首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells with sphere forming capacity, spheroid cells, are present in the malignant ascites of patients with epithelial ovarian cancer (EOC) and represent a significant impediment to efficacious treatment due to their putative role in progression, metastasis and chemotherapy resistance. The exact mechanisms that underlie EOC metastasis and drug resistance are not clear. Understanding the biology of sphere forming cells may contribute to the identification of novel therapeutic opportunities for metastatic EOC. Here we generated spheroid cells from human ovarian cancer cell lines and primary ovarian cancer. Xenoengraftment of as few as 2000 dissociated spheroid cells into immune-deficient mice allowed full recapitulation of the original tumor, whereas >105 parent tumor cells remained non-tumorigenic. The spheroid cells were found to be enriched for cells with cancer stem cell-like characteristics such as upregulation of stem cell genes, self-renewal, high proliferative and differentiation potential, and high aldehyde dehydrogenase (ALDH) activity. Furthermore, spheroid cells were more aggressive in growth, migration, invasion, scratch recovery, clonogenic survival, anchorage-independent growth, and more resistant to chemotherapy in vitro. 13C-glucose metabolic studies revealed that spheroid cells route glucose predominantly to anaerobic glycolysis and pentose cycle to the detriment of re-routing glucose for anabolic purposes. These metabolic properties of sphere forming cells appear to confer increased resistance to apoptosis and contribute to more aggressive tumor growth. Collectively, we demonstrated that spheroid cells with cancer stem cell-like characteristics contributed to tumor generation, progression and chemotherapy resistance. This study provides insight into the relationship between tumor dissemination and metabolic attributes of human cancer stem cells and has clinical implications for cancer therapy.  相似文献   

2.
MicroRNA (miR)-150 has been reported to be dramatically downregulated in human epithelial ovarian cancer (EOC) tissues and patients’ serum compared to normal controls. This study aimed to investigate clinical significance and molecular mechanisms of miR-150 in EOC. In the current study, quantitative real-time PCR analysis showed that miR-150 was significantly downregulated in human EOC tissues compared to normal tissue samples. Then, we demonstrated the significant associations of miR-150 downregulation with aggressive clinicopathological features of EOC patients, including high clinical stage and pathological grade, and shorter overall and progression-free survivals. More importantly, the multivariate analysis identified miR-150 expression as an independent prognostic biomarker in EOC. After that, luciferase reporter assays demonstrated that Zinc Finger E-Box Binding Homeobox 1 (ZEB1), a crucial regulator of epithelial-to-mesenchymal transition (EMT), was a direct target of miR-150 in EOC cells. Moreover, we found that the ectopic expression of miR-150 could efficiently inhibit cell proliferation, invasion and metastasis by suppressing the expression of ZEB1. Furthermore, we also observed a significantly negative correlation between miR-150 and ZEB1 mRNA expression in EOC tissues (rs = –0.45, P<0.001). In conclusion, these findings offer the convincing evidence that aberrant expression of miR-150 may play a role in tumor progression and prognosis in patients with EOC. Moreover, our data reveal that miR-150 may function as a tumor suppressor and modulate EOC cell proliferation, and invasion by directly and negatively regulating ZEB1, implying the re-expression of miR-150 might be a potential therapeutic strategy for EOC.  相似文献   

