首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Francisella tularensis is a highly infectious Gram-negative intracellular pathogen that causes the fulminating disease tularemia and is considered to be a potential bioweapon. F. tularensis pathogenicity island proteins play a key role in modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm of macrophages. The 23 kDa pathogenicity island protein IglC is essential for the survival and proliferation of F. tularensis in macrophages. Seeking to gain some insight into its function, we determined the crystal structure of IglC at 1.65 A resolution. IglC adopts a beta-sandwich conformation that exhibits no similarity with any known protein structure.  相似文献   

2.
Glycoconjugate-based vaccines have proved to be effective at producing long-lasting protection against numerous pathogens. Here, we describe the application of bacterial protein glycan coupling technology (PGCT) to generate a novel recombinant glycoconjugate vaccine. We demonstrate the conjugation of the Francisella tularensis O-antigen to the Pseudomonas aeruginosa carrier protein exotoxin A using the Campylobacter jejuni PglB oligosaccharyltransferase. The resultant recombinant F. tularensis glycoconjugate vaccine is expressed in Escherichia coli where yields of 3 mg l−1 of culture were routinely produced in a single-step purification process. Vaccination of BALB/c mice with the purified glycoconjugate boosted IgG levels and significantly increased the time to death upon subsequent challenge with F. tularensis subsp. holarctica. PGCT allows different polysaccharide and protein combinations to be produced recombinantly and could be easily applicable for the production of diverse glycoconjugate vaccines.  相似文献   

3.
We developed a microarray platform by immobilizing bacterial 'signature' carbohydrates onto epoxide modified glass slides. The carbohydrate microarray platform was probed with sera from non-melioidosis and melioidosis (Burkholderia pseudomallei) individuals. The platform was also probed with sera from rabbits vaccinated with Bacillus anthracis spores and Francisella tularensis bacteria. By employing this microarray platform, we were able to detect and differentiate B. pseudomallei, B. anthracis and F. tularensis antibodies in infected patients, and infected or vaccinated animals. These antibodies were absent in the sera of na?ve test subjects. The advantages of the carbohydrate microarray technology over the traditional indirect hemagglutination and microagglutination tests for the serodiagnosis of melioidosis and tularemia are discussed. Furthermore, this array is a multiplex carbohydrate microarray for the detection of all three biothreat bacterial infections including melioidosis, anthrax and tularemia with one, multivalent device. The implication is that this technology could be expanded to include a wide array of infectious and biothreat agents.  相似文献   

4.
Francisella tularensis, the causative agent of tularemia, is one of the deadliest agents of biological warfare and bioterrorism. Extremely high virulence of this bacterium is associated with its ability to dampen or subvert host innate immune response. The objectives of this study were to identify factors and understand the mechanisms of host innate immune evasion by F. tularensis. We identified and explored the pathogenic role of a mutant interrupted at gene locus FTL_0325, which encodes an OmpA-like protein. Our results establish a pathogenic role of FTL_0325 and its ortholog FTT0831c in the virulent F. tularensis SchuS4 strain in intramacrophage survival and suppression of proinflammatory cytokine responses. This study provides mechanistic evidence that the suppressive effects on innate immune responses are due specifically to these proteins and that FTL_0325 and FTT0831c mediate immune subversion by interfering with NF-κB signaling. Furthermore, FTT0831c inhibits NF-κB activity primarily by preventing the nuclear translocation of p65 subunit. Collectively, this study reports a novel F. tularensis factor that is required for innate immune subversion caused by this deadly bacterium.  相似文献   

5.
We explored the d-arabinose 5-phosphate isomerase (KdsD, E.C. 5.3.1.13) from Francisella tularensis, a highly infectious Gram-negative pathogen that has raised concern as a potential bioweapon, as a target for the development of novel chemotherapeutics. F. tularensis KdsD was expressed in Escherichia coli from a synthetic gene, purified, and characterized. A group of hydroxamates designed to be mimics of the putative enediol intermediate in the enzyme’s catalytic mechanism were prepared and tested as inhibitors of F. tularensis KdsD. The best inhibitor, which has an IC50 of 7 μM, is the most potent KdsD inhibitor reported to date.  相似文献   

