首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inflammasome-dependent cell death, which is denoted as pyroptosis, might be abnormally regulated during oncogenesis and tumour progression. Long non-coding RNAs (LncRNAs) are pivotal orchestrators in breast cancer (BC), which have the potential to be a biomarker for BC diagnosis and therapy. The present study aims to explore the correlation between pyroptosis-related lncRNAs and BC prognosis. In this study, a profile of 8 differentially expressed lncRNAs was screened in the TCGA database and used to construct a prognostic model. The BC patients were divided into high- and low-risk groups dependent on the median cutoff of the risk score in the model. Interestingly, the risk model significantly distinguished the clinical characteristics of BC patients between high- and low-risk groups. Then, the risk score of the model was identified to be an excellent independent prognostic factor. Notably, the GO, KEGG, GSEA and ssGSEA analyses revealed the different immune statuses between the high- and low-risk groups. Particularly, the 8 lncRNAs expressed differentially in BC tissues between two risk subgroups in vitro validation. Collectively, this constructed well-validated model is of high effectiveness to predict the prognosis of BC, which will provide novel means that is applicable for BC prognosis recognition.  相似文献   

2.
To develop and validate the predictive effects of stable ferroptosis- and pyroptosis-related features on the prognosis and immune status of breast cancer (BC). We retrieved as well as downloaded ferroptosis- and pyroptosis-related genes from the FerrDb and GeneCards databases. The minimum absolute contraction and selection operator (LASSO) algorithm in The Cancer Genome Atlas (TCGA) was used to construct a prognostic classifier combining the above two types of prognostic genes with differential expression, and the Integrated Gene Expression (GEO) dataset was used for validation. Seventeen genes presented a close association with BC prognosis. Thirteen key prognostic genes with prognostic value were considered to construct a new expression signature for classifying patients with BC into high- and low-risk groups. Kaplan–Meier analysis revealed a worse prognosis in the high-risk group. The receiver operating characteristic (ROC) curve and multivariate Cox regression analysis identified its predictive and independent features. Immune profile analysis showed that immunosuppressive cells were upregulated in the high-risk group, and this risk model was related to immunosuppressive molecules. We successfully constructed combined features of ferroptosis and pyroptosis in BC that are closely related to prognosis, clinicopathological and immune features, chemotherapy efficacy and immunosuppressive molecules. However, further experimental studies are required to verify these findings.  相似文献   

3.
Yu  Zhong Lin  Zhu  Zheng Ming 《Protoplasma》2022,259(4):1029-1045

The present paper aims to shed light on the influence of N6-methyladenosine (m6A) long non-coding RNAs (lncRNAs) and immune cell infiltration on colorectal cancer (CRC). We downloaded workflow-type data and xml-format clinical data on CRC from The Cancer Genome Atlas project. The relationship between lncRNA and m6A was identified by using Perl and R software. Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed. Lasso regression was utilized to construct a prognostic model. Survival analysis was used to explore the relationship between clusters of m6A lncRNAs and clinical survival data. Differential analysis of the tumor microenvironment and an immune correlation analysis were used to determine immune cell infiltration levels in different clusters and their correlation with clinical prognosis. The expression of lncRNA was tightly associated with m6A. The univariate Cox regression analysis showed that lncRNA was a risk factor for the prognosis. Differential expression analysis demonstrated that m6A lncRNAs were partially highly expressed in tumor tissue. m6A lncRNA-related prognostic model could predict the prognosis of CRC independently. “ECM_RECEPTOR_INTERACTION” was the most significantly enriched gene set. PARP8 was overexpressed in tumor tissue and high-risk cluster. CD4 memory T cells, activated resting NK cells, and memory B cells were highly clustered in the high-risk cluster. All of the scores were higher in the low-risk group. m6A lncRNA is closely related to the occurrence and progression of CRC. The corresponding prognostic model can be utilized to evaluate the prognosis of CRC. m6A lncRNA and related immune cell infiltration in the tumor microenvironment can provide novel therapeutic targets for further research.

