首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We analyzed Hg, Cd, Zn and Cu in the liver as well as Hg and stable isotope ratios of carbon and nitrogen (δ13C and δ15N) in muscle from tiger sharks (Galeocerdo cuvier) in Japan. The Hg concentration in the muscle increased slightly and proportionally with increases in body length, but the Hg concentration in the liver increased markedly after maturation (exceeding 2.7 m precaudal length). The Hg concentration in the liver of mature shark was higher than that in the muscle. The Cd concentration in the liver increased with increases in body length. On the other hand, the Zn and Cu concentrations in the liver decreased during the growth stage, but thereafter increased with increased Cd burden due to growth. The marked increase in hepatic Hg in mature sharks may be explained by the continuous intake of Hg via food, slower growth and Hg–Se complex formation. High concentrations of Zn and Cu in the liver of immature sharks and concomitant increases in Zn and Cu with the Cd burden in the liver of mature sharks may be explained by the physiological requirements of Zn and Cu during the growth stage, the induction of metallothionein synthesis due to the Cd burden and the subsequent binding of these metals to metallothionein. The δ15N and δ13C values decreased with increases in body length, suggesting a shift from coastal feeding to pelagic feeding with shark growth. The Hg and Cd concentrations tended to be negatively correlated with the δ15N and δ13C values as a result of the increase in Hg and Cd accumulation due to the growth and the decreases in δ15N and δ13C values due to the sift of feeding area.  相似文献   

2.
We analyzed the Hg concentration, and δ¹³C and δ15N values in the scalp hair of residents from seven countries; Vietnam, New Zealand, Spain, the USA, South Korea, Brazil and Japan. Relationships among the data in each country and among the seven countries were then examined. The highest Hg concentration as well as the highest or higher δ15N value in each country was found in the hair of a heavy marine fish-eater, whereas the lowest Hg concentration and δ15N value were found in the hair of a vegetarian or non (marginal)-fish eater. Hg concentrations were positively correlated with the δ15N values in each country, and increased markedly in samples with δ15N values exceeding 9.0 ‰, probably due to fish consumption. The highest Hg concentration could be found in sample, with a δ¹³C value between -19 and -18‰, probably reflecting the δ¹³C value of the marine food web.  相似文献   

3.
During 2000–2002, diagnostic rice and soybean plant samples and concurrent soil samples were collected from cultivated fields within a geo-physically unique Zn/Cd co-contaminated location in Thailand. For the fields sampled, aqua regia-digested Zn and Cd concentrations ranged from 2.91–284 and 254–8036 mg kg–1, respectively. In comparison, rice and soybean Cd concentrations ranged from 0.02–5.00 and 1.08–1.71 mg kg–1, respectively. Further, the results indicate that grain Cd, Zn and Fe concentrations are in the order riceGr=soybeanGr, soybeanGr>riceGr, soybeanGr>riceGr, respectively. However, and critically from a human health perspective, Cd:Zn and Cd:Fe ratios are in the order riceGr>soybeanGr. In addition, the riceGr Cd:Fe ratio is an order of magnitude higher than that determined for soybeanGr. The results of this study, clearly demonstrate that compared to rice stalk (riceSt) and rice leaf (riceL), riceGr accumulates comparatively higher Cd than Zn and Fe thus resulting in the high riceGr Cd:Zn and Cd:Fe ratios. This is in direct contrast to the results observed for soybean.  相似文献   

4.
The effects of HgCl2 on urinary excretion of Zn, Cu and metallothionein at different time intervals were observed in male Wistar rats. The rats were given a daily intraperitoneal injection of203HgCl2 (0.5 or 1.0 mg Hg kg–1) for 2 days.203Hg, Zn, Cu and metallothionein in urine, kidney and liver were analyzed. Significant increases in urinary Zn and Cu concentrations were found in HgCl2-dosed groups. Elevated urinary Zn and Cu concentrations were accompanied by an increased metallothionein excretion in urine at different time periods. Zn concentration in urine remained elevated during the entire observation period of 7 days. There were also increased concentrations of Cu and Zn in the renal cortex in one of the two exposed groups. The results indicate that urinary Cu and Zn are related to the manifestation of renal toxicity and/or the synthesis of metallothionein in kidney induced by mercury.  相似文献   

