首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms for cancer-related inflammation remain to be fully elucidated. Non-apoptotic functions of Fas signaling have been proposed to play an important role in promoting tumor progression. It has yet to be determined if targeting Fas signaling can control tumor progression through suppression of cancer-related inflammation. In the current study we found that breast cancer cells with constitutive Fas expression were resistant to apoptosis induction by agonistic anti-Fas antibody (Jo2) ligation or Fas ligand cross-linking. Higher expression of Fas in human breast cancer tissue has been significantly correlated with poorer prognosis in breast cancer patients. To determine whether blockade of Fas signaling in breast cancer could suppress tumor progression, we prepared an orthotopic xenograft mouse model with mammary cancer cells 4T1 and found that blockade of Fas signaling in 4T1 cancer cells markedly reduced tumor growth, inhibited tumor metastasis in vivo, and prolonged survival of tumor-bearing mice. Mechanistically, blockade of Fas signaling in cancer cells significantly decreased systemic or local recruitment of myeloid derived suppressor cells (MDSCs) in vivo. Furthermore, blockade of Fas signaling markedly reduced IL-6, prostaglandin E2 production from breast cancer cells by impairing p-p38, and activity of the NFκB pathway. In addition, administration of a COX-2 inhibitor and anti-IL-6 antibody significantly reduced MDSC accumulation in vivo. Therefore, blockade of Fas signaling can suppress breast cancer progression by inhibiting proinflammatory cytokine production and MDSC accumulation, indicating that Fas signaling-initiated cancer-related inflammation in breast cancer cells may be a potential target for treatment of breast cancer.  相似文献   

2.
The genetic determinants for most breast cancer cases remain elusive. Whilst mutations in BRCA1 and BRCA2 significantly contribute to familial breast cancer risk, their contribution to sporadic breast cancer is low. In such cases genes frequently altered in the general population, such as the gene mutated in Ataxia telangiectasia (AT), ATM may be important risk factors. The initial interest in studying ATM heterozygosity in breast cancer arose from the findings of epidemiological studies of AT families in which AT heterozygote women had an increased risk of breast cancer and estimations that 1% of the population are AT heterozygotes. One of the clinical features of AT patients is extreme cellular sensitivity to ionising radiation. This observation, together with the finding that a significant proportion of breast cancer patients show an exaggerated acute or late normal tissue reactions after radiotherapy, has lead to the suggestion that AT heterozygosity plays a role in radiosensitivity and breast cancer development. Loss of heterozygosity in the region of the ATM gene on chromosome 11, has been found in about 40% of sporadic breast tumours. However, screening for ATM mutations in sporadic breast cancer cases, showing or not adverse effects to radiotherapy, has not revealed the magnitude of involvement of the ATM gene expected. Their size and the use of the protein truncation test to identify mutations limit many of these studies. This latter parameter is critical as the profile of mutations in AT patients may not be representative of the ATM mutations in other diseases. The potential role of rare sequence variants within the ATM gene, sometimes reported as polymorphisms, also needs to be fully assessed in larger cohorts of breast cancer patients and controls in order to determine whether they represent cancer and/or radiation sensitivity predisposing mutations.  相似文献   

3.
Change of DNA cytosine methylation (5mC) is an early event in the development of cancer, and the recent discovery of a 5-hydroxymethylated form (5hmC) of cytosine suggests a regulatory epigenetic role that might be different from 5-methylcytosine. Here, we aimed at elucidating the role of 5hmC in breast cancer. To interrogate the 5hmC levels of the leucine zipper, putative tumor suppressor 1 (LZTS1) gene in detail, we analyzed 75 primary breast cancer tissue samples from initial diagnosis and 12 normal breast tissue samples derived from healthy persons. Samples were subjected to 5hmC glucosyltransferase treatment followed by restriction digestion and segment-specific amplification of 11 polymerase chain reaction products. Nine of the 11 5′LZTS1 fragments showed significantly lower (fold change of 1.61–6.01, P < .05) 5hmC content in primary breast cancer tissue compared to normal breast tissue samples. No significant differences were observed for 5mC DNA methylation. Furthermore, both LZTS1 and TET1 mRNA expressions were significantly reduced in tumor samples (n = 75, P < .001, Student''s t test), which correlated significantly with 5hmC levels in samples. 5hmC levels in breast cancer tissues were associated with unfavorable histopathologic parameters such as lymph node involvement (P < .05, Student''s t test). A decrease of 5hmC levels of LZTS1, a classic tumor suppressor gene known to influence metastasis in breast cancer progression, is correlated to down-regulation of LZTS1 mRNA expression in breast cancer and might epigenetically enhance carcinogenesis. The study provides support for the novel hypothesis that suggests a strong influence of 5hmC on mRNA expression. Finally, one may also consider 5hmC as a new biomarker.  相似文献   

