首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TCTP has been implicated in a plethora of important cellular processes related to cell growth, cell cycle progression, malignant transformation and inhibition of apoptosis. In addition to these intracellular functions, TCTP has extracellular functions and plays an important role in immune cells. TCTP expression was previously shown to be deregulated in prostate cancer, but its function in prostate cancer cells is largely unknown. Here we show that TCTP expression is regulated by androgens in LNCaP prostate cancer cells in vitro as well as human prostate cancer xenografts in vivo. Knockdown of TCTP reduced colony formation and increased apoptosis in LNCaP cells, implicating it as an important factor for prostate cancer cell growth. Global gene expression profiling in TCTP knockdown LNCaP cells showed that several interferon regulated genes are regulated by TCTP, suggesting that it may have a role in regulating immune function in prostate cancer. In addition, recombinant TCTP treatment increased colony formation in LNCaP cells suggesting that secreted TCTP may function as a proliferative factor in prostate cancer. These results suggest that TCTP may have a role in prostate cancer development.  相似文献   

2.
We recently discovered that the antidepressant sertraline is an effective inhibitor of hippocampus presynaptic Na+ channel permeability in vitro and of tonic-clonic seizures in animals in vivo. Several studies indicate that the pro-inflammatory cytokines in the central nervous system are increased in epilepsy and depression. On the other hand inhibition of Na+ channels has been shown to decrease pro-inflammatory cytokines in microglia. Therefore, the possibility that sertraline could overcome the rise in pro-inflammatory cytokine expression induced by seizures has been investigated. For this purpose, IL-1β and TNF-α mRNA expression was determined by RT-PCR in the hippocampus of rats administered once, or for seven consecutive days with sertraline at a low dose (0.75 mg/kg). The effect of sertraline at doses within the range of 0.75 to 25 mg/kg on the increase in IL-1β and TNF-α mRNA expression accompanying generalized tonic-clonic seizures, and increase in the pro-inflammatory cytokines expression induced by lipopolysaccharide was also investigated. We found that under basal conditions, a single 0.75 mg/kg sertraline dose decreased IL-1β mRNA expression, and also TNF-α expression after repeated doses. The increase in IL-1β and TNF-α expression induced by the convulsive agents and by the inoculation of lipopolysaccharide in the hippocampus was markedly reduced by sertraline also. Present results indicate that a reduction of brain inflammatory processes may contribute to the anti-seizure sertraline action, and that sertraline can be safely and successfully used at low doses to treat depression in epileptic patients.  相似文献   

3.
The antidepressant fluoxetine has been under discussion because of its potential influence on cancer risk. It was found to inhibit the development of carcinogen-induced preneoplastic lesions in colon tissue, but the mechanisms of action are not well understood. Therefore, we investigated anti-proliferative effects, and used HT29 colon tumor cells in vitro, as well as C57BL/6 mice exposed to intra-rectal treatment with the carcinogen N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) as models. Fluoxetine increased the percentage of HT29 cells in the G0/G1 phase of cell-cycle, and the expression of p27 protein. This was not related to an induction of apoptosis, reactive oxygen species or DNA damage. In vivo, fluoxetine reduced the development of MNNG-induced dysplasia and vascularization-related dysplasia in colon tissue, which was analyzed by histopathological techniques. An anti-proliferative potential of fluoxetine was observed in epithelial and stromal areas. It was accompanied by a reduction of VEGF expression and of the number of cells with angiogenic potential, such as CD133, CD34, and CD31-positive cell clusters. Taken together, our findings suggest that fluoxetine treatment targets steps of early colon carcinogenesis. This confirms its protective potential, explaining at least partially the lower colon cancer risk under antidepressant therapy.  相似文献   

4.
Spleen cells from mice bearing a progressively growing syngeneic tumor failed to respond to stimulation with mitogens in vitro. This lack of reactivity was due to the presence of nylon wool-adherent cells in the population that could inhibit the mitogen response of normal lymphocytes. Paradoxically, at times when strong suppressor cell activity could be detected in tumor-bearing mice, the animals responded normally to in vivo immunization with sheep erythrocytes and allogeneic tumors, and to in vitro sensitization with allogeneic tumor cells. Regression of a highly antigenic syngeneic tumor also was unaffected by the presence of these suppressor cells. Thus, the occurrence of nonspecific suppressor cells in the spleens of tumor-bearing mice did not influence the overall immunologic competence of these animals.  相似文献   

