首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tyrosine kinase inhibitors (TKIs) induce autophagy in many types of cancer cells. We previously reported that gefitinib (GEF) and imatinib (IMA) induce autophagy in epidermal growth factor receptor (EGFR) knock-out A549 and non-BCR-ABL-expressing leukemia cell lines, respectively. This evidence suggests that TKI-induced autophagy is independent of the original target molecules. The present study compared the autophagy-inducing abilities of various TKIs, regardless of their targets, by quantitative autophagy flux assay. We established stable clones expressing the GFP-LC3-mCherry-LC3ΔG plasmid in A549, PC-9, and CAL 27 cell lines and assessed autophagy inducibility by monitoring the fluorescent ratios of GFP-LC3 to mCherry-LC3ΔG using an IncuCyte live cell imaging system during exposure to TKIs viz; GEF, osimertinib (OSI), lapatinib (LAP), lenvatinib (LEN), sorafenib (SOR), IMA, dasatinib (DAS), and tivantinib (TIV). Among these TKIs, DAS, GEF, and SOR exhibited prominent autophagy induction in A549 and PC-9 cells. In CAL 27 cells, IMA, SOR, and LEN, but not GEF, TIV, or OSI, exhibited autophagy induction. In the presence of azithromycin (AZM), which showed an inhibitory effect on autophagy flux, TKIs with prominent autophagy inducibility exhibited enhanced cytotoxicity via non-apoptotic cell death relative to effects of TKI alone. Therefore, autophagy inducibility of TKIs differed in the context of cancer cells. However, once induced, they appeared to have cytoprotective functions. Thus, blocking TKI-induced autophagy with AZM may improve the therapeutic effect of TKIs in cancer cells.  相似文献   

2.
3.
Bitter taste perception is mediated by a family of G protein-coupled receptors (T2Rs) in vertebrates. Common carp (Cyprinus carpio), which has experienced an additional round of whole genome duplication during the course of evolution, has a small number of T2R genes similar to zebrafish, a closely related cyprinid fish species, and their expression pattern at the cellular level or their cognate ligands have not been elucidated yet. Here, we showed through in situ hybridization experiments, that three common carp T2R (ccT2R) genes encoding ccT2R200-1, ccT2R202-1, and ccT2R202-2, were specifically expressed in the subsets of taste receptor cells in the lips and gill rakers. ccT2R200-1 was co-expressed with genes encoding downstream signal transduction molecules, such as PLC-β2 and Gαia. Heterologous expression system revealed that each ccT2R showed narrowly, intermediately, or broadly tuned ligand specificity, as in the case of zebrafish T2Rs. However, ccT2Rs showed different ligand profiles from their orthologous zebrafish T2Rs previously reported. Finally, we identified three ccT2Rs, namely ccT2R200-1, ccT2R200-2, and ccT2R203-1, to be activated by natural bitter compounds, andrographolide and/or picrotoxinin, which elicited no response to zebrafish T2Rs, in a dose-dependent manner. These results suggest that some ccT2Rs may have evolved to function in the oral cavity as taste receptors for natural bitter compounds found in the habitats in a species-specific manner.  相似文献   

4.
5.
Hyaluronan plays a key role in regulating inflammation and tumor angiogenesis. Of the three transmembrane hyaluronan synthases, HAS2 is the main pro-angiogenic enzyme responsible for excessive hyaluronan production. We discovered that HAS2 was degraded in vascular endothelial cells via autophagy evoked by nutrient deprivation, mTOR inhibition, or pro-autophagic proteoglycan fragments endorepellin and endostatin. Using live-cell and super-resolution confocal microscopy, we found that protracted autophagy evoked a dynamic interaction between HAS2 and ATG9A, a key transmembrane autophagic protein. This regulatory axis of HAS2 degradation occurred in various cell types and species and in vivo upon nutrient deprivation. Inhibiting in vivo autophagic flux via chloroquine showed increased levels of HAS2 in the heart and aorta. Functionally, autophagic induction via endorepellin or mTOR inhibition markedly suppressed extracellular hyaluronan production in vascular endothelial cells and inhibited ex vivo angiogenic sprouting. Thus, we propose autophagy as a novel catabolic mechanism regulating hyaluronan production in endothelial cells and demonstrate a new link between autophagy and angiogenesis that could lead to potential therapeutic modalities for angiogenesis.  相似文献   

