specific rate of carbon flowing down catabolites increased as well, but when expressed as a percentage of carbon it declined, while the percentage of carbon directed through biosynthesis pathways was enhanced. The maximum growth and energetic yields were lower than those obtained in cellulose-limited chemostats and were related to an uncoupling between catabolism and anabolism leading to an excess of energy. Compared to growth on cellobiose in ammonium-limited chemostats (E. Guedon, M. Desvaux, and H. Petitdemange, J. Bacteriol. 182:2010-2017, 2000), (i) a specific consumption rate of carbon of as high as 26.72 mmol of hexose equivalent g of cells(-1) x h(-1) could not be reached and (ii) the proportions of carbon directed towards cellodextrin, glycogen, and exopolysaccharide pathways were not as high as first determined on cellobiose. While the use of cellobiose allows highlighting of metabolic limitation and regulation of C. cellulolyticum under ammonium-limited conditions, some of these events should then rather be interpreted as distortions of the metabolism. Growth of cellulolytic bacteria on easily available carbon and nitrogen sources represents conditions far different from those of the natural lignocellulosic compounds.  相似文献   

13.
H Ng 《Applied microbiology》1982,43(5):1016-1019
The effects of various growth conditions on the heat resistance of Arizona bacteria grown in a continuous-culture device (chemostat) were studied. Using either glucose, NH4Cl, NaH2PO4, or MgCl2 as the rate-limiting nutrient, it was found that the heat resistance, in all cases depended on the dilution rate and, hence, growth rate of the culture. Cells grown at high dilution rates were less heat resistant than those grown at low dilution rates. If, however, the dilution rate was maintained at a constant rate, the higher the growth temperature, the more heat resistant were the cells. Also at any given dilution rate, the cells were most heat resistant when grown at a near neutral pH. Most survival curves were biphasic in shape, indicating the presence in the population of two fractions of cells, one fraction being more resistant than the other. The size of the more heat-resistant fraction varied from almost 100% in very slow-growing cultures to practically 0% in cultures grown at a dilution rate of 0.67 h-1.  相似文献   

14.
Summary Microbial colonization of seminal roots of seedlings and of nodal roots of tillering plants was studied on spring wheat ‘Kaspar’ cultivated in growth, chambers. Methods were developed to microbially condition the soil before seeding and to regulate soil humidity. Addition of inorganic nutrients (NPK) to the soil increased the number of rhizoplane bacteria and actinomycetes, but did not effect the number of fungi on seminal and nodal roots. Urea leaf treatments stimulated bacteria and actinomycetes 7 and 9 days after treatment. Fourteen days after urea leaf treatment, however, bacterial numbers were mostly reduced, especially on seminal roots, while numbers of actinomycetes generally equalled the control. Root types and soil fertility did not obviously interact with the effect of urea leaf treatment on rhizoplane bacteria and actinomycetes. The only effect of urea on total numbers of fungi, was a reduction of their numbers on seminal roots 9 days after treatment at both NPK-levels.  相似文献   

15.
16.
Streptomyces thermoviolaceus was grown in a chemostat under conditions of glutamate limitation. The effects of growth rate on production of the antibiotic granaticin, extracellular protein and protease activity as components of secondary metabolism were studied at 37, 45 and 50 degrees C. The amount of each secondary metabolite synthesized was highly dependent on growth rate and temperature. Granaticin yields were highest at growth rates of 0.1 to 0.15 h-1 at 37 degrees C, 0.175 h-1 at 45 degrees C and 0.045 h-1 at 50 degrees C. Protease activity of culture supernatants responded to low nutrient concentration and/or low growth rate. Measurements of extracellular protein revealed complex changes in amount which were dependent on growth rate and temperature. At 45 degrees C and a growth rate of 0.15 h-1, biomass yield was highest between pH 5.5 to 6.5 whereas granaticin synthesis was low at pH 5.5 and rose to highest values at between pH 6.5 and 7.5.  相似文献   

17.
Salinity is a widespread adverse environmental problem globally, and significantly limits crop production. In this study, the possibility of enhancing salinity stress tolerance of Swiss chard (Beta vulgaris L. var. cicla) by 5-aminolevulinic acid (ALA) foliar application was investigated. The Swiss chard plants were grown in hydroponic culture. Twelve-week-old uniform seedlings were treated by 0 and 40 mM saline regimes generated by the mixture of sodium chloride and sodium sulfate (molar ratio NaCl:Na2SO4 = 9:1), and were foliar-sprayed with 0 and 60 μM L?1 ALA (every 3 days) for 6 days; then the plants were treated for another 7 days (every 3 day) with increased concentration of salinity and ALA, 80 mM and 120 μM L?1. Salinity without ALA application significantly decreased plant growth [43 % in shoot dry weight (DW), 21 % in root DW, 24 % in relative growth rate (RGR), 43 % in leaf area (LA)], water uptake [20.8 % in relative water content (RWC), 47.9 % in osmotic potential (OP)], chlorophyll (Chl) a content (10 %), Pn (36 %), Gs (72 %) and Tr (59 %) compared with those in control plants; however, under saline conditions, ALA foliar application improved plant growth (49.7 % in shoot DW, 27 % in root DW, 42.3 % in RGR, 72.1 % in LA) and increased RWC (12 %), Chl a content (10 %) and photosynthetic parameters (27 % in Pn, 28 % in Gs, 14 % in Tr) compared with those in untreated plants. Salinity significantly increased Na+ content, resulting in the reduction of Mg2+ and K+ contents. ALA foliar application alleviated ionic toxicity through the reduction of Na+ content and Na+/K+ ratio. On the other hand, it increased total nitrogen and glycine betaine (GB) content. ALA foliar application slightly reduced malondialdehyde (MDA) content, indicating that ALA has the potential to alleviate oxidative stress in salinity-stressed Swiss chard.  相似文献   

18.
19.
Summary The rhizosphere effect of seminal roots of seedlings and of nodal roots of tillering plants of spring wheat ‘Kaspar’ was investigated under controlled conditions. The total number of micro-organisms recorded in the rhizosphere soil were significantly higher than for the non-rooted soil when investigated with the soil dilution plate method, but lower when fluorescence microscopy was used. Additions of inorganic fertilizer (NPK) decreased their numbers especially in rhizosphere soil of seminal roots and in non-rhizosphere soil, but did not change the ratio between bacteria and actinomycetes (B/A). In the rhizosphere soil the B/A ratio was higher than in the non-rhizosphere soil. An effect of urea leaf treatment was found with the dilution-plate method only in the rhizosphere soil of nodal roots, 3 to 7 days after the first treatment. Increased numbers of actinomycetes were found in this period in NPK fertilized soil, whereas increased numbers of bacteria were found at both fertility levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号