3.
Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the polycomb repressive complex 2 (PRC2) that includes noncatalytic subunits suppressor of zeste 12 (SUZ12) and embryonic ectoderm development (EED). When present in PRC2, EZH2 catalyzes trimethylation on lysine 27 residue of histone H3 (H3K27Me3), resulting in epigenetic silencing of gene expression. Here, we investigated the expression and function of EZH2 in epithelial ovarian cancer (EOC). When compared with primary human ovarian surface epithelial (pHOSE) cells, EZH2, SUZ12, and EED were expressed at higher levels in all 8 human EOC cell lines tested. Consistently, H3K27Me3 was also overexpressed in human EOC cell lines compared with pHOSE cells. EZH2 was significantly overexpressed in primary human EOCs (n = 134) when compared with normal ovarian surface epithelium (n = 46; P < 0.001). EZH2 expression positively correlated with expression of Ki67 (P < 0.001; a marker of cell proliferation) and tumor grade (P = 0.034) but not tumor stage (P = 0.908) in EOC. There was no correlation of EZH2 expression with overall (P = 0.3) or disease-free survival (P = 0.2) in high-grade serous histotype EOC patients (n = 98). Knockdown of EZH2 expression reduced the level of H3K27Me3 and suppressed the growth of human EOC cells both in vitro and in vivo in xenograft models. EZH2 knockdown induced apoptosis of human EOC cells. Finally, we showed that EZH2 knockdown suppressed the invasion of human EOC cells. Together, these data demonstrate that EZH2 is frequently overexpressed in human EOC cells and its overexpression promotes the proliferation and invasion of human EOC cells, suggesting that EZH2 is a potential target for developing EOC therapeutics.  相似文献   

4.
The chemokine receptor 4 (CXCR4) plays an important role in the growth, angiogenesis and metastasis of various cancers, including epithelial ovarian cancer (EOC). However, the correlation between CXCR4 and the clinical response of EOC patients to chemotherapy remains unknown. 124 EOC patients were recruited to assess the relationship between CXCR4 and the response to cisplatin-based chemotherapy. The results showed that patients with a higher CXCR4 expression had a significantly lower chemosensitivity, a poorer progression-free survival and a lower overall survival than those with lower CXCR4 expression. In addition, knockdown of CXCR4 by small interfering RNA suppressed cell proliferation and resulted in G1/S arrest, increased apoptosis and chemosensitivity in both cisplatin-sensitive A2780 cells and cisplatin-resistant cell A2780/cis in vitro. Our data suggest that CXCR4 is one of the key molecules in cisplatin-based chemotherapy for EOC patients and that CXCR4 inhibition is a potential strategy to address the chemoresistance of EOC. [BMB Reports 2014; 47(1): 33-38]  相似文献   

5.
Previously, we have identified the RUNX1 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from epithelial ovarian cancer (EOC) patients, when compared with primary cultures derived from matched primary (prior to CT) tumors. Here we show that RUNX1 displays a trend of hypomethylation, although not significant, in omental metastases compared with primary EOC tumors. Surprisingly, RUNX1 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. The RUNX1 expression levels were almost identical in primary tumors and omental metastases, suggesting that RUNX1 hypomethylation might have a limited impact on its overexpression in advanced (metastatic) stage of the disease.

Knockdown of the RUNX1 expression in EOC cells led to sharp decrease of cell proliferation and induced G1 cell cycle arrest. Moreover, RUNX1 suppression significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX1 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced.

Taken together, our data are indicative for a strong oncogenic potential of the RUNX1 gene in EOC progression and suggest that RUNX1 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX1 and other members of the RUNX gene family in ovarian tumorigenesis.  相似文献   

6.
Previously, we have identified the RUNX2 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from serous epithelial ovarian cancer (EOC) patients, when compared to primary cultures derived from matched primary (prior to CT) tumors. However, we found no differences in the RUNX2 methylation in primary EOC tumors and EOC omental metastases, suggesting that DNA methylation-based epigenetic mechanisms have no impact on RUNX2 expression in advanced (metastatic) stage of the disease. Moreover, RUNX2 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. Knockdown of the RUNX2 expression in EOC cells led to a sharp decrease of cell proliferation and significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as various genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX2 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced.Taken together, our data are indicative for a strong oncogenic potential of the RUNX2 gene in serous EOC progression and suggest that RUNX2 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX2 and other members of the RUNX gene family in ovarian tumorigenesis.  相似文献   