  相似文献   

4.
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, and the 5‐year survival rate was only 7.7%. To improve prognosis, a screening biomarker for early diagnosis of pancreatic cancer is in urgent need. Long non‐coding RNA (lncRNA) expression profiles as potential cancer prognostic biomarkers play critical roles in development of tumorigenesis and metastasis of cancer. However, lncRNA signatures in predicting the survival of a patient with PDAC remain unknown. In the current study, we try to identify potential lncRNA biomarkers and their prognostic values in PDAC. LncRNAs expression profiles and corresponding clinical information for 182 cases with PDAC were acquired from The Cancer Genome Atlas (TCGA). A total of 14 470 lncRNA were identified in the cohort, and 175 PDAC patients had clinical variables. We obtained 108 differential expressed lncRNA via R packages. Univariate and multivariate Cox proportional hazards regression, lasso regression was performed to screen the potential prognostic lncRNA. Five lncRNAs have been recognized to significantly correlate with OS. We established a linear prognostic model of five lncRNA (C9orf139, MIR600HG, RP5‐965G21.4, RP11‐436K8.1, and CTC‐327F10.4) and divided patients into high‐ and low‐risk group according to the prognostic index. The five lncRNAs played independent prognostic biomarkers of OS of PDAC patients and the AUC of the ROC curve for the five lncRNAs signatures prediction 5‐year survival was 0.742. In addition, targeted genes of MIR600HG, C9orf139, and CTC‐327F10.4 were explored and functional enrichment was also conducted. These results suggested that this five‐lncRNAs signature could act as potential prognostic biomarkers in the prediction of PDAC patient's survival.  相似文献   

5.
6.
Autophagy-related long non-coding RNAs (lncRNAs) disorders are related to the occurrence and development of breast cancer. The purpose of this study is to explore whether autophagy-related lncRNA can predict the prognosis of breast cancer patients. The autophagy-related lncRNAs prognostic signature was constructed by Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression. We identified five autophagy-related lncRNAs (MAPT-AS1, LINC01871, AL122010.1, AC090912.1, AC061992.1) associated with prognostic value, and they were used to construct an autophagy-related lncRNA prognostic signature (ALPS) model. ALPS model offered an independent prognostic value (HR = 1.664, 1.381-2.006), where this risk score of the model was significantly related to the TNM stage, ER, PR and HER2 status in breast cancer patients. Nomogram could be utilized to predict survival for patients with breast cancer. Principal component analysis and Sankey Diagram results indicated that the distribution of five lncRNAs from the ALPS model tends to be low-risk. Gene set enrichment analysis showed that the high-risk group was enriched in autophagy and cancer-related pathways, and the low-risk group was enriched in regulatory immune-related pathways. These results indicated that the ALPS model composed of five autophagy-related lncRNAs could predict the prognosis of breast cancer patients.  相似文献   

7.
Current research indicate that long noncoding RNAs (lncRNAs) are associated with the progression of various cancers and can be used as prognostic biomarkers. This study aims to construct a prognostic lncRNA signature for the risk assessment of Uterine corpus endometrial carcinoma (UCEC). The RNA-Seq expression profile and corresponding clinical data of UCEC patients obtained from The Cancer Genome Atlas database. First, some prognosis-related lncRNAs were obtained by univariate Cox analysis. The minimum absolute contraction and selection operator (LASSO) regression and the Cox proportional hazard regression method were used to further identify the lncRNA prognostic model. Finally, seven lncRNAs (AC110491.1, AL451137.1, AC005381.1, AC103563.2, AC007422.2, AC108025.2, and MIR7-3HG) were identified as potential prognostic factors. According to the model constructed by the above analysis, the risk score of each UCEC patient was calculated, and the patients were classified into high and low-risk groups. The low-risk group had significant survival benefits. Moreover, we constructed a nomogram that incorporated independent prognostic factors (age, tumor stage, tumor grade, and risk score). The c-index value for evaluating the predictive nomogram model was 0.801. The area under the curve was 0.797 (3-year survival). The calibration curve also showed that there was a satisfactory agreement between the predicted and observed values in the probability of 1-, 3-, and 5-year overall survival. On the basis of the coexpression relationship, we established a coexpression network of lncRNA-messenger RNA (mRNA) of the 7-lncRNA. The Kyoto Encyclopedia of Genes and Genomes analysis of the coexpressing mRNAs showed that the main pathways related to the 7-lncRNA signature were neuroactive ligand-receptor interaction, serotonergic synapse, and gastric cancer pathway. Therefore, our study revealed that the 7-lncRNA could be used to predict the prognosis of UCEC and for postoperative treatment and follow-up.  相似文献   