6.
A failure of bone marrow mesenchymal stem cells (BM-MSCs) to adhere to hematopoietic cells is an essential cause of the progression of chronic myelogenous leukemia and is also a cause of failure of bone marrow (BM) transplantation, but the exact mechanisms of this have not been fully elucidated. Recent studies have indicated that microRNAs (miRNAs) are contained in leukemia-derived exosomes and are involved in modulating the BM microenvironment. In this study, we found that K562 cell-derived exosomes transfer miR-711 to BM-MSCs and suppress the adhesive function of BM-MSCs. Using qRT-PCR, we also confirmed a significantly higher level of miR-711 in exosomes derived from K562 cells than in exosomes derived from parental cells. The BM-MSCs co-cultured with exosomes derived from K562 cells showed a lower adhesion rate than did controls. We further demonstrated that exosomal transfer of miR-711 induced decreased adhesive abilities by inhibiting expression of adhesion molecule CD44 in BM-MSCs. In conclusion, our study reveals that K562 cell-derived exosomal miR-711 can be transferred to BM-MSCs and weaken adhesive abilities by silencing the expression of the adhesion molecule CD44.  相似文献   

7.
This study examined the effects of microtubule-targeting anticancer drugs (paclitaxel, cabazitaxel, and eribulin) on the expression of drug efflux transporter P-glycoprotein, which is encoded by MDR1. Paclitaxel and eribulin induced MDR1 promoter activity in a concentration-dependent manner, while cabazitaxel had little effect in human intestinal epithelial LS174T cells. Overexpression of the nuclear receptor pregnane X receptor (PXR) gene (NR1I2) enhanced paclitaxel- and eribulin-induced MDR1 activation, but expression of the nuclear receptor co-repressor silencing mediator for retinoid and thyroid receptors (SMRT) gene (NCOR2) repressed MDR1 activation. Eribulin increased the mRNA and protein expression of P-glycoprotein in LS174T cells. Cellular uptake of rhodamine 123 and calcein-acetoxymethyl ester (calcein-AM), P-glycoprotein substrates, decreased in paclitaxel- or eribulin-treated LS174T cells. Eribulin also increased MDR1 promoter activity in human breast cancer MCF7 cells. The results suggest that the microtubule-targeting anticancer drug eribulin can induce the drug efflux transporter P-glycoprotein via PXR in human intestinal and breast cancer cells and thus influence the efficacy of anticancer drugs.  相似文献   

8.
Immunoglobulin light chain (LC) amyloidosis (AL) is a life-threatening human disease wherein free mono-clonal LCs deposit in vital organs. To determine what makes some LCs amyloidogenic, we explored patient-based amyloidogenic and non-amyloidogenic recombinant LCs from the λ6 subtype prevalent in AL. Hydrogen-deuterium exchange mass spectrometry, structural stability, proteolysis, and amyloid growth studies revealed that the antigen-binding CDR1 loop is the least protected part in the variable domain of λ6 LC, particularly in the AL variant. N32T substitution in CRD1 is identified as a driver of amyloid formation. Substitution N32T increased the amyloidogenic propensity of CDR1 loop, decreased its protection in the native structure, and accelerated amyloid growth in the context of other AL substitutions. The destabilizing effects of N32T propagated across the molecule increasing its dynamics in regions ∼30 Å away from the substitution site. Such striking long-range effects of a conservative point substitution in a dynamic surface loop may be relevant to Ig function. Comparison of patient-derived and engineered proteins showed that N32T interactions with other substitution sites must contribute to amyloidosis. The results suggest that CDR1 is critical in amyloid formation by other λ6 LCs.  相似文献   

9.
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by progressive joint destruction associated with increased pro-inflammatory mediators. In inflammatory microenvironments, exogenous ATP (eATP) is hydrolyzed to adenosine, which exerts immunosuppressive effects, by the consecutive action of the ectonucleotidases CD39 and CD73. Mature B cells constitutively express both ectonucleotidases, converting these cells to potential suppressors. Here, we assessed CD39 and CD73 expression on B cells from treated or untreated patients with RA. Neither the frequency of CD73+CD39+ and CD73-CD39+ B cell subsets nor the levels of CD73 and CD39 expression on B cells from untreated or treated RA patients showed significant changes in comparison to healthy controls (HC). CpG+IL-2-stimulated B cells from HC or untreated RA patients increased their CD39 expression, and suppressed CD4+ and CD8+ T cell proliferation and intracellular TNF-production. A CD39 inhibitor significantly restored proliferation and TNF-producing capacity in CD4+ T cells, but not in CD8+ T cells, from HC and untreated RA patients, indicating that B cells from untreated RA patients conserved CD39-mediated regulatory function. Good responder patients to therapy (R-RA) exhibited an increased CD39 but not CD73 expression on B cells after treatment, while most of the non-responder (NR) patients showed a reduction in ectoenzyme expression. The positive changes of CD39 expression on B cells exhibited a negative correlation with disease activity and rheumatoid factor levels. Our results suggest modulating the ectoenzymes/ADO pathway as a potential therapy target for improving the course of RA.  相似文献   