4.
Breast cancer affects one in eight women in their lifetime. Though diet, age and genetic predisposition are established risk factors, the majority of breast cancers have unknown etiology. The human microbiota refers to the collection of microbes inhabiting the human body. Imbalance in microbial communities, or microbial dysbiosis, has been implicated in various human diseases including obesity, diabetes, and colon cancer. Therefore, we investigated the potential role of microbiota in breast cancer by next-generation sequencing using breast tumor tissue and paired normal adjacent tissue from the same patient. In a qualitative survey of the breast microbiota DNA, we found that the bacterium Methylobacterium radiotolerans is relatively enriched in tumor tissue, while the bacterium Sphingomonas yanoikuyae is relatively enriched in paired normal tissue. The relative abundances of these two bacterial species were inversely correlated in paired normal breast tissue but not in tumor tissue, indicating that dysbiosis is associated with breast cancer. Furthermore, the total bacterial DNA load was reduced in tumor versus paired normal and healthy breast tissue as determined by quantitative PCR. Interestingly, bacterial DNA load correlated inversely with advanced disease, a finding that could have broad implications in diagnosis and staging of breast cancer. Lastly, we observed lower basal levels of antibacterial response gene expression in tumor versus healthy breast tissue. Taken together, these data indicate that microbial DNA is present in the breast and that bacteria or their components may influence the local immune microenvironment. Our findings suggest a previously unrecognized link between dysbiosis and breast cancer which has potential diagnostic and therapeutic implications.  相似文献   

5.
The tumor specificity of JAA-F11, a novel monoclonal antibody specific for the Thomsen-Friedenreich cancer antigen (TF-Ag-alpha linked), has been comprehensively studied by in vitro immunohistochemical (IHC) staining of human tumor and normal tissue microarrays and in vivo biodistribution and imaging by micro-positron emission tomography imaging in breast and lung tumor models in mice. The IHC analysis detailed herein is the comprehensive biological analysis of the tumor specificity of JAA-F11 antibody performed as JAA-F11 is progressing towards preclinical safety testing and clinical trials. Wide tumor reactivity of JAA-F11, relative to the matched mouse IgG3 (control), was observed in 85% of 1269 cases of breast, lung, prostate, colon, bladder, and ovarian cancer. Staining on tissues from breast cancer cases was similar regardless of hormonal or Her2 status, and this is particularly important in finding a target on the currently untargetable triple-negative breast cancer subtype. Humanization of JAA-F11 was recently carried out as explained in a companion paper “Humanization of JAA-F11, a Highly Specific Anti–Thomsen-Friedenreich Pancarcinoma Antibody and In Vitro Efficacy Analysis” (Neoplasia 19: 716-733, 2017), and it was confirmed that humanization did not affect chemical specificity. IHC studies with humanized JAA-F11 showed similar binding to human breast tumor tissues. In vivo imaging and biodistribution studies in a mouse syngeneic breast cancer model and in a mouse-human xenograft lung cancer model with humanized 124I- JAA-F11 construct confirmed in vitro tumor reactivity and specificity. In conclusion, the tumor reactivity of JAA-F11 supports the continued development of JAA-F11 as a targeted cancer therapeutic for multiple cancers, including those with unmet need.  相似文献   

6.
In our previous study, we demonstrated that the BRCC2 (breast cancer cell 2) gene is a proapoptotic molecule that interacts with Bcl-XL. BRCC2 downregulation is associated with poor disease-free and overall survival in breast cancer. In this study, we aimed to investigate the role of BRCC2 in tumor suppression in breast cancer. In clinical breast cancer samples, we found that BRCC2 expression was significantly downregulated in cancer lesions compared with paired normal breast tissues. By silencing or overexpressing BRCC2 in breast cancer cells, we found that BRCC2 could inhibit cell growth and metastasis in vitro. An in vivo assay showed that BRCC2 not only dramatically inhibited breast cancer cell xenograft formation and growth but also inhibited breast cancer cell metastasis in a lung metastasis model. Moreover, we demonstrated that BRCC2 inhibited breast cancer metastasis via regulation of the Akt pathway. Thus, our study provided evidence that BRCC2 functions as a novel tumor suppressor in breast cancer and may be a potential therapeutic target for breast cancer management.  相似文献   