7.
ObjectTo explore the role of microRNA-21 in human epithelial ovarian cancer (EOC).MethodsWe used RT-PCR to test the expressions of miRNA-21 in EOC cells and normal ovarian epithelial cells, as well as the tumor samples and the tumor-adjacent normal tissues. The vector of LV3 pGLV-H1-GFP-miR-21 was used to decrease the level expression of endogenous miR-21 in cells. Further, we investigated how miR-21 affected the biological events of EOC through determining the changes in proliferation, cycle and invasion of EOC cells, and measured the tumorigenesis in xenograft models. The association between phosphatase and tensin homolog deleted on chromosome ten (PTEN) and miR-21 were tested by RT-PCR. Next, siRNA was used to knockdown PTEN gene which help us to assess the functional association between miR-21 and PTEN in vivo and in vitro.ResultsIn EOC cell lines and human epithelial ovarian tumor cells, we found that miR-21 altered the biological features of EOC cells, including suppression of proliferation and invasion and arrest of cell cycle, and also resulted in a decrease in tumorigenesis in the in vitro xenograft models. The association between PTEN and miR-21 was confirmed in previous research. From our results, the down-regulation of PTEN gave rise to the miR-21 decrease, regardless of the cells or tissues.ConclusionThe suppression of microRNA-21 inhibits the progression of EOC profoundly. In EOC, miR-21 is negatively correlated with the expression of PTEN gene.  相似文献   

8.
9.
10.
A third of patients with epithelial ovarian cancer (EOC) present ascites. The cellular fraction of ascites often consists of EOC cells, lymphocytes, and mesothelial cells, whereas the acellular fraction contains cytokines and angiogenic factors. Clinically, the presence of ascites correlates with intraperitoneal and retroperitoneal tumor spread. We have used OV-90, a tumorigenic EOC cell line derived from the malignant ascites of a chemonaive ovarian cancer patient, as a model to assess the effect of ascites on migration potential using an in vitro wound-healing assay. A recent report of an invasion assay described the effect of ascites on the invasion potential of the OV-90 cell line. Ascites sampled from 31 ovarian cancer patients were tested and compared with either 5% fetal bovine serum or no serum for their nonstimulatory or stimulatory effect on the migration potential of the OV-90 cell line. A supervised analysis of data generated by the Affymetrix HG-U133A GeneChip identified differentially expressed genes from OV-90 cells exposed to ascites that had either a nonstimulatory or a stimulatory effect on migration. Ten genes (IRS2, CTSD, NRAS, MLXIP, HMGCR, LAMP1, ETS2, NID1, SMARCD1, and CD44) were upregulated in OV-90 cells exposed to ascites, allowing a nonstimulatory effect on cell migration. These findings were validated by quantitative polymerase chain reaction. In addition, the gene expression of IRS2 and MLXIP each correlated with prognosis when their expression was assessed in an independent set of primary cultures established from ovarian ascites. This study revealed novel candidates that may play a role in ovarian cancer cell migration.  相似文献   

11.
12.

Background

Claudins are tight junction proteins that are involved in tight junction formation and function. Previous studies have shown that claudin-7 is frequently upregulated in epithelial ovarian cancer (EOC) along with claudin-3 and claudin-4. Here, we investigate in detail the expression patterns of claudin-7, as well as its possible functions in EOC.

Methodology/Principal Findings

A total of 95 ovarian tissue samples (7 normal ovarian tissues, 65 serous carcinomas, 11 clear cell carcinomas, 8 endometrioid carcinomas and 4 mucinous carcinomas) were studied for claudin-7 expression. In real-time RT-PCR analysis, the gene for claudin-7, CLDN7, was found to be upregulated in all the tumor tissue samples studied. Similarly, immunohistochemical analysis and western blotting showed that claudin-7 protein was significantly overexpressed in the vast majority of EOCs. Small interfering RNA-mediated knockdown of claudin-7 in ovarian cancer cells led to significant changes in gene expression as measured by microarrays and validated by RT-PCR and immunoblotting. Analyses of the genes differentially expressed revealed that the genes altered in response to claudin-7 knockdown were associated with pathways implicated in various molecular and cellular functions such as cell cycle, cellular growth and proliferation, cell death, development, and cell movement. Through functional experiments in vitro, we found that both migration and invasion were altered in cells where CLDN7 had been knocked down or overexpressed. Interestingly, claudin-7 expression was associated with a net increase in invasion, but also with a decrease in migration.