5.
Zinc homeostasis was investigated in Nostoc punctiforme. Cell tolerance to Zn2+ over 14 days showed that ZnCl2 levels above 22 μM significantly reduced cell viability. After 3 days in 22 μM ZnCl2, ca. 12% of the Zn2+ was in an EDTA-resistant component, suggesting an intracellular localization. Zinquin fluorescence was detected within cells exposed to concentrations up to 37 μM relative to 0 μM treatment. Radiolabeled 65Zn showed Zn2+ uptake increased over a 3-day period, while efflux occurred more rapidly within a 3-h time period. Four putative genes involved in Zn2+ uptake and efflux in N. punctiforme were identified: (i) the predicted Co/Zn/Cd cation transporter, putative CDF; (ii) the predicted divalent heavy-metal cation transporter, putative Zip; (iii) the ATPase component and Fe/Zn uptake regulation protein, putative Fur; and (iv) an ABC-type Mn/Zn transport system, putative zinc ZnuC, ZnuABC system component. Quantitative real-time PCR indicated the responsiveness of all four genes to 22 μM ZnCl2 within 3 h, followed by a reduction to below basal levels after 24 h by putative ZIP, ZnuC, and Fur and a reduction to below basal level after 72 h by putative CDF efflux gene. These results demonstrate differential regulation of zinc transporters over time, indicating a role for them in zinc homeostasis in N. punctiforme.  相似文献   

6.
The administration of inorganic Cd and Hg in vivo has been shown to result in markedly different metal concentrations in rat liver. Primary cultures of rat hepatocytes were utilized to gain insight into the dispositional differences between these chemically similar metals. Hepatocyte monolayer cultures were exposed to several concentrations of Cd or Hg (3, 10 and 30μm) in serum-containing medium for 30min. The cells were then washed and incubated in fresh medium for the remainder of the experiment. Hepatocytes exposed to Cd accumulated significantly more metal than hepatocytes exposed to equimolar concentrations of Hg. In cells exposed to 3μm-Cd there was an initial loss of Cd from the hepatocytes when placed in fresh medium, followed by a gradual re-uptake of metal, concomitant with increased binding to metallothionein. In hepatocytes exposed to 3 and 10μm-Cd, 87 and 77% of the intracellular Cd was bound to metallothionein within 24h. Loss of Hg from hepatocytes pulsed with 30μm-Hg was also observed upon the addition of fresh medium and continued for the duration of the experiment. No time-dependent increase in Hg binding to metallothionein was observed. A maximum of about 10% of the intracellular Hg was found associated with metallothionein in hepatocytes exposed to 30μm-Hg. Studies utilizing [35S]cysteine incorporation indicated significant increases in the amount of metallothionein synthesized in hepatocytes exposed to 3 and 10μm-Cd (300% of control value) and 30μm-Hg (150% of control value) 24h after metal pulsing. Time-course studies revealed a 6–12h lag in metallothionein synthesis, followed by a significant elevation in [35S]cysteine incorporation into metallothionein between 12 and 24h. These studies suggest that (a) isolated hepatocytes differentiate between Cd and Hg and preferentially accumulate the former, and (b) Cd strongly stimulates the induction of, and preferentially binds to, metallothionein, whereas Hg induces weakly, and does not preferentially bind to, metallothionein.  相似文献   