8.
N6-methyladenosine (m6A) is one of the most important epigenetic regulation of RNAs, such as lncRNAs. However, the underlying regulatory mechanism of m6A in diabetic cardiomyopathy (DCM) is very limited. In this study, we sought to define the role of METTL14-mediated m6A modification in pyroptosis and DCM progression. DCM rat model was established and qRT-PCR, western blot, and immunohistochemistry (IHC) were used to detect the expression of METTL14 and TINCR. Gain-and-loss functional experiments were performed to define the role of METTL14-TINCR-NLRP3 axis in pyroptosis and DCM. RNA pulldown and RNA immunoprecipitation (RIP) assays were carried out to verify the underlying interaction. Our results showed that pyroptosis was tightly involved in DCM progression. METTL14 was downregulated in cardiomyocytes and hear tissues of DCM rat tissues. Functionally, METTL14 suppressed pyroptosis and DCM via downregulating lncRNA TINCR, which further decreased the expression of key pyroptosis-related protein, NLRP3. Mechanistically, METTL14 increased m6A methylation level of TINCR gene, resulting in its downregulation. Moreover, the m6A reader protein YTHDF2 was essential for m6A methylation and mediated the degradation of TINCR. Finally, TINCR positively regulated NLRP3 by increasing its mRNA stability. To conclude, our work revealed the novel role of METTL14-mediated m6A methylation and lncRNA regulation in pyroptosis and DCM, which could help extend our understanding the epigenetic regulation of pyroptosis in DCM progression.Subject terms: Cardiomyopathies, Endocrine system and metabolic diseases  相似文献   

9.
Pyroptosis is involved in ischemic cardiomyopathy (ICM). The study aimed to investigate the pyroptosis-related genes and clarify their diagnostic value in ICM. The bioinformatics method identified the differential pyroptosis genes between the normal control and ICM samples from online datasets. Then, protein–protein interaction (PPI) and function analysis were carried out to explore the function of these genes. Following, subtype analysis was performed using ConsensusClusterPlus, functions, immune score, stromal score, immune cell proportion and human leukocyte antigen (HLA) genes between subtypes were investigated. Moreover, optimal pyroptosis genes were selected using the least absolute shrinkage and selection operator (LASSO) analysis to construct a diagnostic model and evaluate its effectiveness using receiver operator characteristic (ROC) analysis. Twenty-one differential expressed pyroptosis genes were identified, and these genes were related to immune and pyroptosis. Subtype analysis identified two obvious subtypes: sub-1 and sub-2. And LASSO identified 13 optimal genes used to construct the diagnostic model. The diagnostic model in ICM diagnosis with the area under ROC (AUC) was 0.965. Our results suggested that pyroptosis was tightly associated with ICM.  相似文献   

10.
Liver cancer is still one of the leading causes of cancer-related death worldwide. This study is dedicated to developing a multi–long noncoding RNA (lncRNA) model for risk stratification and prognosis prediction on patients with hepatocellular carcinoma (HCC). We first downloaded lncRNA expression profiles and corresponding clinical information of patients with liver cancer from The Cancer Genome Atlas database. Differentially expressed (DE) lncRNAs between HCC samples and normal samples were identified. In total, 308 patients with HCC were randomly divided into a training group (n = 154) and a testing group (n = 154). Univariate Cox regression and least absolute shrinkage and selection operator Cox regression analyses were performed to select the best survival-related candidates from these DE lncRNAs in the training set. Seven lncRNAs (AC009005.2, RP11-363N22.3, RP11-932O9.10, RP11-572O6.1, RP11-190C22.8, RP11-388C12.8, and ZFPM2-AS1) were finally identified and used to construct a seven-lncRNA signature. The signature could classify patients into high-risk and low-risk groups with significantly different overall survival. The area under the curve of receiver operating characteristic curve for the signature to predict 5-year survival reached more than 0.75. Besides, the prognostic value of the seven-lncRNA signature was independent of conventional clinical factors. The predictive performance of the signature was further validated in the testing set and the whole set. Functional enrichment analysis indicated that the seven prognostic lncRNAs may be involved in several essential biological processes and pathways. The current study demonstrated the potential clinical implications of the seven-lncRNA signature for survival prediction of patients with HCC.  相似文献   