7.
8.
Aberrant changes in specific glycans have been shown to be associated with immunosurveillance, tumorigenesis, tumor progression and metastasis. In this study, the N-glycan profiling of membrane proteins from human breast cancer cell lines and tissues was detected using modified DNA sequencer-assisted fluorophore-assisted carbohydrate electrophoresis (DSA-FACE). The N-glycan profiles of membrane proteins were analyzed from 7 breast cancer cell lines and MCF 10A, as well as from 100 pairs of breast cancer and corresponding adjacent tissues. The results showed that, compared with the matched adjacent normal tissue samples, two biantennary N-glycans (NA2 and NA2FB) were significantly decreased (p <0.0001) in the breast cancer tissue samples, while the triantennary glycan (NA3FB) and a high-mannose glycan (M8) were dramatically increased (p = 0.001 and p <0.0001, respectively). Moreover, the alterations in these specific N-glycans occurred through the oncogenesis and progression of breast cancer. These results suggested that the modified method based on DSA-FACE is a high-throughput detection technology that is suited for analyzing cell surface N-glycans. These cell surface-specific N-glycans may be helpful in recognizing the mechanisms of tumor cell immunologic escape and could be potential targets for new breast cancer drugs.  相似文献   

9.

Background

Aberrant DNA methylation patterns might be used as a biomarker for diagnosis and management of cancer patients.

Methods and Findings

To achieve a gene panel for developing a breast cancer blood-based test we quantitatively assessed the DNA methylation proportion of 248 CpG sites per sample (total of 31,248 sites in all analyzed samples) on 10 candidate genes (APC, BIN1, BMP6, BRCA1, CST6, ESR-b, GSTP1, P16, P21 and TIMP3). The number of 126 samples consisting of two different cohorts was used (first cohort: plasma samples from breast cancer patients and normal controls; second cohort: triple matched samples including cancerous tissue, matched normal tissue and serum samples). In the first cohort, circulating cell free methylated DNA of the 8 tumor suppressor genes (TSGs) was significantly higher in patients with breast cancer compared to normal controls (P<0.01). In the second cohort containing triple matched samples, seven genes showed concordant hypermethylated profile in tumor tissue and serum samples compared to normal tissue (P<0.05). Using eight genes as a panel to develop a blood-based test for breast cancer, a sensitivity and specificity of more than 90% could be achieved in distinguishing between tumor and normal samples.

Conclusions

Our study suggests that the selected TSG panel combined with the high-throughput technology might be a useful tool to develop epigenetic based predictive and prognostic biomarker for breast cancer relying on pathologic methylation changes in tumor tissue, as well as in circulation.  相似文献   

10.

Background

Breast cancer is a heterogeneous disease that is not totally eradicated by current therapies. The classification of breast tumors into distinct molecular subtypes by gene profiling and immunodetection of surrogate markers has proven useful for tumor prognosis and prediction of effective targeted treatments. The challenge now is to identify molecular biomarkers that may be of functional relevance for personalized therapy of breast tumors with poor outcome that do not respond to available treatments. The Mitochondrial Tumor Suppressor (MTUS1) gene is an interesting candidate whose expression is reduced in colon, pancreas, ovary and oral cancers. The present study investigates the expression and functional effects of MTUS1 gene products in breast cancer.

Methods and Findings

By means of gene array analysis, real-time RT-PCR and immunohistochemistry, we show here that MTUS1/ATIP3 is significantly down-regulated in a series of 151 infiltrating breast cancer carcinomas as compared to normal breast tissue. Low levels of ATIP3 correlate with high grade of the tumor and the occurrence of distant metastasis. ATIP3 levels are also significantly reduced in triple negative (ER- PR- HER2-) breast carcinomas, a subgroup of highly proliferative tumors with poor outcome and no available targeted therapy. Functional studies indicate that silencing ATIP3 expression by siRNA increases breast cancer cell proliferation. Conversely, restoring endogenous levels of ATIP3 expression leads to reduced cancer cell proliferation, clonogenicity, anchorage-independent growth, and reduces the incidence and size of xenografts grown in vivo. We provide evidence that ATIP3 associates with the microtubule cytoskeleton and localizes at the centrosomes, mitotic spindle and intercellular bridge during cell division. Accordingly, live cell imaging indicates that ATIP3 expression alters the progression of cell division by promoting prolonged metaphase, thereby leading to a reduced number of cells ungergoing active mitosis.