7.
The bioaccumulation of Hg, Cd, Zn, Cu, Mn and Fe was evaluated in the muscle and liver tissue of four fish species (Siganus rivulatus, Diplodus sargus, Lithognatus mormyrus and Plathychtis flesus) from clean and polluted marine coastal sites in the Red Sea, Mediterranean Sea and North Sea within the framework of the MARS 1 program. Representative liver samples were screened for organic contaminants (DDE, PCBs and PAHs) which exhibited very low concentrations. The levels of Cd, Cu, Zn, Fe and Mn found in the muscle tissue in this study were similar among the four species and within the naturally occurring metal ranges. However, differences were found among the sites. In the Red Sea, Cu was higher in the muscle of S. rivulatus at Ardag and Zn at the Observatory (OBS). Cu, Zn and Mn were higher in the Red Sea than in the specimens from the Mediterranean. The differences were attributed to different diets derived from distinctively different natural environments. D. sargus from Haifa Bay (HB) had higher Cd, Cu and Mn values than specimens from Jaffa (JFA), and L. mormyrus higher Cd, Fe and Mn in HB, corresponding to the polluted environmental status of the Bay. No differences in metal levels were found among the North Sea sites, except for Fe that was lower at the Eider station. Hg was low in all the specimens, but the values varied with species and sites. The lowest Hg values were found in S. rivulatus, the herbivorous species, as expected from its trophic level. Hg in P. flesus was higher than in S. rivulatus but still low. Higher Hg values were found in the muscle tissue of L. mormyrus,with the highest values in D. sargus, both carnivorous species from the same family. Hg in D. sargus was higher in HB than in JFA, as expected, but in the larger specimens of L. mormyrus from JFA values were higher, while in the small specimens there were no differences in Hg values. The levels of all metals were higher in the liver than in the muscle, with enrichment factors ranging from 3 to 104, depending on species and sites. The lowest enrichment values were found for Hg. Based on liver values, the specimens of S. rivulatus from the OBS had the highest levels, as well as D. sargus and L. mormyrus from JFA, contrary to the known relative environmental status of the sites. Received: 25 February 1999 / Received in revised form: 5 June 1999 / Accepted: 7 June 1999  相似文献   

8.
The concentrations of Cd, Pb, Cu and Zn inChironomus gr.thummi were determined for 4th instar larvae from the polluted Dyle River, tributary of the Scheldt River (Belgium). Comparison was made between larvae with deformed and normal menta. Deformed larvae showed higher overall metal concentrations than normal larvae. Especially Pb and Cu had higher concentrations in deformed larvae (16.22 mg kg–1 dry weight and 39.66 respectively) than in normal larvae (12.80 mg kg–1 dry weight and 35.70 respectively). No significant differences were found in the concentrations of Cd and Zn (mean [Cd] = 0.81 mg kg–1 dry weight and mean [Zn] = 313.12 mg kg–1 dry weight). There was no difference between the two larval groups as far as total length, dry weight and developmental stage of the imaginal discs are concerned.  相似文献   

9.
Phytoremediation is a promising means of ameliorating heavy metal pollution through the use of transgenic plants as artificial hyperaccumulators. A novel Streptococcus thermophilus γ-glutamylcysteine synthetase-glutathione synthetase (StGCS-GS) that synthesizes glutathione (GSH) with limited feedback inhibition was overexpressed in sugar beet (Beta vulgaris L.), yielding three transgenic lines (s2, s4 and s5) with enhanced tolerance to different concentrations of cadmium, zinc and copper, as indicated by their increased biomass, root length and relative growth compared with wild-type plants. Transgenic sugar beets accumulated more Cd, Zn and Cu ions in shoots than wild-type, as well as higher GSH and phytochelatin (PC) levels under different heavy metal stresses. This enhanced heavy metal tolerance and increased accumulation were likely due to the increased expression of StGCS-GS and consequent overproduction of both GSH and PC. Furthermore, when multiple heavy metal ions were present at the same time, transgenic sugar beets overexpressing StGCS-GS resisted two or three of the metal combinations (50 μM Cd-Zn, Cd-Cu, Zn-Cu and Cd-Zn-Cu), with greater absorption in shoots. Additionally, there was no obvious competition between metals. Overall, the results demonstrate the explicit role of StGCS-GS in enhancing Cd, Zn and Cu tolerance and accumulation in transgenic sugar beet, which may represent a highly promising new tool for phytoremediation.  相似文献   

10.
Mercury (Hg) is an environmental contaminant which, at high concentrations, can negatively influence avian physiology and demography. Albatrosses (Diomedeidae) have higher Hg burdens than all other avian families. Here, we measure total Hg (THg) concentrations of body feathers from adult grey-headed albatrosses (Thalassarche chrysostoma) at South Georgia. Specifically, we (i) analyse temporal trends at South Georgia (1989–2013) and make comparisons with other breeding populations; (ii) identify factors driving variation in THg concentrations and (iii) examine relationships with breeding success. Mean ± s.d. feather THg concentrations were 13.0 ± 8.0 µg g−1 dw, which represents a threefold increase over the past 25 years at South Georgia and is the highest recorded in the Thalassarche genus. Foraging habitat, inferred from stable isotope ratios of carbon (δ13C), significantly influenced THg concentrations—feathers moulted in Antarctic waters had far lower THg concentrations than those moulted in subantarctic or subtropical waters. THg concentrations also increased with trophic level (δ15N), reflecting the biomagnification process. There was limited support for the influence of sex, age and previous breeding outcome on feather THg concentrations. However, in males, Hg exposure was correlated with breeding outcome—failed birds had significantly higher feather THg concentrations than successful birds. These results provide key insights into the drivers and consequences of Hg exposure in this globally important albatross population.  相似文献   