11.
Long noncoding RNAs (lncRNAs) have the main role in the tumorigenesis of breast cancer. In the present study, lncRNA expression profiling was collected to identify a lncRNA expression signature from the Gene Expression Omnibus database. An eight-lncRNA signature was established to predict the survival of patients with estrogen receptor (ER)-positive breast cancer receiving endocrine therapy. Patients were separated into a low-risk group and a high-risk group based on this signature. Patients in high-risk group have worse survival compared to those in low-risk group using Kaplan–Meier curve analysis with log-rank test. Receiver operating characteristic analysis suggested good diagnostic efficiency of the eight-lncRNA signature. When adjusting the clinical features, including age, grade, lymph node status, and tumor size, this signature was independently associated with the relapse-free survival. The prognostic value of the lncRNA prognostic model was then validated in validation sets. When validated in a cohort of patients treated with neoadjuvant chemotherapy and endocrine therapy, this signature demonstrated good performance as well. Besides, we have built a nomogram that integrated the conventional clinicopathological features and the eight-lncRNA-based signature. To sum up, our results indicated that the eight-lncRNA prognostic model was a reliable tool to group patients at high and low risk of disease relapse. This signature may have possible implication in prognostic evaluations of patients with ER-positive breast cancer receiving endocrine therapy.  相似文献   

12.
Long non‐coding RNAs (lncRNAs) have been implicated in the regulation of gene expression at various levels. However, to date, the expression profile of lncRNAs in status epilepticus (SE) was unclear. In our study, the expression profile of lncRNAs was investigated by high‐throughput sequencing based on a lithium/pilocarpine‐induced SE model in immature rats. Furthermore, weighted correlation network analysis (WGCNA), gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to construct co‐expression networks and establish functions of the identified hub lncRNAs in SE. The functional role of a hub lncRNA (NONRATT010788.2) in SE was investigated in an in vitro model. Our results indicated that 7082 lncRNAs (3522 up‐regulated and 3560 down‐regulated), which are involved in cell proliferation, inflammatory responses, angiogenesis and autophagy, were dysregulated in the hippocampus of immature rats with SE. Additionally, WGCNA identified 667 up‐regulated hub lncRNAs in turquoise module that were involved in apoptosis, inflammatory responses and angiogenesis via regulation of HIF‐1, p53 and chemokine signalling pathways and via inflammatory mediator regulation of TRP channels. Knockdown of an identified hub lncRNA (NONRATT010788.2) inhibited neuronal apoptosis in vitro. Taken together, our study is the first to demonstrate the expression profile and potential function of lncRNAs in the hippocampus of immature rats with SE. The defined hub lncRNAs may participate in the pathogenesis of SE via lncRNA‐miRNA‐mRNA network.  相似文献   

13.
Long non-coding RNA (lncRNA) is an important regulatory factor in the development of lung adenocarcinoma, which is related to the control of autophagy. LncRNA can also be used as a biomarker of prognosis in patients with lung adenocarcinoma. Therefore, it is important to determine the prognostic value of autophagy-related lncRNA in lung adenocarcinoma. In this study, autophagy-related mRNAs-lncRNAs were screened from lung adenocarcinoma and a co-expression network of autophagy-related mRNAs-lncRNAs was constructed by using The Cancer Genome Atlas (TCGA). The univariate and multivariate Cox proportional hazard analyses were used to evaluate the prognostic value of the autophagy-related lncRNAs and finally obtained a survival model composed of 11 autophagy-related lncRNAs. Through Kaplan-Meier analysis, univariate and multivariate Cox regression analysis and time-dependent receiver operating characteristic (ROC) curve analysis, it was further verified that the survival model was a new independent prognostic factor for patients with lung adenocarcinoma. In addition, based on the survival model, gene set enrichment analysis (GSEA) was used to illustrate the function of genes in low-risk and high-risk groups. These 11 lncRNAs were GAS6-AS1, AC106047.1, AC010980.2, AL034397.3, NKILA, AL606489.1, HLA-DQB1-AS1, LINC01116, LINC01806, FAM83A-AS1 and AC090559.1. The hazard ratio (HR) of the risk score was 1.256 (1.196-1.320) (P < .001) in univariate Cox regression analysis and 1.215 (1.149-1.286) (P < .001) in multivariate Cox regression analysis. And the AUC value of the risk score was 0.809. The 11 autophagy-related lncRNA survival models had important predictive value for the prognosis of lung adenocarcinoma and may become clinical autophagy-related therapeutic targets.  相似文献   

14.