Conclusion/Significance

Our work shows that claudin-7 is significantly upregulated in EOC and that it may be functionally involved in ovarian carcinoma invasion. CLDN7 may therefore represent potential marker for ovarian cancer detection and a target for therapy.  相似文献   

13.
Chemotherapy with platinum and taxanes is the first line of treatment for all epithelial ovarian cancer (EOC) patients after debulking surgery. Even though the treatment is initially effective in 80% of patients, recurrent cancer is inevitable in the vast majority of cases. Emerging evidence suggests that some tumor cells can survive chemotherapy by activating the self‐renewal pathways resulting in tumor progression and clinical recurrence. These defined population of cells commonly termed as “cancer stem cells” (CSC) may generate the bulk of the tumor by using differentiating pathways. These cells have been shown to be resistant to chemotherapy and, to have enhanced tumor initiating abilities, suggesting CSCs as potential targets for treatment. Recent studies have introduced a new paradigm in ovarian carcinogenesis which proposes in situ carcinoma at the fimbrial end of the fallopian tube to generate high‐grade serous ovarian carcinomas, in contrast to ovarian cortical inclusion cysts (CIC) which produce borderline and low grade serous, mucinous, endometrioid, and clear cell carcinomas. This review summarizes recent advances in our understanding of the cellular origin of EOC and the molecular mechanisms defining the basis of CSC in EOC progression and chemoresistance. Using a model ovarian cancer cell line, we highlight the role of CSC in response to chemotherapy, and relate how CSCs may impact on chemoresistance and ultimately recurrence. We also propose the molecular targeting of CSCs and suggest ways that may improve the efficacy of current chemotherapeutic regimens needed for the management of this disease. J. Cell. Biochem. 114: 21–34, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Epithelial ovarian cancer (EOC) is the most lethal of the gynecological malignancies. Exploring the molecular mechanisms and major factors of invasion and metastasis could have great significance for the treatment and prognosis of EOC. Studies have demonstrated that microRNA 106b (miR-106b) may be a promising therapeutic target for inhibiting breast cancer bone metastasis, but the role of miR-106b in EOC is largely unknown. In this work, miRNA-106b expression was quantified in various ovarian tissues and tumors. Ovarian carcinoma cell lines were transfected with miR-106b, after which, cell phenotype and expression of relevant molecules was assayed. Dual-luciferase reporter assays and xenograft mouse models were also used to investigate miR-106b and its target gene. MiR-106b mRNA expression was found to be significantly higher in normal ovarian tissues and benign tumors than in ovarian carcinomas and borderline tumors (p < 0.01), and was negatively associated with differentiation (Well vs. Por & Mod) and the International Federation of Gynecology and Obstetrics (FIGO) staging (stage I/II vs. stage III/IV) in ovarian carcinoma (p < 0.05). MiR-106b transfection reduced cell proliferation; promoted G1 or S arrest and apoptosis (p < 0.05); suppressed cell migration and invasion (p < 0.05); reduced Ras homolog gene family member C (RhoC), P70 ribosomal S6 kinase (P70S6K), Bcl-xL, Matrix metallopeptidase 2 (MMP2), MMP9 mRNA and protein expression; and induced p53 expression (p < 0.05). Dual-luciferase reporter assays indicated that miR-106b directly targets RhoC by binding its 3’UTR. MiR-106b transfection also suppressed tumor development and RhoC expression in vivo in xenograft mouse models. This is the first demonstration that miR-106b may inhibit tumorigenesis and progression of EOC by targeting RhoC. The involvement of miR-106b-mediated RhoC downregulation in EOC aggression may give extended insights into molecular mechanisms underlying cancer aggression. Approaches aimed at overexpressing miR-106b may serve as promising therapeutic strategies for treating EOC patients.  相似文献   