5.
Recently, we have found that the skin secretions of the Amazonian tree frog Phyllomedusa bicolor contains molecules with antitumor and angiostatic activities and identified one of them as the antimicrobial peptide dermaseptin (Drs) B2. In the present study we further explored the in vitro and in vivo antitumor activity of this molecule and investigated its mechanism of action. We showed that Drs B2 inhibits the proliferation and colony formation of various human tumor cell types, and the proliferation and capillary formation of endothelial cells in vitro. Furthermore, Drs B2 inhibited tumor growth of the human prostate adenocarcinoma cell line PC3 in a xenograft model in vivo. Research on the mechanism of action of Drs B2 on tumor PC3 cells demonstrated a rapid increasing amount of cytosolic lactate dehydrogenase, no activation of caspase-3, and no changes in mitochondrial membrane potential. Confocal microscopy analysis revealed that Drs B2 can interact with the tumor cell surface, aggregate and penetrate the cells. These data together indicate that Drs B2 does not act by apoptosis but possibly by necrosis. In conclusion, Drs B2 could be considered as an interesting and promising pharmacological and therapeutic leader molecule for the treatment of cancer.  相似文献   

6.
《Life sciences》1997,61(4):343-354
Inositol hcxaphosphate (InsP6 or IP6) is ubiquitous. At 10 μM to 1 mM concentrations, IP6 and its lower phosphorylated forms (IP1–5) as well as inositol (Ins) are contained in most mammalian cells, wherein they are important in regulating vital cellular functions such as signal transduction, cell proliferation and differentiation. A striking anti-cancer action of IP6 has been demonstrated both in vivo and in vitro, which is based on the hypotheses that exogenously administered IP6 may be internalized, dephosphorylated to IP1–5, and inhibit cell growth. There is additional evidence that Ins alone may further enhance the anti-cancer effect of IP6. Besides decreasing cellular proliferation, IP6 also causes differentiation of malignant cells often resulting in a reversion to normal phenotype. These data strongly point towards the involvement of signal transduction pathways, cell cycle regulatory genes, differentiation genes, oncogenes and perhaps, tumor suppressor genes in bringing about the observed anti-neoplastic action of IP6.  相似文献   

7.
Cytotoxic effector lymphocytes were induced by in vitro immunization of lymph node and spleen cells from CS7B16(H2b) and Balb/c(H2d) mice to syngeneic or allogeneic methylcholanthrene-induced fibrosarcoma (MCAF) cell lines. The T cell-dependent cytotoxicity was specific to target cell lines to which the lymphocytes were immunized in vitro. Normal fibroblasts as stimulator cells did not induce lymphocytotoxicity to syngeneic MCAF cells or to normal syngeneic fibroblasts. The results indicate that the in vitro-immunized lymphocytes recognize individual specific tumor-associated antigens of the MCAF cells. In experiments in which the lymphocytes were immunized in vitro to allogeneic MCAF cells, cytotoxic reactions to alloantigens, but not to tumor-associated antigens, were detected. Incubation with phytohemagglutinin (PHA) during the sensitization period modified the specificity of the cell-mediated lysis of MCAF cells: Allogeneic as well as syngeneic target cells were destroyed by these effector cells. PHA induced a nonspecific cytotoxic effect which increased the specific lysis of target cells. The cytotoxicity of the in vitro-immunized lymphocytes was inhibited by incubation with membrane protein preparations from the syngeneic MCAF cell lines. In contrast to the specificity of the cytotoxic effect to the different syngeneic cell lines, the membrane extract of one individual syngeneic MCAF cell line was able to inhibit the lymphocytotoxicity to all other syngeneic cell lines. Membrane protein preparations from allogeneic MCAF cells or from normal syngeneic fibroblasts were not inhibitory. The in vitro-immunized cytotoxic lymphocytes did not impair the tumor growth in vivo as could be demonstrated by passive transfer of the lymphocytes in a Winn assay.  相似文献   