Autophagy is a highly conserved lysosomal degradation process essential in tumorigenesis. However, the involvement of autophagy-related long noncoding RNAs (lncRNAs) in low-grade glioma (LGG) remains unclear. In this study, we established an autophagy-related lncRNA prognostic signature for patients with LGG and assess its underlying functions. We used univariate Cox, least absolute shrinkage and selection operator and multivariate Cox regression models to establish an autophagy-related lncRNA prognostic signature. Kaplan–Meier survival analysis, receiver operating characteristic curve, nomogram, C-index, calibration curve and clinical decision-making curve were used to assess the predictive capability of the identified signature. A signature comprising nine autophagy-related lncRNAs (AL136964.1, ARHGEF26-AS1, PCED1B-AS1, AS104072.1, PRKCQ-AS1, LINC00957, AS125616.1, PSMB8-AS1 and AC087741.1) was identified as a prognostic model. Patients with LGG were divided into the high- and low-risk cohorts based on the median model-based risk score. The survival analysis revealed a 10-year survival rate of 9.3% (95% CI 1.91–45.3%) and 13.48% (95% CI 4.52–40.2%) in high-risk patients in the training and validation sets, respectively, and 48.4% (95% CI 24.7–95.0%) and 48.4% (95% CI 28.04–83.4%) in low-risk patients in the training and validation sets, respectively. This finding suggested a relatively low survival in high-risk patients. In addition, the lncRNA signature was independently prognostic and potentially associated with the progression of LGG. Therefore, the 9-autophagy-related-lncRNA signature may play a crucial role in the diagnosis and treatment of LGG, which may offer new avenues for tumour-targeted therapy.

  相似文献   

15.
康敏  余敏敏 《生物信息学》2022,20(4):264-273
结合TCGA数据库中宫颈癌的lncRNA表达谱和体细胞突变谱,构建基于突变假设的计算框架,鉴定出36个与宫颈癌基因组不稳定性相关的lncRNA;对其共表达的基因功能进行分析,发现与36个lncRNA共表达的基因在2-氧代戊二酸代谢过程和2-氧羧酸代谢通路中富集。构建了基于基因组不稳定性衍生的两个lncRNA的基因特征(GILncSig),将Train组患者分为高风险组和低风险组,两组患者生存率显著不同,这一结果在Test组患者中得到进一步验证。通过独立预后分析,结果显示GILncSig可独立于其他临床性状,作为宫颈癌患者的整体生存相关独立预后因子。总之,本研究为进一步探讨lncRNA在基因组不稳定性中的作用提供了关键的方法和资源,为识别基因组不稳定性相关的肿瘤标志物提供了新的预测方法。  相似文献   

16.
Background: Head and neck squamous cell carcinoma (HNSCC) are head and neck cancers. On the other hand, ferroptosis is a novel iron-dependent and ROS reliant type of cell death observed various disease conditions.Method: We constructed a prognostic multilncRNA signature based on ferroptosis-related differentially expressed lncRNAs in HNSCC.Results: We identified 25 differently expressed lncRNAs associated with prognosis of HNSCC. Kaplan-Meier analyses revealed the high-risk lncRNAs signature associated with poor prognosis of HNSCC. Moreover, the AUC of the lncRNAs signature was 0.782, underscoring their utility in prediction HNSCC prognosis. Indeed, our risk assessment model was superior to traditional clinicopathological features in predicting HNSCC prognosis. GSEA revealed the immune and tumor-related pathways in the low risk group individuals. Moreover, TCGA revealed T cell functions including cytolytic activity, HLA, regulation of inflammationp, co-stimulation, co-inhibition and coordination of type II INF response were significantly different between the low-risk and high-risk groups. Immune checkpoints such as PDCD-1 (PD-1), CTLA4 and LAG3, were also expressed differently between the two risk groups.Conclusion: A novel ferroptosis-related lncRNAs signature impacts on the prognosis of HNSCC.  相似文献   