10.
11.
Background and purposePrimary dysmenorrhea is the most common gynaecologic problem in menstruating women and is characterized by spasmodic uterine contraction and pain symptoms associated with inflammatory disturbances. Paeonol is an active phytochemical component that has shown anti-inflammatory and analgesic effects in several animal models. The aim of this study was to explore whether paeonol is effective against dysmenorrhea and to investigate the potential mechanism of cannabinoid receptor signalling.Experimental approachDysmenorrhea was established by injecting oestradiol benzoate into female mice. The effects of paeonol on writhing time and latency, uterine pathology and inflammatory mediators were explored. Isolated uterine smooth muscle was used to evaluate the direct effect of paeonol on uterine contraction.Key resultsThe oral administration of paeonol reduced dysmenorrhea pain and PGE2 and TNF-α expression in the uterine tissues of mice, and paeonol was found to be distributed in lesions of the uterus. Paeonol almost completely inhibited oxytocin-, high potassium- and Ca2+-induced contractions in isolated uteri. Antagonists of CB2R (AM630) and the MAPK pathway (U0126), but not of CB1R (AM251), reversed the inhibitory effect of paeonol on uterine contraction. Paeonol significantly blocked L-type Ca2+ channels and calcium influx in uterine smooth muscle cells via CB2R. Molecular docking results showed that paeonol fits well with the binding site of CB2R.Conclusions and implicationsPaeonol partially acts through CB2R to restrain calcium influx and uterine contraction to alleviate dysmenorrhea in mice. These results suggest that paeonol has therapeutic potential for the treatment of dysmenorrhea.  相似文献   

12.
13.
The acute liver disease is involved in aberrant release of high-mobility group box 1 (HMGB1). Glycyrrhizin (GL), a traditional Chinese medicine for liver disease, binds to HMGB1, thereby inhibits tissue injury. However the mode of action of GL for chronic liver disease remains unclear.We investigated the effects of glycyrrhizin (GL) and its derivatives on liver differentiation using human iPS cells by using a flow cytometric analysis.GL promoted hepatic differentiation at the hepatoblast formation stage. The GL derivatives, 3-O-mono-glucuronyl 18β-glycyrrhetinic acid (Mono) and 3-O-[glucosyl (1 → 2)-glucuronyl] 18β-glycyrrhetinic acid increased AFP+ cell counts and albumin+ cell counts. Glucuronate conjugation seemed to be a requirement for hepatic differentiation. Mono exhibited the most significant hepatic differentiation effect.We evaluated the effects of (±)-2-(2,4-dichlorophenoxy) propionic acid (DP), a T1R3 antagonist, and sucralose, a T1R3 agonist, on hepatic differentiation, and found that DP suppressed Mono-induced hepatic differentiation, while sucralose promoted hepatic differentiation. Thus, GL promoted hepatic differentiation via T1R3 signaling. In addition, Mono increased β-catenin+ cell count and decreased Hes5+ cell count suggesting the involvement of Wnt and Notch signaling in GL-induced hepatic differentiation.In conclusion, GL exerted a hepatic differentiation effect via sweet receptor (T1R3), canonical Wnt, and Notch signaling.  相似文献   

14.
Cerebral stroke is one of the leading causes of death in adults worldwide. However, the molecular mechanisms of stroke-induced neuron injury are not fully understood. Here, we obtained phosphoproteomic and proteomic profiles of the acute ischemic hippocampus by LC–MS/MS analysis. Quantitative phosphoproteomic analyses revealed that the dysregulated phosphoproteins were involved in synaptic components and neurotransmission. We further demonstrated that phosphorylation of Synaptotagmin-1 (Syt1) at the Thr112 site in cultured hippocampal neurons aggravated oxygen-glucose deprivation–induced neuronal injury. Immature neurons with low expression of Syt1 exhibit slight neuronal injury in a cerebral ischemia model. Administration of the Tat-Syt1T112A peptide protects neurons against cerebral ischemia-induced injury in vitro and in vivo. Surprisingly, potassium voltage-gated channel subfamily KQT member 2 (Kcnq2) interacted with Syt1 and Annexin A6 (Anxa6) and alleviated Syt1-mediated neuronal injury upon oxygen-glucose deprivation treatment. These results reveal a mechanism underlying neuronal injury and may provide new targets for neuroprotection after acute cerebral ischemia onset.  相似文献   