8.
Endoglin is a transforming growth factor-β (TGF- β) co-receptor that participates in the activation of a signaling pathway that mediates endothelial cell proliferation and migration in angiogenic tumor vasculature. Therefore, silencing of endoglin expression is an attractive approach for antiangiogenic therapy of tumors. The aim of our study was to evaluate the therapeutic potential of small interfering RNA (siRNA) molecules against endoglin in vitro and in vivo. Therapeutic potential in vitro was assessed in human and murine endothelial cells (HMEC-1, 2H11) by determining endoglin expression level, cell proliferation and tube formation. In vivo, the therapeutic potential of siRNA molecules was evaluated in TS/A mammary adenocarcinoma growing in BALB/c mice. Results of our study showed that siRNA molecules against endoglin have a good antiangiogenic therapeutic potential in vitro, as expression of endoglin mRNA and protein levels in mouse and human microvascular endothelial cells after lipofection were efficiently reduced, which resulted in the inhibition of endothelial cell proliferation and tube formation. In vivo, silencing of endoglin with triple electrotransfer of siRNA molecules into TS/A mammary adenocarcinoma also significantly reduced the mRNA levels, number of tumor blood vessels and the growth of tumors. The obtained results demonstrate that silencing of endoglin is a promising antiangiogenic therapy of tumors that could not be used as single treatment, but as an adjunct to the established cytotoxic treatment approaches.  相似文献   

9.
Tumor treating fields (TTFields)-an intermediate-frequency, electric field therapy-has emerged as a promising alternative therapy for the treatment of solid cancers. Since the first publication describing the anticancer effects of TTFields in 2004 there have been numerous follow-up studies by other groups, either to confirm the efficacy of TTFields or to study the primary mechanism of interaction. The overwhelming conclusion from these in vitro studies is that TTFields reduce the viability of aggressively replicating cell lines. However, there is still speculation as to the primary mechanism for this effect; moreover, observations both in vitro and in vivo of inhibited migration and metastases have been made, which may be unrelated to the originally proposed hypothesis of replication stress. Adding to this, the in vivo environment is much more complex spatially, structurally, and involves intricate networks of cell signaling, all of which could change the efficacy of TTFields in the same way pharmaceutical interventions often struggle transitioning in vivo. Despite this, TTFields have shown promise in clinical practice on multiple cancer types, which begs the question: has the primary mechanism carried over from in vitro to in vivo or are there new mechanisms at play? The goal of this review is to highlight the current proposed mechanism of action of TTFields based primarily on in vitro experiments and animal models, provide a summary of the clinical efficacy of TTFields, and finally, propose future directions of research to identify all possible mechanisms in vivo utilizing novel tumor-on-a-chip platforms.  相似文献   

10.
(−)-Epigallocatechin-3-O-gallate (EGCG) monoesters modified with butanoyl (EGCG-C4), octanoyl (EGCG-C8), palmitoyl groups (EGCG-C16) were synthesized by a lipase-catalyzed transesterification method and their antitumor activities were investigated in vitro and in vivo. The in vitro antitumor activities of EGCG-monoester derivatives increased in an alkyl chain length-dependent manner. The cytotoxicity of EGCG, EGCG-C4, EGCG-C8 was mainly caused by H2O2 which was generated with their oxidation. On the other hand, EGCG-C16 was more stable than EGCG and it did not generate H2O2 in the cell culture medium. Furthermore, EGCG-C16 inhibited cell proliferation and induced apoptosis in the presence of catalase. EGCG-C16 was found to inhibit the phosphorylation of the epidermal growth factor receptor (EGFR), which is related to various types of tumor growth. EGCG-C16 suppressed tumor growth in vivo in colorectal tumor bearing mice in comparison to an untreated control, vector control (DMSO) and EGCG.  相似文献   

11.
《Phytomedicine》2014,21(12):1675-1683
A tissue model for angiogenesis that imitated new blood vessels formation in vivo had been established in the previous study. Here, it was used to screen and evaluate a series of synthesized compounds and the results indicated that compound T7 (N-{4′-[(1E)-N-hydroxyethanimidoyl]-3′,5,6-trimethoxybiphenyl-3-yl}-N′-[4-(3-morpholin-4-ylpropoxy)phenyl]urea) could effectively inhibit the blood vessels formation. Then the anti-angiogenic potential of T7 and its related molecular mechanisms against lung carcinoma in vitro and in vivo were investigated. Treatment with T7 significantly inhibited human umbilical vein endothelial cells and A549 cells proliferation and migration. T7 reduced human umbilical vein endothelial cells tube formation as well. Western blotting analysis of cell signaling molecules indicated that T7 reduced phosphorylation of KDR and its downstream signaling players AKT and ERK1/2 activation in endothelial cells and A549 cells. Moreover, T7 inhibited tumor growth in A549 xenografted model of athymic mice and reduced CD34 expression levels in tumor-bearing mice by immunohistochemistry. In sum, our findings showed that T7 was a candidate of tumor angiogenesis inhibitors, and it functioned by interrupting the autophosphorylation of KDR, AKT and ERK1/2.  相似文献   