17.
Long noncoding RNAs (lncRNAs) show multiple functions, including immune response. Recently, the immune-related lncRNAs have been reported in some cancers. We first investigated the immune-related lncRNA signature as a potential target in hepatocellular carcinoma (HCC) survival. The training set (n = 368) and the independent external validation cohort (n = 115) were used. Immune genes and lncRNAs coexpression were constructed to identify immune-related lncRNAs. Cox regression analyses were perfumed to establish the immune-related lncRNA signature. Regulatory roles of this signature on cancer pathways and the immunologic features were investigated. The correlation between immune checkpoint inhibitors and this signature was examined. In this study, the immune-related lncRNA signature was identified in HCC, which could stratify patients into high- and low-risk groups. This immune-related lncRNA signature was correlated with disease progression and worse survival and was an independent prognostic biomarker. Our immune-related lncRNA signature was still a powerful tool in predicting survival in each stratum of age, gender, and tumor stage. This signature mediated cell cycle, glycolysis, DNA repair, mammalian target of rapamycin signaling, and immunologic characteristics (i.e., natural killer cells vs. Th1 cells down, etc). This signature was associated with immune cell infiltration (i.e., macrophages M0, Tregs, CD4 memory T cells, and macrophages M1, etc.,) and immune checkpoint blockade (ICB) immunotherapy-related molecules (i.e., PD-L1, PD-L2, and IDO1). Our findings suggested that the immune-related lncRNA signature had an important value for survival prediction and may have the potential to measure the response to ICB immunotherapy. This signature may guide the selection of the immunotherapy for HCC.  相似文献   

18.
Long non-coding RNAs (lncRNAs) are a novel class of regulators in multiple cancer biological processes. However, the functions of lncRNAs in pancreatic ductal adenocarcinoma (PDAC) remain largely unknown. In this study, we identified PWAR6 as a frequently down-regulated lncRNA in PDAC samples as well as a panel of pancreatic cancer cell lines. Down-regulated PWAR6 was associated with multiple clinical outcomes, including advanced tumour stage, distant metastasis, and overall survival of PDAC patients. In our cell-based assays, ectopic expression of PWAR6 dramatically repressed PDAC cells proliferation, invasion and migration, accelerated apoptosis, and induced cell cycle arrest at G0/G1 phase. In contrast, depletion of PWAR6 mediated by siRNA exhibited opposite effects on PDAC cell behaviours. In vivo study further validated the anti-tumour role of PWAR6 in PDAC. By taking advantage of available online sources, we also identified YAP1 as a potential PWAR6 target gene. Negative correlation between YAP1 and PWAR6 expressions were observed in both online database and our PDAC samples. Notably, rescue experiments further indicated that YAP1 is an important downstream effector involved in PWAR6-mediated functions. Mechanistically, PWAR6 could bind to methyltransferase EZH2, a core component of Polycomb Repressive Complex 2 (PRC2) in regulating gene expression, and scaffold EZH2 to the promoter region of YAP1, resulting in epigenetic repression of YAP1. In conclusion, our data manifest the vital roles of PWAR6 in PDAC tumorigenesis and underscore the potential of PWAR6 as a promising target for PDAC diagnosis and therapy.  相似文献   

19.
IntroductionComplex outcome of ovarian cancer (OC) stems from the tumor immune microenvironment (TIME) influenced by genetic and epigenetic factors. This study aimed to comprehensively explored the subclasses of OC through lncRNAs related to both N6-methyladenosine (m6A)/N1-methyladenosine (m1A)/N7-methylguanosine (m7G)/5-methylcytosine (m5C) in terms of epigenetic variability and immune molecules and develop a new set of risk predictive systems.Material and methodsThe lncRNA data of OC were collected from TCGA. Spearman correlation analysis on lncRNA data of OC with immune-related gene expression and with m6A/m5C/m1A/m7G were respectively conducted. The m6A/m5C/m1A/m7G-related m6A/m5C/m1A/m7G related immune lncRNA subtypes were identified on the basis of the prognostic lncRNAs. Heterogeneity among subtypes was evaluated by tumor mutation analysis, tumor microenvironment (TME) component analysis, response to immune checkpoint blocked (ICB) and chemotherapeutic drugs. A risk predictive system was developed based on the results of Cox regression analysis and random survival forest analysis of the differences between each specific cluster and other clusters.ResultsThree m6A/m5C/m1A/m7G-related immune lncRNA subtypes of OC showing distinct differences in prognosis, mutation pattern, TIME components, immunotherapy and chemotherapy response were identified. A set of risk predictive system consisting of 10 lncRNA for OC was developed, according to which the risk score of samples in each OC dataset was calculated and risk type was defined.ConclusionsThis study classified three m6A/m5C/m1A/m7G-related immune lncRNA subtypes with distinct heterogeneous mutation patterns, TME components, ICB therapy and immune response, and provided a set of risk predictive system consisted of 10 lncRNA for OC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号