11.
From 2000 to 2002, sediment contamination by Cd, Cu, Hg, Pb and Zn was analysed in the Pialassa Baiona salt marsh, which receives petrochemical wastewaters from the industrial district of Ravenna (Italy). The recent contamination levels were compared with data of previous studies carried out in 1982, in order to assess whether environmental policies and remedial measures reduced sediment pollution. Sedimentary profiles of Cu and Pb were homogeneous along the uppermost 0–10 cm horizon, which corresponded to the sedimentation in the last 30 years. Concentrations of Zn attained a peak (up to 800 mg kg−1 dry weight) in the 0–4 cm sediment horizon, which was assumed to correspond to the last 10–15 years. A wide-spread contamination by Hg was detected in the salt marsh as well as in the main channel with peaks up to 20–40 mg kg−1 dry weight. Nonetheless, recent sediments resulted less contaminated, since Hg discharge from industrial plants ceased about 20 years ago. Contamination levels by Hg values were two orders of magnitude higher than the international sediment quality standards. Cadmium, which was analysed for the first time in 2000–2002, attained a peak in the surface layers (1–2.5 mg kg−1 d.w.), with a progressive decline along the sediment column. Through comparison with pre-industrial values detected in the deeper sediment horizons (before 1920), Hg showed the highest enrichment factor, up to 300 times. Cd and Zn concentrations in recent sediments were from 2 to 10 times higher than background values. In terms of possible adverse effects, Hg posed the highest risk, and Cd and Zn were frequently above the recommended thresholds.  相似文献   

12.
Daily mineral intake (DMI) of Cu and Zn, percentage weekly intake (PWI) of As, Cd, Hg, Pb, and doses of 210Po were estimated by using their elemental concentration in muscle of two tuna species and the average tuna consumption in Mexico. Skipjack tuna Katsuwonus pelamis had significantly (p?<?0.05) higher levels of As (1.38???g?g?1 dw) and Cu (1.85???g?g?1 dw) than yellowfin tuna Thunnus albacares, whereas Pb concentrations (0.18???g?g?1 dw) were significantly (p?<?0.05) higher in T. albacares. The sequence of elemental concentrations in both species was Zn?>?Cu?>?As?>?Hg?>?Pb?>?Cd. In T. albacares, concentrations of Cd and Pb in muscle tissue were positively correlated (p?<?0.05) with weight of specimens, while Cu was negatively correlated. DMI values were below 10?%. PWI figures (<2?%) are not potentially harmful to human health. 210Po concentration in T. albacares and K. pelamis accounts for 13.5 to 89.7?% of the median individual annual dose (7.1???Sv) from consumption of marine fish and shellfish for the world population.  相似文献   

13.
Abstract

Distribution of possible chemical forms of Al, Si, Sn, Pb, Zn, Fe, Hg, Cd and Cu in marine sediments of Cape Town harbour was investigated using a modified Tessier’s sequential extraction procedure and ICP-MS and ICP-AES for heavy metals determination. The mean fractions for all metals at all locations were: 1.5–7196 mg kg-1 for Si, 7.79–7266 mg kg-1 for Al, 161-639 mg kg-1 for Cu, 19–41978 mg kg-1 for Fe, 2.83–5864 mg kg-1 for Zn, 1.45–13.26 mg kg-1for Cd, 9.87–223 mg kg-1 for Sn, 11.98-979 mg kg-1 for Pb and 0.13–5.93 mg kg-1 for Hg. Si, Al and Zn were mostly associated with Fe–Mn oxides, whereas Sn and Hg were mainly bound to residual and organic matter. Pb existed mainly in the residual and iron/manganese oxide phases while Cd was evenly distributed in all the five phases. The loading plots of heavy metals bound to the various chemical forms, as well as Pearson correlation coefficients, enabled the determination binding relationship. Pb, Sn and Hg exhibited similar binding behaviour which indicated an anthropogenic point source from wastes from the ship maintenance workshop, and the presence of Sn in the organic phase can be identified with the use of anti-fouling paints at the harbour, whereas Al, Fe, Si, Cu and Zn would probably be of natural origin. Lastly Cd probably came from a diffuse pollution sources in the harbour due to its unique binding characteristic. The mobility of heavy metals varied depending on location and the heavy metal type. The mobility of metals followed the order: Si > Zn > Fe > Cu> Al> Cd> Pb > Sn > Hg. The high percentage of Cd and Pb in the bioavailable forms suggested the need to keep close surveillance on these metals because of their high toxicity.  相似文献   