15.
16.
Mitophagy, the selective degradation of mitochondria by autophagy, affects defective mitochondria following damage or stress. At the onset of mitophagy, parkin ubiquitylates proteins on the mitochondrial outer membrane. While the role of parkin at the onset of mitophagy is well understood, less is known about its activity during later stages in the process. Here, we used HeLa cells expressing catalytically active or inactive parkin to perform temporal analysis of the proteome, ubiquitylome, and phosphoproteome during 18 h after induction of mitophagy by mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazine. Abundance profiles of proteins downregulated in parkin-dependent manner revealed a stepwise and “outside–in” directed degradation of mitochondrial subcompartments. While ubiquitylation of mitochondrial outer membrane proteins was enriched among early parkin-dependent targets, numerous mitochondrial inner membrane, matrix, and cytosolic proteins were also found ubiquitylated at later stages of mitophagy. Phosphoproteome analysis revealed a possible crosstalk between phosphorylation and ubiquitylation during mitophagy on key parkin targets, such as voltage-dependent anion channel 2.  相似文献   

17.
《Endocrine practice》2021,27(9):894-902
ObjectivePost-acute sequelae of coronavirus disease 2019 (COVID-19) or long COVID (LC) is an emerging global health issue. Fatigue is a common feature. Whether thyroid function and autoimmunity play a role is uncertain. We aimed to evaluate the prevalence and predictors of LC and the potential role of thyroid function and autoimmunity in LC.MethodsWe included consecutive adults without a known thyroid disorder who were admitted to a major COVID-19 center for confirmed COVID-19 from July to December 2020. Thyroid function tests and antithyroid antibodies were measured for all patients on admission and at follow-up. LC was defined by the presence or persistence of symptoms upon follow-up.ResultsIn total, 204 patients (median age, 55.0 years; 95 men [46.6%]) were reassessed at a median of 89 days (interquartile range, 69-99) after acute COVID-19. Of the 204 patients, 41 (20.1%) had LC. Female sex (adjusted odds ratio, 2.48; P = .018) and severe acute respiratory syndrome coronavirus 2 polymerase chain reaction cycle threshold value of <25 on admission (adjusted odds ratio, 2.84; P = .012) independently predicted the occurrence of LC. Upon follow-up, most abnormal thyroid function tests in acute COVID-19 resolved, and incident thyroid dysfunction was rare. Nonetheless, we observed incident antithyroid peroxidase (anti-TPO) positivity. Although baseline or follow-up thyroid function tests were not associated with the occurrence of LC, among 172 patients with symptomatic acute COVID-19, symptom resolution was more likely in those with positive anti-TPO upon follow-up (P = .043).ConclusionLC is common among COVID-19 survivors, with females and those with higher viral load in acute COVID-19 particularly being vulnerable. The observation of incident anti-TPO positivity warrants further follow-up for thyroid dysfunction. Whether anti-TPO plays a protective role in LC remains to be elucidated.  相似文献   

18.
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.  相似文献   

19.
20.
《Endocrine practice》2022,28(9):859-866
Objective5α-Reductase type 2 (5α-RD2) deficiency causes variable degrees of undervirilization in patients. The correlation between its genotype and phenotype is unclear.MethodsWe retrospectively evaluated 103 patients with 46,XY disorders of sex development who were diagnosed with 5α-RD2 deficiency.ResultsThe prevalence of female sex assignment (P = .008) and the incidences of cryptorchidism (P = .0003) and bifid scrotum (P = .0002) in the non-p.R227Q variant group were higher, but there were no significant differences in the incidences of hypospadias and isolated microphallus. The external masculinization score in the non-p.R227Q variant group was lower than that in the homozygous p.R227Q variant (P = .019) and compound heterozygous p.R227Q variant groups (P = .013). The level of anti-Mullerian hormone in the non-p.R227Q variant group was lower than that in the homozygous p.R227Q variant (P < .001) and compound heterozygous p.R227Q variant groups (P = .006). The testosterone-to-dihydrotestosterone ratio of the homozygous p.R227Q variant group was higher than that of the non-p.R227Q variant (P = .018) and compound heterozygous p.R227Q variant groups (P = .029). Twenty-three reportedly pathogenic variants and 11 novel steroid 5α-reductase 2 (SRD5A2) variants were identified.ConclusionCompared with patients without p.R227Q, patients with p.R227Q exhibited higher external masculinization scores and anti-Mullerian hormone expression, a lower prevalence of female sex assignment, and lower incidences of cryptorchidism and bifid scrotum. We identified 23 reportedly pathogenic SRD5A2 variants and 11 novel SRD5A2 variants that led to 5α-RD2 deficiency. We established a genotype-phenotype correlation, and patients with p.R227Q showed a relatively mild phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号