6.
The transketolase (TKT) enzyme in Mycobacterium tuberculosis represents a novel drug target for tuberculosis treatment and has low homology with the orthologous human enzyme. Here, we report on the structural and kinetic characterization of the transketolase from M. tuberculosis (TBTKT), a homodimer whose monomers each comprise 700 amino acids. We show that TBTKT catalyses the oxidation of donor sugars xylulose-5-phosphate and fructose-6-phosphate as well as the reduction of the acceptor sugar ribose-5-phosphate. An invariant residue of the TKT consensus sequence required for thiamine cofactor binding is mutated in TBTKT; yet its catalytic activities are unaffected, and the 2.5 Å resolution structure of full-length TBTKT provides an explanation for this. Key structural differences between the human and mycobacterial TKT enzymes that impact both substrate and cofactor recognition and binding were uncovered. These changes explain the kinetic differences between TBTKT and its human counterpart, and their differential inhibition by small molecules. The availability of a detailed structural model of TBTKT will enable differences between human and M. tuberculosis TKT structures to be exploited to design selective inhibitors with potential antitubercular activity.  相似文献   

7.
Understanding the pathogenesis of infectious diseases requires comprehensive knowledge of the proteins expressed by the pathogen during in vivo growth in the host. Proteomics provides the tools for such analyses but the protocols required to purify sufficient quantities of the pathogen from the host organism are currently lacking. Here, we present a rapid immunomagnetic protocol for the separation of Francisella tularensis, a highly virulent bacterium and potential biowarfare agent, from the spleens of infected mice. In less than one hour, bacteria can be isolated in quantities sufficient to carry out meaningful proteomic comparisons with in vitro grown bacteria. Furthermore, the isolates are virtually free from contaminating host proteins. Two-dimensional gel analysis revealed a host induced proteome in which 78 proteins were differentially expressed in comparison to in vitro grown controls. The results obtained clearly demonstrate the complexity of the adaptive response of F. tularensis to the host environment, and the difficulty of mimicking such behavior in vitro.  相似文献   

8.
The bacterial stringent response is induced by nutrient deprivation and is mediated by enzymes of the RSH (RelA/SpoT homologue; RelA, (p)ppGpp synthetase I; SpoT, (p)ppGpp synthetase II) superfamily that control concentrations of the ‘alarmones’ (p)ppGpp (guanosine penta- or tetra-phosphate). This regulatory pathway is present in the vast majority of pathogens and has been proposed as a potential anti-bacterial target. Current understanding of RelA-mediated responses is based on biochemical studies using Escherichia coli as a model. In comparison, the Francisella tularensis RelA sequence contains a truncated regulatory C-terminal region and an unusual synthetase motif (EXSD). Biochemical analysis of F. tularensis RelA showed the similarities and differences of this enzyme compared with the model RelA from Escherichia coli. Purification of the enzyme yielded a stable dimer capable of reaching concentrations of 10 mg/ml. In contrast with other enzymes from the RelA/SpoT homologue superfamily, activity assays with F. tularensis RelA demonstrate a high degree of specificity for GTP as a pyrophosphate acceptor, with no measurable turnover for GDP. Steady state kinetic analysis of F. tularensis RelA gave saturation activity curves that best fitted a sigmoidal function. This kinetic profile can result from allosteric regulation and further measurements with potential allosteric regulators demonstrated activation by ppGpp (5′,3′-dibisphosphate guanosine) with an EC50 of 60±1.9 μM. Activation of F. tularensis RelA by stalled ribosomal complexes formed with ribosomes purified from E. coli MRE600 was observed, but interestingly, significantly weaker activation with ribosomes isolated from Francisella philomiragia.  相似文献   

9.
Nucleoside diphosphate (NDP) kinases are ubiquitous enzymes that transfer gamma-phosphates from nucleoside triphosphates to nucleoside diphosphates via a ping-pong mechanism. The important role of this large family of enzymes in controlling cellular functions and developmental processes along with their crystallizability has made them good candidates for structural studies. We recently determined the structure of an evolved version of an NDP kinase from Pyrobaculum aerophilum, an extreme thermophile. This NDP kinase has similarity to the 42 other NDP kinases deposited in the Protein Data Bank (PDB) but differs significantly in sequence, structure, and biophysical properties. The P. aerophilum NDP kinase sequence contains two unique segments not present in other NDP kinases, comprising residues 66-100 and 156-165. We show that deletion mutants of the P. aerophilum NDP kinase lacking either or both of these inserts have an altered substrate specificity, allowing dGTP as the phosphate donor. A structural analysis of the evolved NDP kinase in conjunction with mutagenesis experiments suggests that the substrate specificity of the P. aerophilum NDP kinase is related to the presence of these two inserts.  相似文献   