14.
G. Nakos 《Plant and Soil》1982,66(2):271-277
Summary The Thriasian Plain near Athens in Greece is a site of concentrated industrial development. Total concentrations of Pb, Cd and extractable SO4 2– in surface soil samples collected from this area, were found to be, respectively, 2–7, 6–34 and 2–20 times higher than those in similar soil samples from parts of the country remote from industrial activity.Total concentrations of Pb, Cd, Zn, Cr and S in samples of olive leaves from the same area were found to be, respectively, 4–40, 3–10, 3–9, 2–6 and 17–21 times higher than those found in samples of olive leaves from rural sites. Leaves of cabbages growing in the area contained between 0.82 and 40 g/g (wet weight) of Pb.Addition of Cd, Ni and Cu to a calcareous potted soil at concentrations of 100, 200 and 200 ppm increased the concentrations of the metals in the needles of Aleppo pine (Pinus halepensis) seedlings to 4.5, 3.5 and 10 ppm, respectively, after 7 months growth in the nursey.  相似文献   

15.
The bioaccumulation and biomagnification of mercury (Hg) and selenium (Se) were investigated in sub-tropical freshwater food webs from Burkina Faso, West Africa, a region where very few ecosystem studies on contaminants have been performed. During the 2010 rainy season, samples of water, sediment, fish, zooplankton, and mollusks were collected from three water reservoirs and analysed for total Hg (THg), methylmercury (MeHg), and total Se (TSe). Ratios of δ13C and δ15N were measured to determine food web structures and patterns of contaminant accumulation and transfer to fish. Food chain lengths (FCLs) were calculated using mean δ15N of all primary consumer taxa collected as the site-specific baseline. We report relatively low concentrations of THg and TSe in most fish. We also found in all studied reservoirs short food chain lengths, ranging from 3.3 to 3.7, with most fish relying on a mixture of pelagic and littoral sources for their diet. Mercury was biomagnified in fish food webs with an enrichment factor ranging from 2.9 to 6.5 for THg and from 2.9 to 6.6 for MeHg. However, there was no evidence of selenium biomagnification in these food webs. An inverse relationship was observed between adjusted δ15N and log-transformed Se:Hg ratios, indicating that Se has a lesser protective effect in top predators, which are also the most contaminated animals with respect to MeHg. Trophic position, carbon source, and fish total length were the factors best explaining Hg concentration in fish. In a broader comparison of our study sites with literature data for other African lakes, the THg biomagnification rate was positively correlated with FCL. We conclude that these reservoir systems from tropical Western Africa have low Hg biomagnification associated with short food chains. This finding may partly explain low concentrations of Hg commonly reported in fish from this area.  相似文献   

16.
The heavy metals Cd, Cr, Cu, Pb, Hg, Ag, and Zn, and the metalloid As were measured in surface sediments at permanent stations located in the Calcasieu River/Lake Complex. The relationships among metal concentrations in different areas of the system were investigated to determine sources, source strength, and transport. The point-source inputs of heavy metals were assumed to be industrial outfalls (Bayou d'Inde) and sewage outfalls (Bayou d'Inde and Contraband Bayou). Although these inputs have not seriously affected the entire river/lake system, stressed regions exist within each bayou.The background levels of arsenic and heavy metals were: 0.60 (As), 0.3 to 1.4 (Cd), 25 (Cr), 10 (Cu), 15 (Pb), < 0.05 (Hg), 0.07 (Ag), and 40 mg kg–1 (Zn). Stations near sewage outfalls and industrial outfalls had increased metal concentrations above these background levels, but the increases were restricted to the regions near the outfalls. The metals discharged into the bayous were not being transported to the remainder of the river/lake complex.  相似文献   