15.
Chondroitin sulfate proteoglycan 4 (CSPG4), a transmembrane proteoglycan originally identified in melanoma cells, has been reported to be expressed in breast cancer cells. This study was performed to examine the expression and significance of CSPG4 in a cohort of breast cancer patients. Immunohistochemical analysis of CSPG4 was performed on tissue microarrays constructed from tissue specimens from 240 breast cancer patients. CSPG4 staining was correlated with clinical and pathological characteristics, overall survival (OS), and disease recurrence. Contradicting to a previous report, our results showed that high CSPG4 expression was not related to triple-negative status of breast cancer patients. The Kaplan–Meier method showed that high CSPG4 expression was significantly associated with shorter time to recurrence (TTR). Patients with high CSPG4 expression had poorer OS and shorter TTR in a multivariate survival analysis after adjustment for stage, tumor grade, expression of estrogen receptor and progesterone receptor, and HER2 overexpression. This study showed that high CSPG4 expression correlates with disease recurrence and OS in breast cancers.  相似文献   

16.
Accumulation of tumor‐associated macrophages (TAMs) associates with malignant progression in cancer. However, the mechanisms that drive the pro‐tumor functions of TAMs are not fully understood. ZEB1 is best known for driving an epithelial‐to‐mesenchymal transition (EMT) in cancer cells to promote tumor progression. However, a role for ZEB1 in macrophages and TAMs has not been studied. Here we describe that TAMs require ZEB1 for their tumor‐promoting and chemotherapy resistance functions in a mouse model of ovarian cancer. Only TAMs that expressed full levels of Zeb1 accelerated tumor growth. Mechanistically, ZEB1 expression in TAMs induced their polarization toward an F4/80low pro‐tumor phenotype, including direct activation of Ccr2. In turn, expression of ZEB1 by TAMs induced Ccl2, Cd74, and a mesenchymal/stem‐like phenotype in cancer cells. In human ovarian carcinomas, TAM infiltration and CCR2 expression correlated with ZEB1 in tumor cells, where along with CCL2 and CD74 determined poorer prognosis. Importantly, ZEB1 in TAMs was a factor of poorer survival in human ovarian carcinomas. These data establish ZEB1 as a key factor in the tumor microenvironment and for maintaining TAMs’ tumor‐promoting functions.  相似文献   

17.
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as a small population of cancer cells that have high tumorigenicity. Furthermore, CSCs/CICs are resistant to several cancer therapies, and CSCs/CICs are therefore thought to be responsible for cancer recurrence after treatment and distant metastasis. In epithelial ovarian cancer (EOC) cases, disease recurrence after chemotherapy is frequently observed, suggesting ovarian CSCs/CICs are involved. There are four major histological subtypes in EOC, and serous adenocarcinoma and clear cell adenocarcinoma are high-grade malignancies. We therefore analyzed ovarian CSCs/CICs from ovarian carcinoma cell lines (serous adenocarcinoma and clear cell adenocarcinoma) and primary ovarian cancer cells in this study. We isolated ovarian CSCs/CICs as an aldehyde dehydrogenase 1 high (ALDH1high) population from 6 EOC cell lines (3 serous adenocarcinomas and 3 clear cell adenocarcinomas) by the ALDEFLUOR assay. ALDH1high cells showed greater sphere-forming ability, higher tumorigenicity and greater invasive capability, indicating that ovarian CSCs/CICs are enriched in ALDH1high cells. ALDH1high cells could also be isolated from 8 of 11 primary ovarian carcinoma samples. Immunohistochemical staining revealed that higher ALDH1 expression levels in ovary cancer cases are related to poorer prognosis in both serous adenocarcinoma cases and clear cell adenocarcinoma cases. Taken together, the results indicate that ALDH1 is a marker for ovarian CSCs/CICs and that the expression level of ALDH1 might be a novel biomarker for prediction of poor prognosis.  相似文献   