10.
黄欣  李益民  杜聪  袁文杰 《生物工程学报》2022,38(12):4669-4680
聚磷酸激酶(polyphosphate kinase,PPK)在体外催化合成ATP的反应中有着重要作用。为寻找能利用短链聚磷酸盐(polyphosphate,polyP)为底物高效合成ATP的聚磷酸激酶,本文以来源于泗阳鞘氨醇杆菌(Sphingobacterium siyangensis)的聚磷酸激酶(PPK2)为研究目标,利用pET-29a构建重组质粒,在大肠杆菌(Escherichia coli)BL21(DE3)中表达,并将其作为ATP再生系统的关键酶与l-氨基酸连接酶(YwfE)联用生产丙谷二肽(Ala-Gln)。ppk2长度为810bp,编码270个氨基酸;SDS-PAGE结果表明PPK2为可溶性表达,分子量为29.7kDa。对PPK2的最适反应条件进行了优化,结果发现其在22–42℃、pH7–10的范围内均可以保持较好活性,且在37℃、pH为7、镁离子(Mg2+)浓度为30mmol/L、底物ADP与六偏磷酸钠浓度分别为5mmol/L和10mmol/L时酶活最大,在0.5h时ATP产率可以达到理论值的60%以上。作为模式反应体系,当PPK2与YwfE联用生产Ala-Gln时,达到与直接添加ATP相同的效果。此聚磷酸激酶作为ATP再生系统具有较好的适用性,适用的温度和pH范围广,且能以廉价易得的短链polyP为底物高效合成ATP,为依赖ATP的催化反应体系的能量再生提供了新酶的来源。  相似文献   

11.
Mycobacterium tuberculosis is a gram-positive bacterium causes tuberculosis in human. H37Rv strain is a pathogenic strain utilized for tuberculosis research. The cytidylate mono-phosphate (CMP) kinase of Mycobacterium tuberculosis belongs to the family nucleoside mono-phosphate kinase (NMK), this enzyme is required for the bacterial growth. Therefore, it is important to study the structural and functional features of this enzyme in the control of the disease. Hence, we developed the structural molecular model of the CMP kinase protein from Mycobacterium tuberculosis by homology modeling using the software MODELLER (9v10). Based on sequence similarity with protein of known structure (template) of Mycobacterium smegmatis (PDB ID: 3R20) was chosen from protein databank (PDB) by using BLASTp. The energy of constructed models was minimized and the qualities of the models were evaluated by PROCHECK and VERRIFY-3D. Resulted Ramachandran plot analysis showed that conformations for 100.00% of amino acids residues are within the most favored regions. A possible homologous deep cleft active site was identified in the Model using CASTp program. Amino acid composition and polarity of that protein was observed by CLC-Protein Workbench tool. Expasy''s Prot-param server and CYC_REC tool were used for physiochemical and functional characterization of the protein. Studied of secondary structure of that protein was carried out by computational program, ProFunc. The structure is finally submitted in Protein Model Database. The predicted model permits initial inferences about the unexplored 3D structure of the CMP kinase and may be promote in relational designing of molecules for structure-function studies.  相似文献   

12.
The crystal structure of Mycobacterium tuberculosis adenylate kinase (MtAK) in complex with two ADP molecules and Mg2+ has been determined at 1.9 A resolution. Comparison with the solution structure of the enzyme, obtained in the absence of substrates, shows significant conformational changes of the LID and NMP-binding domains upon substrate binding. The ternary complex represents the state of the enzyme at the start of the backward reaction (ATP synthesis). The structure is consistent with a direct nucleophilic attack of a terminal oxygen from the acceptor ADP molecule on the beta-phosphate from the donor substrate, and both the geometry and the distribution of positive charge in the active site support the hypothesis of an associative mechanism for phosphoryl transfer.  相似文献   