17.
18.
Comparison of plant uptake and plant toxicity of various ions in wheat   总被引:1,自引:0,他引:1  
The effects of varying solution concentrations of manganese (Mn), zinc (Zn), copper (Cu), boron (B), iron (Fe), gallium (Ga) and lanthanum (La) on plant chemical concentrations, plant uptake and plant toxicity were determined in wheat (Triticum aestivum L.) grown in a low ionic strength (2.7×10–3 M solution culture). Increasing the solution concentration of Mn, Zn, Cu, B, Fe, Ga and La increased plant concentrations of that ion. Asymptotic maximum plant concentrations were reached for Zn (10 mg kg DM–1 in the roots), Ga (2 mg kg DM–1 in the tops and 18 mg kg DM–1 in the roots) and La (0.4 mg kg DM–1 in the tops and 4 mg kg DM–1 in the roots). Plant ion concentrations were, on average, 3 times higher in the roots than the tops for Mn and Zn, 7 times for Cu, 9 times for Fe, 12 times for Ga and 15 times for La. In contrast, B concentrations were higher in the tops than the roots by, on average, 2 times. The estimated toxicity threshold (plant concentration at which a rapid decrease in yield occurred) in the tops was 0.4 mg g DM–1 for B, 2 for Zn, 0.075 for Cu and 0.09 for La and in the roots 0.2 mg g DM–1 for B, 5 for Zn, 0.3 for Cu and 3 for La. Plant uptake rates of the ions (as estimated by the slope of the relationship between solution ion concentrations and plant ion concentrations) was in the order B 250 mg kg DM–1 M –1). Plant toxicity was estimated as the reciprocal of the plant concentration that reduced yield by 50% (change in relative yield per mg ion kg DM–1). The plant toxicity of the ions tested was in the order Mn相似文献   

19.
Heavy metal concentrations of As, Cd, Cu, Hg, Ni, Pb, and Zn were investigated for 107 soil samples collected from crop land, orchard land, greenhouse land, and wood land in the peri-urban area of Beijing, China. The mean concentrations of As, Cd, Cu, Hg, Ni, Pb, and Zn in all soil samples were 8.40, 0.20, 24.7, 0.08, 25.0, 23.0, and 77.1 mg/kg, dw, respectively. Among the four land use types, the Cd concentration in greenhouse land was significantly higher than the other three kinds of land uses (p < .05), and Cu and Zn concentrations in greenhouse land were significantly higher than in crop land and wood land (p < .05). Based on principal component analysis, elevated Cu, Zn, and Cd concentrations in greenhouse land might have originated from high application rates of manure and fertilizer. According to an ecological risk analysis, the four land use types can be ranked in the following order: greenhouse land > orchard land > crop land > wood land. However, the degree of non-cancer risk for both adults and children in different land uses decreased in the order of greenhouse land > orchard land > wood land > crop land.  相似文献   

20.
《农业工程》2020,40(1):64-71
Twenty five water samples were collected along the Taizihe River, the concentration and health risks of Zn, Cu, Pb, Cr and Cd were detected and evaluated, and the pollution sources was analyzed through principal components analyses. The results indicated that the order of average concentration of heavy metals was follows: Pb > Cr > Cu > Zn and Cd. Among that, the concentrations of Zn, Cu and Cr were at the permissible levels, but Pb and Cd exceeded grade V standard at some sites. The concentrations of Zn and Cu in the wet season were significant higher than that in the dry season (p < 0.05), but the average concentrations of Pb, Cr and Cd were not significantly different in the two seasons (p > 0.05). The annual average risks of human health caused by Cd and Cr were 10−3/a and 10−4/a, respectively, which were higher than the recommended maximum acceptable risk level. The human health risk values of Zn, Pb and Cu were all concentrated at 10−8/a or 10−9/a levels, which did not exceed the recommended standard. On the whole, Cd and Cr were the main health risk pollutants of Taizihe River. Pollution sources of Pb was different from other heavy metals in wet and dry season, Cd and Cr were similar in the wet and dry season. The mainly pollution source of heavy metals was industry, especially mining, metal smelting and electroplating industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号