首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid rafts are nanoscopic compartments of cell membranes that serve a variety of biological functions. They play a crucial role in viral infections, as enveloped viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can exploit rafts to enter or quit target cells. On the other hand, lipid rafts contribute to the formation of immune synapses and their proper functioning is a prerequisite for adequate immune response and viral clearance. In this narrative review we dissect the panorama focusing on this singular aspect of cell biology in the context of SARS-CoV-2 infection and therapy. A lipid raft-mediated mechanism can be hypothesized for many drugs recommended or considered for the treatment of SARS-CoV-2 infection, such as glucocorticoids, antimalarials, immunosuppressants and antiviral agents. Furthermore, the additional use of lipid-lowering agents, like statins, may affect the lipid composition of membrane rafts and thus influence the processes occurring in these compartments. The combination of drugs acting on lipid rafts may be successful in the treatment of more severe forms of the disease and should be reserved for further investigation.  相似文献   

2.
In the past decade, emerging viral outbreaks like SARS-CoV-2, Zika and Ebola have presented major challenges to the global health system. Viruses are unique pathogens in that they fully rely on the host cell to complete their lifecycle and potentiate disease. Therefore, programmed cell death (PCD), a key component of the host innate immune response, is an effective strategy for the host cell to curb viral spread. The most well-established PCD pathways, pyroptosis, apoptosis and necroptosis, can be activated in response to viruses. Recently, extensive crosstalk between PCD pathways has been identified, and there is evidence that molecules from all three PCD pathways can be activated during virus infection. These findings have led to the emergence of the concept of PANoptosis, defined as an inflammatory PCD pathway regulated by the PANoptosome complex with key features of pyroptosis, apoptosis, and/or necroptosis that cannot be accounted for by any of these three PCD pathways alone. While PCD is important to eliminate infected cells, many viruses are equipped to hijack host PCD pathways to benefit their own propagation and subvert host defense, and PCD can also lead to the production of inflammatory cytokines and inflammation. Therefore, PANoptosis induced by viral infection contributes to either host defense or viral pathogenesis in context-specific ways. In this review, we will discuss the multi-faceted roles of PCD pathways in controlling viral infections.  相似文献   

3.
To establish productive infections, viruses must counteract numerous cellular defenses that are poised to recognize viruses as nonself and to activate antiviral pathways. The opposing goals of host and viral factors lead to evolutionary arms races that can be illuminated by evolutionary and computational methods and tested in experimental models. Here we illustrate how this perspective has been contributing to our understanding of the interactions of the protein kinase R pathway with large DNA viruses.  相似文献   

4.
Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2. Ectopic expression of ACE2 (AGS-ACE2) results in RBD traffic via both CG and clathrin-mediated endocytosis. Endosomal acidification inhibitors like BafilomycinA1 and NH4Cl, which inhibit the CG pathway, reduce the uptake of RBD and impede Spike-pseudoviral infection in both AGS and AGS-ACE2 cells. The inhibition by BafilomycinA1 was found to be distinct from Chloroquine which neither affects RBD uptake nor alters endosomal pH, yet attenuates Spike-pseudovirus entry. By screening a subset of FDA-approved inhibitors for functionality similar to BafilomycinA1, we identified Niclosamide as a SARS-CoV-2 entry inhibitor. Further validation using a clinical isolate of SARS-CoV-2 in AGS-ACE2 and Vero cells confirmed its antiviral effect. We propose that Niclosamide, and other drugs which neutralize endosomal pH as well as inhibit the endocytic uptake, could provide broader applicability in subverting infection of viruses entering host cells via a pH-dependent endocytic pathway.  相似文献   

5.
Autophagy is a major intracellular pathway for degradation and recycling of long-lived proteins and cytoplasmic organelles that plays an essential role in maintenance of homeostasis in response to starvation and other cellular stresses. Autophagy is also important for a variety of other processes including restriction of intracellular pathogen replication. Our understanding of the fascinating relationship between viruses and the autophagy machinery is still in its infancy but it is clear that autophagy is a newly recognized facet of innate and adaptive immunity against viral infection. Although the autophagy pathway is emerging as a component of host defense, certain viruses have developed strategies to counteract these antiviral mechanisms, and others appear to have co-opted the autophagy machinery as proviral host factors favoring viral replication. The complex interplay between autophagy and viral infection will be discussed in this review.  相似文献   