Conclusions

Our results identify for the first time ATIP3 as a novel microtubule-associated protein whose expression is significantly reduced in highly proliferative breast carcinomas of poor clinical outcome. ATIP3 re-expression limits tumor cell proliferation in vitro and in vivo, suggesting that this protein may represent a novel useful biomarker and an interesting candidate for future targeted therapies of aggressive breast cancer.  相似文献   

11.
12.
It has long been hypothesized that body tissue uptake of aluminum may have biological implications in breast cancer. In vitro and in vivo studies have shown that aluminum may trigger genomic instability by interfering with DNA strands. The objective of this study was to examine the relationship between aluminum concentrations in the peripheral and central areas of breast tumors with the instability of three key genes in breast cancer, ERBB2, C-MYC, and CCND1 and aneuploidy of the chromosomes harboring these genes. Tissue samples of 118 women treated for breast cancer were obtained. Evaluation of aluminum content was carried out using graphite furnace atomic absorption spectrometry. A tissue microarray slide containing the tumor samples was used in FISH assays to assess ERBB2, C-MYC, and CCND1 expressions as well as the statuses of their respective chromosomes 17, 8, and 11. Clinicopathological data were obtained from patient’s records. Aluminum levels of >2.0 mg/kg were found in 20.3 and 22.1 % of the central and peripheral breast tumor areas, respectively. Amplification and/or aneuploid-positive statuses for ERBB2/CEP17, C-MYC/CEP8, and CCND1/CEP11 were detected in 24, 36.7, and 29.3 % of the tumors, respectively. We found that aluminum concentration was not related to these altered gene statuses. Our findings suggest that aluminum concentration does not affect genomic stability in breast tissues. Tissue microenvironment modifications, due to the presence of aluminum compounds, seem more appealing as a possible target for future studies to determine the implications of aluminum in breast carcinogenesis.  相似文献   

13.
14.
Obesity is well documented as a risk factor for developing breast cancer, especially in postmenopausal women. Adipose tissue in the breast under obese conditions induces inflammation by increasing macrophage infiltration and pro-inflammatory cytokines that in turn up-regulates genes and signaling pathways, resulting in increased inflammation, cell proliferation and tumor growth in the breast. Due to their potent anti-inflammatory effects, n-3 polyunsaturated fatty acids (n-3 PUFA) are a promising and safe dietary intervention in reducing breast cancer risk. Here, we briefly review current status of breast cancer and its relationship with obesity. We then review in depth, current research and knowledge on the role of n-3 PUFA in reducing/preventing breast cancer cell growth in vitro, in vivo and in human studies, and how n-3 PUFA may modulate signaling pathways mitigating their effects on breast cancer development.  相似文献   

15.
Under many circumstances, the host constituents that are found in the tumor microenvironment support a malignancy network and provide the cancer cells with advantages in proliferation, invasiveness and metastasis establishment at remote organs. It is known that Toll like receptors (TLRs) are expressed not only on immune cells but also on cancer cells and it has suggested a deleterious role for TLR3 in inflammatory disease. Hypothesizing that altered IFNγ signaling may be a key mechanism of immune dysfunction common to cancer as well CXCR4 is overexpressed among breast cancer patients, the mRNA expression of TLR3, CXCR4 and IFNγ in breast cancer tumor tissues was investigated. No statistically significant differences in the expression of CXCR4 mRNA, IFNγ and TLR3 between healthy and tumor tissues was observed, however, it was verified a positive correlation between mRNA relative expression of TLR3 and CXCR4 (p?<?0.001), and mRNA relative expression of TLR3 was significantly increased in breast cancer tumor tissue when compared to healthy mammary gland tissue among patients expressing high IFNγ (p?=?0.001). Since the tumor microenvironment plays important roles in cancer initiation, growth, progression, invasion and metastasis, it is possible to propose that an overexpression of IFNγ mRNA due to the pro-inflammatory microenvironment can lead to an up-regulation of CXCR4 mRNA and consequently to an increased TLR3 mRNA expression even among nodal negative patients. In the future, a comprehensive study of TLR3, CXCR4 and IFNγ axis in primary breast tumors and corresponding healthy tissues will be crucial to further understanding of the cancer network.  相似文献   

16.

Background

Bone metastasis is the most lethal form of several cancers. The β2-microglobulin (β2-M)/hemochromatosis (HFE) complex plays an important role in cancer development and bone metastasis. We demonstrated previously that overexpression of β2-M in prostate, breast, lung and renal cancer leads to increased bone metastasis in mouse models. Therefore, we hypothesized that β2-M is a rational target to treat prostate cancer bone metastasis.