18.
Liu HD  Yan Y  Cao XF  Tan PZ  Wen HX  Lv CM  Li XM  Liu GY 《生理学报》2010,62(6):524-528
The aim of the present study is to investigate the expression of a novel estrogen receptor, G protein-coupled receptor 30 (GPR30) and its correlation with matrix metalloproteinases-9 (MMP-9) in epithelial ovarian cancer (EOC). Ovary tissues were obtained from 39 female patients, including 30 cases of EOC and 9 cases of benign ovarian tumor. Four normal ovary tissues were used as control. Immunohistochemical staining was used to detect the expressions of GPR30 and MMP-9. Chi square test, Fisher's exact test and Spearman's rank correlation analysis were used for statistical analysis. The results showed that GPR30 overexpression rate in EOC cases was significantly higher than those in benign ovarian tumor and normal ovary cases. Whereas MMP-9 overexpression rate in EOC cases was significantly higher than that in normal ovary cases, without any difference to that in benign ovarian tumor cases. To demonstrate the relationship between GPR30 and clinicopathological variables of EOC, we further analyzed the pathology type, FIGO stage and age of patients sampled in our study. The analysis showed there were significant differences of GPR30 overexpression rate among various pathology types and different FIGO stages (P<0.05), and no significant difference of both GPR30 and MMP-9 among three age groups (P>0.05). Moreover, GPR30 expression was positively correlated with MMP-9 (r(s)=1.000, P=0.002). These results suggest that GPR30 may be involved in the invasion and metastasis of EOC, being a potential index of EOC early diagnosis and malignancy grade prediction.  相似文献   

19.
This study investigated the expression of zinc finger E-box binding homeobox 2 (ZEB2), its prognostic significance in various cancers, and the correlation between ZEB2 and infiltrating immune cells and ZEB2-related proteins in ovarian cancer (OV). The Gene Expression Profiling Interactive Analysis tool was used to analyze RNA sequencing data and cancer survival rates, based on normal and tumor tissue data available in The Cancer Genome Atlas (TCGA) database. The Kaplan–Meier plotter and PrognoScan databases were used to analyze the prognostic value of ZEB2 in OV (n = 1144). The Tumor Immune Estimation Resource was used to investigate the correlation between ZEB2 and infiltrating immune cells in various cancers, including OV. High ZEB2 expression was associated with a poorer prognosis in OV. In OV, ZEB2 is positively correlated with CD8+T cells, neutrophils, macrophages, and dendritic cell invasion; and ZEB2 is negatively correlated with tumor-infiltrating B cells. The STRING database was used to investigate the correlations with ZEB2-related proteins. The results reveal that ZEB2 was positively correlated with SMAD1 and SMAD2 in OV. Our findings may serve as a potential prognostic biomarker, and provide novel insights into the tumor immunology in OV. Thus, ZEB2 may be a potential diagnostic and therapeutic target in OV.  相似文献   

20.
Recurrent ovarian cancer is resistant to conventional chemotherapy. A sub-population of ovarian cancer cells, the epithelial ovarian cancer stem cells (EOC stem cells) have stemness properties, constitutive NFκB activity, and represent the chemoresistant population. Currently, there is no effective treatment that targets these cells. Aurora-A kinase (Aurora-A) is associated with tumor initiation and progression and is overexpressed in numerous malignancies. The aim of this study is to determine the effect of Aurora-A inhibition in EOC stem cells. EOC stem cells were treated with the Aurora-A inhibitor, MK-5108. Cell growth was monitored by Incucyte real-time imaging system, cell viability was measured using the Celltiter 96 assay and cytokine levels were quantified using xMAP technology. The intracellular changes associated with MK-5108 treatment are: (1) polyploidy and cell cycle arrest; (2) inhibition of NFκB activity; (3) decreased cytokine production; and (4) nuclear accumulation of IκBα. Thus, inhibition of Aurora-A decreases cell proliferation in the EOC stem cells by inducing cell cycle arrest and affecting the NFκB pathway. As EOC stem cells represent a source of recurrence and chemoresistance, these results suggest that Aurora-A inhibition may effectively target the cancer stem cell population in ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号