12.
《Life sciences》1997,61(21):PL321-PL326
In the last few years, considerable evidence has appeared concerning the importance of the opioid systems in the action mechanism of some antidepressant drugs. This action mechanism could be mediated through the inhibition of the enzymes reponsible for enkephalin degradation. In this sense, imipramine treatment in vivo increases the enkephalin levels, and this effect is enhanced by inhibitors of enkephalin-degrading enzymes. The present work shows the effects in vitro of imipramine and its active metabolite desipramine on the activities of two membrane-bound enkephalin-degrading aminopeptidases present in rat brain. Imipramine and desipramine in vitro do not affect the aminopeptidase M activity, but they reversibly inhibits the aminoeptidase MII. The enzyme kinetic analysis shows that this enzyme molecule has two different binding sites for each drug, which exert a mixed type enzyme inhibition.  相似文献   

13.
It is now well accepted that multipotent Bone-Marrow Mesenchymal Stem Cells (BM-MSC) contribute to cancer progression through several mechanisms including angiogenesis. However, their involvement during the lymphangiogenic process is poorly described. Using BM-MSC isolated from mice of two different backgrounds, we demonstrate a paracrine lymphangiogenic action of BM-MSC both in vivo and in vitro. Co-injection of BM-MSC and tumor cells in mice increased the in vivo tumor growth and intratumoral lymphatic vessel density. In addition, BM-MSC or their conditioned medium stimulated the recruitment of lymphatic vessels in vivo in an ear sponge assay, and ex vivo in the lymphatic ring assay (LRA). In vitro, MSC conditioned medium also increased the proliferation rate and the migration of both primary lymphatic endothelial cells (LEC) and an immortalized lymphatic endothelial cell line. Mechanistically, these pro-lymphangiogenic effects relied on the secretion of Vascular Endothelial Growth Factor (VEGF)-A by BM-MSC that activates VEGF Receptor (VEGFR)-2 pathway on LEC. Indeed, the trapping of VEGF-A in MSC conditioned medium by soluble VEGF Receptors (sVEGFR)-1, -2 or the inhibition of VEGFR-2 activity by a specific inhibitor (ZM 323881) both decreased LEC proliferation, migration and the phosphorylation of their main downstream target ERK1/2. This study provides direct unprecedented evidence for a paracrine lymphangiogenic action of BM-MSC via the production of VEGF-A which acts on LEC VEGFR-2.  相似文献   

14.
Plasmodium falciparum secretes a homologue of the translationally controlled tumor protein (TCTP) into serum of infected individuals, although its role in pathogenesis or virulence is unknown. To determine the effect of P. falciparum TCTP on B cells as compared to human TCTP, fluorescently labeled proteins were incubated on primary cultures of mouse splenic B cells and analyzed by flow cytometry and confocal microscopy. Our results indicate that both recombinant proteins are incorporated into B cells, but differ significantly in their rate and percentage of incorporation, being significantly higher for P. falciparum TCTP. Furthermore, P. falciparum TCTP showed a lower B cell proliferative effect than human TCTP, suggesting a mechanism through which the former could interfere in the host''s immune response.  相似文献   

15.
By using cDNA microarray analysis, we identified cornulin (CRNN) gene was frequently downregulated in esophageal squamous cell carcinoma (ESCC). In the present study, we investigated the role of CRNN in ESCC development. The results showed that CRNN was frequently downregulated in primary ESCCs in both mRNA level (26/56, 46.4%) and protein level (137/249, 55%), which was significantly associated with lymph node metastases (P=0.027), advanced clinical stage (P=0.039), and overall survival rate (P<0.001). Multivariate analysis indicated that the CRNN downregulation was an independent prognostic factor for ESCC. Functional studies with both in vitro and in vivo assays demonstrated that CRNN had strong tumor suppressive ability in ESCC cells. The tumor-suppressive mechanism of CRNN was associated with its role in cell cycle arrest at G1/S checkpoint by upregulating expressions of P21WAF1/CIP1 and Rb. Silencing CRNN expression by RNA interference could effectively inhibit its tumor suppressive effect. In conclusion, our findings demonstrate that CRNN is a tumor suppressor gene that plays a critical tumor suppressive role in ESCC.  相似文献   