13.
beta-Ketoacyl-ACP synthase III (FabH), an essential enzyme for bacterial viability, catalyzes the initiation of fatty acid elongation by condensing malonyl-ACP with acetyl-CoA. We have determined the crystal structure of FabH from Staphylococcus aureus, a Gram-positive human pathogen, to 2 A resolution. Although the overall structure of S. aureus FabH is similar to that of Escherichia coli FabH, the primer binding pocket in S. aureus FabH is significantly larger than that present in E. coli FabH. The structural differences, which agree with kinetic parameters, provide explanation for the observed varying substrate specificity for E. coli and S. aureus FabH. The rank order of activity of S. aureus FabH with various acyl-CoA primers was as follows: isobutyryl- > hexanoyl- > butyryl- > isovaleryl- > acetyl-CoA. The availability of crystal structure may aid in designing potent, selective inhibitors of S. aureus FabH.  相似文献   

14.
Xenobiotic aromatic compounds represent one of the most significant classes of environmental pollutants. A novel benzoate oxidation (box) pathway has been identified recently in Burkholderia xenovorans LB400 (referred to simply as LB400) that is capable of assimilating benzoate and intimately tied to the degradation of polychlorinated biphenyls (PCBs). The box pathway in LB400 is present in two paralogous copies (boxM and boxC) and encodes eight enzymes with the first committed step catalyzed by benzoate CoA ligase (BCL). As a first step towards delineating the biochemical role of the box pathway in LB400, we have carried out functional studies of the paralogous BCL enzymes (BCLM and BCLC) with 20 different putative substrates. We have established a structural rationale for the observed substrate specificities on the basis of a 1.84 A crystal structure of BCLM in complex with benzoate. These data show that, while BCLM and BCLC display similar overall substrate specificities, BCLM is significantly more active towards benzoate and 2-aminobenzoate with tighter binding (Km) and a faster reaction rate (Vmax). Despite these clear functional differences, the residues that define the substrate-binding site in BCLM are completely conserved in BCLC, suggesting that second shell residues may play a significant role in substrate recognition and catalysis. Furthermore, comparison of the active site of BCLM with the recently solved structures of 4-chlorobenzoate CoA ligase and 2, 3-dihydroxybenzoate CoA ligase offers additional insight into the molecular features that mediate substrate binding in adenylate-forming enzymes. This study provides the first biochemical characterization of a Box enzyme from LB400 and the first structural characterization of a Box enzyme from any organism, and further substantiates the concept of distinct roles for the two paralogous box pathways in LB400.  相似文献   

15.
Genome sequencing showed that two proteins in Mycobacterium tuberculosis H37Rv contain the metal binding motif (D/E)X(2)HX(approximately 100)(D/E)X(2)H characteristic of the soluble diiron enzyme superfamily. These putative acyl-ACP desaturase genes desA1 and desA2 were cloned from genomic DNA and expressed in Escherichia coli BL21(DE3). DesA1 was found to be insoluble, but in contrast, DesA2 was a soluble protein amenable to biophysical characterization. Here, we report the 2.0 A resolution X-ray structure of DesA2 determined by multiple anomalous dispersion (MAD) phasing from a Se-met derivative and refinement against diffraction data obtained on the native protein. The X-ray structure shows that DesA2 is a homodimeric protein with a four-helix bundle core flanked by five additional helices that overlay with 192 structurally equivalent amino acids in the structure of stearoyl-ACP Delta9 desaturase from castor plant with an rms difference 1.42 A. In the DesA2 crystals, one metal (likely Mn from the crystallization buffer) was bound in high occupancy at the B-site of the conserved metal binding motif, while the A-site was not occupied by a metal ion. Instead, the amino group of Lys-76 occupied this position. The relationships between DesA2 and known diiron enzymes are discussed.  相似文献   

