首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Chiu HW  Chen YA  Ho SY  Wang YJ 《PloS one》2012,7(2):e31579
Prostate cancer is the most common malignancy in men. In the present study, LNCaP (androgen-sensitive human prostate cancer cells) and PC-3 cells (androgen-independent human prostate cancer cells) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with arsenic trioxide (ATO) and to determine the underlying mechanisms in vitro and in vivo. We found that IR combined with ATO increases the therapeutic efficacy compared to individual treatments in LNCaP and PC-3 human prostate cancer cells. In addition, combined treatment showed enhanced reactive oxygen species (ROS) generation compared to treatment with ATO or IR alone in PC-3 cells. Combined treatment induced autophagy and apoptosis in LNCaP cells, and mainly induced autophagy in PC-3 cells. The cell death that was induced by the combined treatment was primarily the result of inhibition of the Akt/mTOR signaling pathways. Furthermore, we found that the combined treatment of cells pre-treated with 3-MA resulted in a significant change in AO-positive cells and cytotoxicity. In an in vivo study, the combination treatment had anti-tumor growth effects. These novel findings suggest that combined treatment is a potential therapeutic strategy not only for androgen-dependent prostate cancer but also for androgen-independent prostate cancer.  相似文献   

4.
5.
6.
7.
The refractory of castration-resistant prostate cancer (CRPC) is mainly reflected in drug resistance. The current research on the resistance mechanism of CRPC is still in its infancy. In this study, we revealed for the first time the key role of LncRNA PCBP1-AS1 in CRPC drug resistance. Through detailed in vivo and in vitro studies, we found that PCBP1-AS1 may enhance the deubiquitination of AR/AR-V7 by stabilizing the USP22-AR/AR-V7 complex, thereby preventing AR/AR-V7 from being degraded through the ubiquitin–proteasome pathway. Targeting PCBP1-AS1 can significantly restore the drug sensitivity of enzalutamide-resistant tumors in vivo and in vitro. Our research further expands the function of LncRNA in castration-resistant prostate cancer, which may provide new potential for clinical diagnosis and targeted therapy.Subject terms: Prostate cancer, Ubiquitylation, Long non-coding RNAs  相似文献   

8.
9.
Recent studies have indicated that promoting ferroptosis is a promising approach to attenuate drug resistance of cancer cells. Hence, this study aimed to induce ferroptosis in osteosarcoma cells, thereby increasing the sensitivity to cisplatin. Osteosarcoma cells MG63 and Saos‐2 were incubated with increasing doses of cisplatin to generate cisplatin‐resistant strains, MG63/DDP and Saos‐2/DDP. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) and flow cytometry assays were performed to evaluate cell proliferation and cell death, respectively. Malondialdehyde (MDA), reactive oxygen species (ROS), and lipid oxidation in cells were measured to evaluate the degree of cell ferroptosis. MG63/DDP and Saos‐2/DDP cells showed increased viability and decreased death rate compared with MG63 and Saos‐2 cells, respectively, upon cisplatin treatment. Western blotting analysis indicated that protein levels of p‐STAT3 (Ser727), nuclear factor erythroid 2‐related factor 2 (Nrf2), and glutathione peroxidase 4 (GPx4) in drug‐resistant strains increased significantly in response to cisplatin. Co‐treatment with cisplatin and agonists of ferroptosis, Erastin, and RSL3, remarkably increased MDA, ROS, lipid oxidation, and sensitivity to cisplatin, in MG63/DDP and Saos‐2/DDP cells. Similar results were observed by co‐treatment of cells with cisplatin and a STAT3 inhibitor. The reduction of protein levels of p‐STAT3 (Ser727), Nrf2, and GPx4 in MG63/DDP and Saos‐2/DDP cells resulted in increased ferroptosis and sensitivity to cisplatin. These results indicate that cisplatin‐resistant osteosarcoma cells inhibited ferroptosis after exposure to low doses of cisplatin. However, ferroptosis agonists and STAT3 inhibitor reactivated ferroptosis in the cells and consequently increased sensitivity to cisplatin. This study demonstrates a new approach to attenuate resistance of osteosarcoma to cisplatin in vitro .  相似文献   