16.
In our previous study, microvesicles (MVs) released from human Wharton''s jelly mesenchymal stem cells (hWJ-MSCs) retard the growth of bladder cancer cells. We would like to know if MVs have a similar effect on human renal cell carcinoma (RCC). By use of cell culture and the BALB/c nu/nu mice xeno-graft model, the influence of MVs upon the growth and aggressiveness of RCC (786-0) was assessed. Cell counting kit-8 (CCK-8) assay, incidence of tumor, tumor size, Ki-67 or TUNEL staining was used to evaluate tumor cell growth in vitro or in vivo. Flow cytometry assay (in vitro) or examination of cyclin D1 expression (in vivo) was carried out to determine the alteration of cell cycle. The aggressiveness was analyzed by Wound Healing Assay (in vitro) or MMP-2 and MMP-9 expression (in vivo). AKT/p-AKT, ERK1/2/p-ERK1/2 or HGF/c-MET expression was detected by real-time PCR or western blot. Our data demonstrated that MVs promote the growth and aggressiveness of RCC both in vitro and in vivo. In addition, MVs facilitated the progression of cell cycle from G0/1 to S. HGF expression in RCC was greatly induced by MVs, associated with activation of AKT and ERK1/2 signaling pathways. RNase pre-treatment abrogated all effects of MVs. In summary, induction of HGF synthesis via RNA transferred by MVs activating AKT and ERK1/2 signaling is one of crucial contributors to the pro-tumor effect.  相似文献   

17.
Colorectal carcinoma (CRC) is one of the most common cancers with high metastatic potential, explaining why identifying new drug candidates that inhibit tumour metastasis is an urgent need. The aim of this study was to evaluate the biological activities of pectolinarigenin (PEC, a natural flavonoid present in Cirsium chanroenicum) in CRC in vitro and in vivo and to determine its underlying mechanism of action. Here, we observed that treatment with PEC could inhibit cell viability and induce apoptosis in cancer cells in a concentration- and time-dependent manner. The occurrence of apoptosis was associated with activation of caspase-3 and Bax and decreased expression of Bcl-2. In addition, PEC markedly impaired CRC cell migration and invasion by downregulating the expression of matrix metalloproteinase (MMP-9) and phosphorylated-Stat3Tyr705. Moreover, our studies showed that PEC inhibited abdominal metastasis models of murine colorectal cancer. In addition, histological and immunohistochemical analyses revealed a decrease in Ki67-positive cells, MMP9-positive cells and p-Stat3Tyr705 cells upon treatment with PEC compared to control samples. Furthermore, PEC reduced the number of myeloid-derived suppressor cells (MDSCs) in the blood and tumours, which was accompanied by the increased infiltration of CD8+T cells in the blood. Taken together, our findings suggested that PEC could be used as a natural drug to inhibit CRC metastasis.  相似文献   

18.
19.
Cancer development and chemo-resistance are often due to impaired functioning of the p53 tumor suppressor through genetic mutation or sequestration by other proteins. In glioblastoma multiforme (GBM), p53 availability is frequently reduced because it binds to the Murine Double Minute-2 (MDM2) oncoprotein, which accumulates at high concentrations in tumor cells. The use of MDM2 inhibitors that interfere with the binding of p53 and MDM2 has become a valid approach to inhibit cell growth in a number of cancers; however little is known about the efficacy of these inhibitors in GBM. We report that a new small-molecule inhibitor of MDM2 with a spirooxoindolepyrrolidine core structure, named ISA27, effectively reactivated p53 function and inhibited human GBM cell growth in vitro by inducing cell cycle arrest and apoptosis. In immunoincompetent BALB/c nude mice bearing a human GBM xenograft, the administration of ISA27 in vivo activated p53, inhibited cell proliferation and induced apoptosis in tumor tissue. Significantly, ISA27 was non-toxic in an in vitro normal human cell model and an in vivo mouse model. ISA27 administration in combination with temozolomide (TMZ) produced a synergistic inhibitory effect on GBM cell viability in vitro, suggesting the possibility of lowering the dose of TMZ used in the treatment of GBM. In conclusion, our data show that ISA27 releases the powerful antitumor capacities of p53 in GBM cells. The use of this MDM2 inhibitor could become a novel therapy for the treatment of GBM patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号