16.
5′-Methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH) are important metabolites in all living organisms. Two similar nucleosidases for hydrolyzing MTA in Arabidopsis thaliana (AtMTAN1 and AtMTAN2) exist, but only AtMTAN2 shows markedly broad substrate specificity for hydrolysis of SAH. To examine the biochemical characteristics of AtMTAN2, it was over-expressed in Escherichia coli and purified to homogeneity. Spectroscopic assays confirm AtMTAN2 catalyzes MTA as well as SAH hydrolysis, compared to AtMTAN1 which only hydrolyzes MTA. In addition, crystal structure of the AtMTAN2 enzyme in complex with, adenine was determined at 2.9 Å resolution. Finally, a structural comparison of AtMTAN2 performed with previously determined structures of AtMTAN1 and an E. coli homolog provides clues for the substrate specificity of MTA nucleosidases in A. thaliana.  相似文献   

17.
18.
The ability of bacterial pathogens to infect and cause disease is dependent upon their ability to resist antimicrobial components produced by their host, such as bile acids, fatty acids and other detergent-like molecules, and products of the innate immune system (e.g. cationic antimicrobial peptides). Bacterial resistance to the antimicrobial effects of such compounds is often mediated by active efflux systems belonging to the resistance-nodulation-division (RND) family of transporters. RND efflux systems have been implicated in antibiotic resistance and virulence extending their clinical relevance. In this report the hypothesis that the Francisella tularensis AcrAB RND efflux system contributes to antimicrobial resistance and pathogenesis has been tested. A null mutation was generated in the gene encoding the AcrB RND efflux pump protein of the live vaccine strain of F. tularensis. The resulting mutant exhibited increased sensitivity to multiple antibiotics and antimicrobial compounds. Murine challenge experiments revealed that the acrB mutant was attenuated. Collectively these results suggest that the F. tularensis AcrAB RND efflux system encodes a multiple drug efflux system that is important for virulence.  相似文献   

19.
Methicillin-resistant Staphylococcus aureus (MRSA) poses a major threat to human health, particularly through hospital acquired infection. The spread of MRSA means that novel targets are required to develop potential inhibitors to combat infections caused by such drug-resistant bacteria. Thymidylate kinase (TMK) is attractive as an antibacterial target as it is essential for providing components for DNA synthesis. Here, we report crystal structures of unliganded and thymidylate-bound forms of S. aureus thymidylate kinase (SaTMK). His-tagged and untagged SaTMK crystallize with differing lattice packing and show variations in conformational states for unliganded and thymidylate (TMP) bound forms. In addition to open and closed forms of SaTMK, an intermediate conformation in TMP binding is observed, in which the site is partially closed. Analysis of these structures indicates a sequence of events upon TMP binding, with helix alpha3 shifting position initially, followed by movement of alpha2 to close the substrate site. In addition, we observe significant conformational differences in the TMP-binding site in SaTMK as compared to available TMK structures from other bacterial species, Escherichia coli and Mycobacterium tuberculosis as well as human TMK. In SaTMK, Arg 48 is situated at the base of the TMP-binding site, close to the thymine ring, whereas a cis-proline occupies the equivalent position in other TMKs. The observed TMK structural differences mean that design of compounds highly specific for the S. aureus enzyme looks possible; such inhibitors could minimize the transfer of drug resistance between different bacterial species.  相似文献   

20.
Acid phosphatase activity in the highly infectious intracellular pathogen Francisella tularensis is directly related with the ability of these bacteria to survive inside host cells. Pharmacological inactivation of acid phosphatases could potentially help in the treatment of tularemia or even be utilized to neutralize the infection. In the present work, we report inhibitory compounds for three of the four major acid phosphatases produced by F. tularensis SCHU4: AcpA, AcpB, and AcpC. The inhibitors were identified using a catalytic screen from a library of chemicals approved for use in humans. The best results were obtained against AcpA. The two compounds identified, ascorbate (Ki = 380 ± 160 μm) and 2-phosphoascorbate (Ki = 3.2 ± 0.85 μm) inhibit AcpA in a noncompetitive, nonreversible fashion. A potential ascorbylation site in the proximity of the catalytic pocket of AcpA was identified using site-directed mutagenesis. The effects of the inhibitors identified in vitro were evaluated using bioassays determining the ability of F. tularensis to survive inside infected cells. The presence of ascorbate or 2-phosphoascorbate impaired the intramacrophage survival of F. tularensis in an AcpA-dependent manner as it was probed using knockout strains. The evidence presented herein indicated that ascorbate could be a good alternative to be used clinically to improve treatments against tularemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号