6.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide. The pathophysiological mechanisms linking gut dysbiosis and severe SARS-CoV-2 infection are poorly understood, although gut microbiota disorders are related to severe SARS-CoV-2 infections. The roles of the gut microbiota in severe SARS-CoV-2 infection were compared with those in respiratory viral infection, which is an easily understood and enlightening analogy. Secondary bacterial infections caused by immune disorders and antibiotic abuse can lead to dysregulation of the gut microbiota in patients with respiratory viral infections. The gut microbiota can influence the progression of respiratory viral infections through metabolites and the immune response, which is known as the gut–lung axis. Angiotensin-converting enzyme 2 is expressed in both the lungs and the small intestine, which may be a bridge between the lung and the gut. Similarly, SARS-CoV-2 infection has been shown to disturb the gut microbiota, which may be the cause of cytokine storms. Bacteria in the gut, lung, and other tissues and respiratory viruses can be considered microecosystems and may exert overall effects on the host. By referencing respiratory viral infections, this review focused on the mechanisms involved in the interaction between SARS-CoV-2 infections and the gut microbiota and provides new strategies for the treatment or prevention of severe SARS-CoV-2 infections by improving gut microbial homeostasis.  相似文献   

7.
Viruses are obligate intracellular parasites that make use of the host metabolic machineries to meet their biosynthetic needs. Thus, identifying the host pathways essential for the virus replication may lead to potential targets for therapeutic intervention. The mechanisms and pathways explored by SARS-CoV-2 to support its replication within host cells are not fully known. Lipid droplets (LD) are organelles with major functions in lipid metabolism, energy homeostasis and intracellular transport, and have multiple roles in infections and inflammation. Here we described that monocytes from COVID-19 patients have an increased LD accumulation compared to SARS-CoV-2 negative donors. In vitro, SARS-CoV-2 infection were seen to modulate pathways of lipid synthesis and uptake as monitored by testing for CD36, SREBP-1, PPARγ, and DGAT-1 expression in monocytes and triggered LD formation in different human cell lines. LDs were found in close apposition with SARS-CoV-2 proteins and double-stranded (ds)-RNA in infected Vero cells. Electron microscopy (EM) analysis of SARS-CoV-2 infected Vero cells show viral particles colocalizing with LDs, suggestive that LDs might serve as an assembly platform. Pharmacological modulation of LD formation by inhibition of DGAT-1 with A922500 significantly inhibited SARS-CoV-2 replication as well as reduced production of mediators pro-inflammatory response. Taken together, we demonstrate the essential role of lipid metabolic reprograming and LD formation in SARS-CoV-2 replication and pathogenesis, opening new opportunities for therapeutic strategies to COVID-19.  相似文献   

8.
9.
Viruses have the ability to modulate the cellular machinery of their host to ensure their survival. While humans encounter numerous viruses daily, only a select few can lead to disease progression. Some of these viruses can amplify cancer-related traits, particularly when coupled with factors like immunosuppression and co-carcinogens. The global burden of cancer development resulting from viral infections is approximately 12%, and it arises as an unfortunate consequence of persistent infections that cause chronic inflammation, genomic instability from viral genome integration, and dysregulation of tumor suppressor genes and host oncogenes involved in normal cell growth. This review provides an in-depth discussion of oncoviruses and their strategies for hijacking the host's cellular machinery to induce cancer. It delves into how viral oncogenes drive tumorigenesis by targeting key cell signaling pathways. Additionally, the review discusses current therapeutic approaches that have been approved or are undergoing clinical trials to combat malignancies induced by oncoviruses. Understanding the intricate interactions between viruses and host cells can lead to the development of more effective treatments for virus-induced cancers.  相似文献   