10.
AimTo evaluate the radiopotentiation of enzalutamide in human prostate cancer cells.BackgroundWhile radiotherapy is the first line of treatment for prostate cancer, androgen blockade therapies are demonstrating significant survival benefit as monotherapies. As androgen blockade can cause cell death by apoptosis, it is likely that androgen blockade will potentiate the cytotoxic activities of radiotherapy.Materials and methodsHere, we tested the potential synergistic effects of these two treatments over two human metastatic prostate cancer cells by real-time cell analysis (RTCA), androgen-sensitive LNCaP cells (Lymph Node Carcinoma of the Prostate) and androgen-independent PC-3. Both cell lines were highly resistant to high doses of radiotherapy.ResultsA pre-treatment of LNCaP cells with IC50 concentrations of enzalutamide significantly sensitized them to radiotherapy through enhanced apoptosis. In contrast, enzalutamide resistant PC-3 cells were not sensitized to radiotherapy by androgen blockade.ConclusionsThese results provide evidence that the enzalutamide/radiotherapy combination could maximize therapeutic responses in patients with enzalutamide-sensitive prostate cancer.  相似文献   

11.
Ovarian cancer is the deadliest gynecologic cancer due to lack of early effective diagnosis and development of resistance to platinum-based chemotherapy. Several studies reported that adenosine concentrations are higher in tumor microenvironment than in non-tumor tissue. This finding inspired us to study the role of adenosine in ovarian cancer cells and to investigate if adenosine pathways offer new treatment options urgently needed to prevent or overcome chemoresistance. The ovarian cancer cell lines HEY, A2780, and its cisplatin-resistant subline A2780CisR were used in this study. Expression and functional activity of adenosine receptors were investigated by RT-PCR, Western blotting, and cAMP assay. A1 and A2B adenosine receptors were expressed and functionally active in all three cell lines. Adenosine showed moderate cytotoxicity (MTT-IC50 values were between 700 and 900 μM) and induced apoptosis in a concentration-dependent manner by increasing levels of sub-G1 and cleaved PARP. Apoptosis was diminished by QVD-OPh, confirming caspase-dependent induction of apoptosis. Forty-eight hours pre-incubation of adenosine prior to cisplatin significantly enhanced cisplatin-induced cytotoxicity in a synergistic manner and increased apoptosis. SLV320 or PSB603, selective A1 and A2B antagonists, was not able to inhibit adenosine-induced increase in cisplatin cytotoxicity or apoptosis whereas dipyridamole, a nucleoside transporter inhibitor, completely abrogated both effects. Mechanistically, adenosine increased pAMPK and reduced pS6K which was prevented by dipyridamole. In conclusion, application of adenosine prior to cisplatin could be a new therapeutic option to increase the potency of cisplatin in a synergistic manner and thus overcome platinum resistance in ovarian cancer.  相似文献   

12.
BackgroundChemoresistance is a common event after cancer chemotherapy, including gastric cancer (GC). Cisplatin has been reported to induce the DNA damage response (DDR), thus leading to chemoresistance. VE-821, a specific inhibitor of ATR, has been proven to suppress a variety of solid malignancies effectively. Our study aimed to explore the effect of VE-821 on enhancing the chemical sensitivity to cisplatin and clarify the potential molecular mechanisms.MethodsCell viability and apoptosis of MKN-45 and AGS were measured by CCK8 and flow cytometry assay respectively. Western blotting was used to detect the expression of target proteins. TCGA database was used to analyze the correlation between the ATR expression with the prognosis of GC patients. The viability of GC organoids was detected by Cell Titer Glo (CTG) through luminescence.ResultsCisplatin inhibited the proliferation and induced apoptosis of GC cells with a relatively high IC50 value, and increased the phosphorylation levels of ATR-CHK1 and H2AX. VE-821 achieved the same effects but by downregulating the phosphorylation levels of the ATR-CHK1 pathway. Besides, higher ATR expression in GC tissues was positively correlated with higher pathological stage in GC patients. Interestingly, ATR inhibition reversed cisplatin-induced STAT3 activation and enhanced H2AX levels. Moreover, VE-821 significantly sensitized GC cells to cisplatin, and these two drugs had synergistic effects in GC cell lines, organoids, and in vivo.ConclusionOur results suggested VE-821 sensitized GC cells to cisplatin via reversing DDR activation. And VE-821 treatment may be a promising therapeutic strategy for GC patients with cisplatin resistance.  相似文献   

13.
The microenvironment is central to many aspects of cancer pathobiology and has been proposed to play a role in the development of cancer cell resistance to therapy. To examine the response to microenvironmental conditions, two paclitaxel resistant prostate cancer (PCa) cell lines (stable and reversible) and one reversible heat resistant cell line were studied. In comparison to their parental cell lines, both paclitaxel resistant cell lines (stable and reversible) were more sensitive to microenvironmental heat, potentially yielding a synergistic therapeutic opportunity. In the two phenotypic cells repopulated after acute heat or paclitaxel treatments, there was an inverse correlation between paclitaxel and heat resistance: resistance to paclitaxel imparted sensitivity to heat; resistance to heat imparted sensitivity to paclitaxel. These studies indicate that as cancer cells evolve resistance to single microenvironmental stress they may be more sensitive to others, perhaps allowing us to design new approaches for PCa therapy.  相似文献   