Results

In this study, we demonstrate the role of β2-M and its binding partner, HFE, in modulating radiation sensitivity and chemo-sensitivity of prostate cancer. By genetic deletion of β2-M or HFE or using an anti-β2-M antibody (Ab), we demonstrate that prostate cancer cells are sensitive to radiation in vitro and in vivo. Inhibition of β2-M or HFE sensitized prostate cancer cells to radiation by increasing iron and reactive oxygen species and decreasing DNA repair and stress response proteins. Using xenograft mouse model, we demonstrate that anti-β2-M Ab sensitizes prostate cancer cells to radiation treatment. Additionally, anti-β2-M Ab was able to prevent tumor growth in an immunocompetent spontaneous prostate cancer mouse model. Since bone metastasis is lethal, we used a bone xenograft model to test the ability of anti-β2-M Ab and radiation to block tumor growth in the bone. Combination treatment significantly prevented tumor growth in the bone xenograft model by inhibiting β2-M and inducing iron overload. In addition to radiation sensitive effects, inhibition of β2-M sensitized prostate cancer cells to chemotherapeutic agents.

Conclusion

Since prostate cancer bone metastatic patients have high β2-M in the tumor tissue and in the secreted form, targeting β2-M with anti-β2-M Ab is a promising therapeutic agent. Additionally, inhibition of β2-M sensitizes cancer cells to clinically used therapies such as radiation by inducing iron overload and decreasing DNA repair enzymes.  相似文献   

17.
Breast cancer often metastasizes to bone causing osteolytic bone resorption which releases active TGFβ. Because TGFβ favors progression of breast cancer metastasis to bone, we hypothesized that treatment using anti-TGFβ antibody may reduce tumor burden and rescue tumor-associated bone loss in metastatic breast cancer. In this study we have tested the efficacy of an anti-TGFβ antibody 1D11 preventing breast cancer bone metastasis. We have used two preclinical breast cancer bone metastasis models, in which either human breast cancer cells or murine mammary tumor cells were injected in host mice via left cardiac ventricle. Using several in vivo, in vitro and ex vivo assays, we have demonstrated that anti-TGFβ antibody treatment have significantly reduced tumor burden in the bone along with a statistically significant threefold reduction in osteolytic lesion number and tenfold reduction in osteolytic lesion area. A decrease in osteoclast numbers (p = 0.027) in vivo and osteoclastogenesis ex vivo were also observed. Most importantly, in tumor-bearing mice, anti-TGFβ treatment resulted in a twofold increase in bone volume (p<0.01). In addition, treatment with anti-TGFβ antibody increased the mineral-to-collagen ratio in vivo, a reflection of improved tissue level properties. Moreover, anti-TGFβ antibody directly increased mineralized matrix formation in calverial osteoblast (p = 0.005), suggesting a direct beneficial role of anti-TGFβ antibody treatment on osteoblasts. Data presented here demonstrate that anti-TGFβ treatment may offer a novel therapeutic option for tumor-induced bone disease and has the dual potential for simultaneously decreasing tumor burden and rescue bone loss in breast cancer to bone metastases. This approach of intervention has the potential to reduce skeletal related events (SREs) in breast cancer survivors.  相似文献   

18.
Triple negative breast cancer (TNBC) is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3) is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis.  相似文献   

19.
The Growth Differentiation Factor-15 gene (GDF15) is a member of TGF-b superfamily and this cytokine family is considered to be a promising target for cancer therapy. The purpose of this study was to investigate the effect of tumor derived GDF15 on proliferation and radiosensitivity of breast cancer cells in vitro and in vivo. A mouse breast cancer LM2 cell line with stable transfection of full-length mouse GDF15 cDNA was established. Cell growth and proliferation was observed using WST assay and impedance-based method. Radiation induced GDF15 and TGF-b1 expression was determined by qRT-PCR. Radiosensitivity was measured by a colony formation assay in vitro and by a tumor growth delay assay in vivo. Cells with more than a 10-fold increase in GDF15 expression had a higher growth rate than parental control cells in vitro and in vivo. The radiation induced elevation of the expression of TGFb1 was reduced in GDF15 overexpressing cells. GDF15 may play a role in the radiation response of breast cancer cells by effecting cell survival, inhibiting radiation-induced cell death, and inhibiting the TGF-b1 related cytotoxic action.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号