10.
Intracellular pathogens have complex metabolic interactions with their host cells to ensure a steady supply of energy and anabolic building blocks for rapid growth. Here we use the obligate intracellular parasite Toxoplasma gondii to probe this interaction for isoprenoids, abundant lipidic compounds essential to many cellular processes including signaling, trafficking, energy metabolism, and protein translation. Synthesis of precursors for isoprenoids in Apicomplexa occurs in the apicoplast and is essential. To synthesize longer isoprenoids from these precursors, T. gondii expresses a bifunctional farnesyl diphosphate/geranylgeranyl diphosphate synthase (TgFPPS). In this work we construct and characterize T. gondii null mutants for this enzyme. Surprisingly, these mutants have only a mild growth phenotype and an isoprenoid composition similar to wild type parasites. However, when extracellular, the loss of the enzyme becomes phenotypically apparent. This strongly suggests that intracellular parasite salvage FPP and/or geranylgeranyl diphosphate (GGPP) from the host. We test this hypothesis using inhibitors of host cell isoprenoid synthesis. Mammals use the mevalonate pathway, which is susceptible to statins. We document strong synergy between statin treatment and pharmacological or genetic interference with the parasite isoprenoid pathway. Mice can be cured with atorvastatin (Lipitor) from a lethal infection with the TgFPPs mutant. We propose a double-hit strategy combining inhibitors of host and parasite pathways as a novel therapeutic approach against Apicomplexan parasites.  相似文献   

11.
The use of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) to reduce serum cholesterol is well described. However, the recent finding that statins have direct effects on bone was unexpected. A number of epidemiological studies have recently been published that explore the effects of statins on bone mineral density and risk of fracture in humans. Statins may act by directly stimulating the expression of bone morphogenetic protein-2 and increasing osteoblast differentiation or, like nitrogen-containing bisphosphonates, may have effects on the mevalonate pathway that leads to inhibition of osteoclast activity and osteoblast apoptosis. In addition, the demonstration that statins can inhibit inflammation and encourage angiogenesis offers other possibilities for action.  相似文献   

12.
The use of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) to reduce serum cholesterol is well described. However, the recent finding that statins have direct effects on bone was unexpected. A number of epidemiological studies have recently been published that explore the effects of statins on bone mineral density and risk of fracture in humans. Statins may act by directly stimulating the expression of bone morphogenetic protein-2 and increasing osteoblast differentiation or, like nitrogen-containing bisphosphonates, may have effects on the mevalonate pathway that leads to inhibition of osteoclast activity and osteoblast apoptosis. In addition, the demonstration that statins can inhibit inflammation and encourage angiogenesis offers other possibilities for action.  相似文献   

13.
DNA viruses often persist in the body of their host, becoming latent and recurring many months or years later. By contrast, most RNA viruses cause acute infections that are cleared from the host as they lack the mechanisms to persist. However, it is becoming clear that viral RNA can persist after clinical recovery and elimination of detectable infectious virus. This persistence can either be asymptomatic or associated with late progressive disease or nonspecific lingering symptoms, such as may be the case following infection with Ebola or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Why does viral RNA sometimes persist after recovery from an acute infection? Where does the RNA come from? And what are the consequences?

Most RNA viruses cause acute infections that are cleared from the host as they lack the mechanisms to persist; however, phenomena such as "long COVID" suggest that viral RNA can persist after clinical recovery and elimination of detectable infectious virus. This Unsolved Mystery article explores the meaning, origins and consequences of such persistent RNA.  相似文献   

14.
Recently,a class of about 22 nucleotides (nt)small RNA has been discovered in many eukaryotes,termed microRNAs (miRNAs),which have a variety of functions.Many recent findings have demonstrated that viruses can also encode their own miRNAs.Meanwhile,other findings reveal a relationship between host miRNA and viral infection.These findings suggest a tight relationship between host and viral infection via miRNA pathway.This article introduces the miRNAs encoded by viruses and reviews the advances of the interaction of the mammalian host miRNAs and viral infection.  相似文献   