14.
15.
As there is increasing evidence that Rho-Rho kinase (ROCK) pathway plays an important role in the proliferation and contraction in many tissues, we investigated the contractile role of a ROCK inhibitor, fasudil, and the distribution of RhoA, RhoB, RhoC, ROCK1, and ROCK2 in the rat prostate. Twelve-week-old Sprague-Dawley rat prostate was used in this study. Rat prostatic contractile responses induced by carbachol and norepinephrine were investigated in organ bath studies without or with 10(-7), 10(-6), and 10(-5) M of a non-selective ROCK inhibitor, fasudil. Immunoblot analysis and immunohistochemical staining were performed to investigate the participation levels of RhoA, RhoB, RhoC, ROCK1, and ROCK2. The E(max) values induced by carbachol and norepinephrine were similar in the rat prostate. Fasudil significantly inhibited carbachol- or norepinephrine-induced prostatic contractions in a dose-dependent manner. Fasudil 10(-5) M reduced the initial prostatic contraction (without fasudil) to 56.7 ± 5.9% for carbachol and to 45.7 ± 12.3% for norepinephrine. Amounts of RhoA, RhoB, RhoC, ROCK1, and ROCK2 were detected by immunoblot analysis in the prostate. Immunohistochemical study revealed that RhoA, RhoB, RhoC, ROCK1, and ROCK2 were all positive in the prostatic smooth muscle, while there were some differences of distributions of Immunoreactivities between these enzymes in the prostatic glandula. Our data indicated that rat prostate contains RhoA, RhoB, RhoC, ROCK1, and ROCK2, which play an important role in the autonomic nerve-mediated contractile responses in the prostate.  相似文献   

16.
Molecular Biology Reports - One of the major barriers in cancer therapy is the resistance to conventional therapies and cancer stem cells (CSCs) are among the main causes of this problem. CD133 as...  相似文献   

17.
18.
Induction of growth arrest and differentiation by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) occurs in non-malignant cell types but is often reduced in cancer cells. For example, androgen-independent prostate cancer cells, DU-145 and PC-3, are relatively insensitive to the anti-proliferative action of 1,25-(OH)2D3. This appears to be due to increased 1,25-(OH)2D3-metabolism, as a result of CYP24 enzyme-induction, which in turn leads to decreased anti-proliferative efficacy. In the in vitro rat kidney mitochondria assay, the 2-(4-hydroxybenzyl)-6-methoxy-3,4-dihydro-2H-naphthalen-1-one (4) was found to be a potent inhibitor of Vitamin D3 metabolising enzymes (IC50 3.5 μM), and was shown to be a more potent inhibitor than the broad spectrum P450 inhibitor ketoconazole (IC50 20 μM). The combination of the inhibitor and 1,25-(OH)2D3 caused a greater inhibition of proliferation in DU-145 cells than when treated with both agents alone. Examination of the regulation of VDR target gene mRNA in DU-145 cells revealed that co-treatment of 1,25-(OH)2D3 plus inhibitor of Vitamin D3 metabolising enzymes co-ordinately upregulated CYP24, p21waf1/cip1 and GADD45.  相似文献   

19.
20.
HW Chiu  WH Fang  YL Chen  MD Wu  GF Yuan  SY Ho  YJ Wang 《PloS one》2012,7(7):e40462
Prostate cancer is a very common cancer among males. Traditional treatments for prostate cancer have limited efficacy; therefore, new therapeutic strategies and/or new adjuvant drugs must be explored. Red yeast rice (RYR) is a traditional food spice made in Asia by fermenting white rice with Monascus purpureus Went yeast. Accumulating evidence indicates that RYR has antitumor activity. In this study, PC-3 cells (human prostate cancer cells) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with monascuspiloin (MP, a yellow pigment isolated from Monascus pilosus M93-fermented rice) and to determine the underlying mechanisms of these effects in vitro and in vivo. We found that IR combined with MP showed increased therapeutic efficacy when compared with either treatment alone in PC-3 cells. In addition, the combined treatment enhanced DNA damage and endoplasmic reticulum (ER) stress. The combined treatment induced primarily autophagy in PC-3 cells, and the cell death that was induced by the combined treatment was chiefly the result of inhibition of the Akt/mTOR signaling pathways. In an in vivo study, the combination treatment showed greater anti-tumor growth effects. These novel findings suggest that the combined treatment could be a potential therapeutic strategy for prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号