15.
Viral infections are the most important health concern nowadays to mankind, which is unexpectedly increasing the health complications and fatality rate worldwide. The recent viral infection outbreak developed a pressing need for small molecules that can be quickly deployed for the control/treatment of re-emerging or new emerging viral infections. Numerous viruses, including the human immunodeficiency virus (HIV), hepatitis, influenza, SARS-CoV-1, SARS-CoV-2, and others, are still challenging due to emerging resistance to known drugs. Therefore, there is always a need to search for new antiviral small molecules that can combat viral infection with new modes of action. This review highlighted recent progress in developing new antiviral molecules based on natural product-inspired scaffolds. Herein, the structure-activity relationship of the FDA-approved drugs along with the molecular docking studies of selected compounds have been discussed against several target proteins. The findings of new small molecules as neuraminidase inhibitors, other than known drug scaffolds, Anti-HIV and SARS-CoV are incorporated in this review paper.  相似文献   

16.
Recently, a class of about 22 nucleotides (nt) small RNA has been discovered in many eukaryotes, termed microRNAs (miRNAs), which have a variety of functions. Many recent findings have demonstrated that viruses can also encode their own miRNAs. Meanwhile, other findings reveal a relationship between host miRNA and viral infection. These findings suggest a tight relationship between host and viral infection via miRNA pathway. This article introduces the miRNAs encoded by viruses and reviews the advances of the interaction of the mammalian host miRNAs and viral infection.  相似文献   

17.
Metabolites derived from superoxide (o2 ??) and nitric oxide (NO?) play an important role in antimicrobial and antitumoral defense, but may also harm the host. Low levels of such metabolites can also facilitate viral replication because of their mitogenic effects on cells. Most viruses grow better in proliferating cells, and indeed, many viruses induced in their host cell changes similar to those seen early after treatment with mitogenic lectins. Influenza and paramyxoviruses activate in phagocytes the generation of superoxide by a mechanism involving the interaction between the viral surface glycoproteins and the phagocyte’s plasma membrane. Interestingly, viruses that activate this host defense mechanism are toxic when injected in the bloodstream of animals. Mice infected with influenza virus undergo oxidative stress. In addition, a wide array of cytokines are formed in the lung, contributing to the systemic effects of influenza. Oxidative stress is seen also in chronic viral infections, such as AIDS and viral hepatitis. Oxidant production in viral hepatitis may contribute to the emergence of hepatocellular carcinoma, a tumor seen in patients after years of chronic inflammation of the liver. Antioxidants and agents that downregulate proinflammatory cytokines and lipid mediators may be a useful complement to specific antiviral drugs in the therapy of viral diseases.  相似文献   

18.
病毒入侵宿主细胞时,宿主细胞启动抑制病毒复制的免疫机制.同样,病毒也会利用多种手段去逃避先天免疫感应机制的监测以及宿主细胞对外来者的降解,同时还会操纵宿主细胞为自身的增殖提供便利.DEAD-box解旋酶家族是一类存在于宿主细胞中的功能蛋白,它们在转录、剪接、mRNA的合成和翻译等多种细胞过程中起着关键作用.该家族成员拥...  相似文献   

19.
RNA silencing in plants and insects can function as a defence mechanism against invading viruses. RNA silencing-based antiviral defence entails the production of virus-derived small interfering RNAs which guide specific antiviral effector complexes to inactivate viral genomes. As a response to this defence system, viruses have evolved viral suppressors of RNA silencing (VSRs) to overcome the host defence. VSRs can act on various steps of the different silencing pathways. Viral infection can have a profound impact on the host endogenous RNA silencing regulatory pathways; alterations of endogenous short RNA expression profile and gene expression are often associated with viral infections and their symptoms. Here we discuss our current understanding of the main steps of RNA-silencing responses to viral invasion in plants and the effects of VSRs on endogenous pathways. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.  相似文献   

20.
Introducing statins as possible widely-available drugs for the treatment of viral infections requires an in depth review of their antiviral properties. Despite some inconsistency, a large body of literature data from experimental and clinical studies suggest that statins may have a role in the treatment of viral infections due to their immunomodulatory properties as well as their ability to inhibit viral replication. In the present review, the role that statins may play while interacting with the immune system during viral infections and the possible inhibitory effects of statins on different stages of virus cell cycle (i.e., from fusion with host cell membranes to extracellular release) and subsequent virus transmission are described. Specifically, cholesterol-dependent and cholesterol-independent mechanisms of the antiviral effects of statins are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号