首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Candida albicans, a clinically important dimorphic fungal pathogen that can evade immune attack by masking its cell wall β-glucan from immune recognition, mutes protective host responses mediated by the Dectin-1 β-glucan receptor on innate immune cells. Although the ability of C. albicans to switch between a yeast- or hyphal-form is a key virulence determinant, the role of each morphotype in β-glucan masking during infection and treatment has not been addressed. Here, we show that during infection of mice, the C. albicans β-glucan is masked initially but becomes exposed later in several organs. At all measured stages of infection, there is no difference in β-glucan exposure between yeast-form and hyphal cells. We have previously shown that sub-inhibitory doses of the anti-fungal drug caspofungin can expose β-glucan in vitro, suggesting that the drug may enhance immune activity during therapy. This report shows that caspofungin also mediates β-glucan unmasking in vivo. Surprisingly, caspofungin preferentially unmasks filamentous cells, as opposed to yeast form cells, both in vivo and in vitro. The fungicidal activity of caspofungin in vitro is also filament-biased, as corroborated using yeast-locked and hyphal-locked mutants. The uncloaking of filaments is not a general effect of anti-fungal drugs, as another anti-fungal agent does not have this effect. These results highlight the advantage of studying host–pathogen interaction in vivo and suggest new avenues for drug development.  相似文献   

2.
Vulvovaginal candidiasis (VVC) is among the most prevalent vaginal diseases. Candida albicans is still the most prevalent species associated with this pathology, however, the prevalence of other Candida species, such as C. glabrata, is increasing. The pathogenesis of these infections has been intensely studied, nevertheless, no consensus has been reached on the pathogenicity of VVC. In addition, inappropriate treatment or the presence of resistant strains can lead to RVVC (vulvovaginal candidiasis recurrent). Immunomodulation therapy studies have become increasingly promising, including with the β-glucans. Thus, in the present study, we evaluated microbicidal activity, phagocytosis, intracellular oxidant species production, oxygen consumption, myeloperoxidase (MPO) activity, and the release of tumor necrosis factor α (TNF-α), interleukin-8 (IL-8), IL-1β, and IL-1Ra in neutrophils previously treated or not with β-glucan. In all of the assays, human neutrophils were challenged with C. albicans and C. glabrata isolated from vulvovaginal candidiasis. β-glucan significantly increased oxidant species production, suggesting that β-glucan may be an efficient immunomodulator that triggers an increase in the microbicidal response of neutrophils for both of the species isolated from vulvovaginal candidiasis. The effects of β-glucan appeared to be mainly related to the activation of reactive oxygen species and modulation of cytokine release.  相似文献   

3.
To determine the vitamins A, C, and E and β-carotene content of Vicia species that can be used in animal feed, a high performance liquid chromatography (HPLC) method was used to investigate the vitamin and β-carotene content in mature and immature seeds of seven Vicia species (Vicia anatolica Turrill., V. ervilia (L.) Willd., V. michauxii Sprengel, V. mollis Boiss. et Hausskn. ex Boiss., V. noeana Reuter ex Boiss., V. peregrina L., and V. sericocarpa Fenzl.), which are useful plants in animal feed in the eastern Anatolia region in Turkey. The vitamin content was found to differ between mature and immature seeds. The levels of vitamins A, C, and E and β-carotene were higher in mature seeds than in immature seeds (P < 0.01).  相似文献   

4.
Abstract: To determine the vitamins A, C, and E and β-carotene content of Vicia species that can be used in animal feed, a high performance liquid chromatography (HPLC) method was used to investigate the vitamin and β-carotene content in mature and immature seeds of seven Vicia species ( Vicia anatolica Turrill., V. ervilia (L.) Willd., V. michauxii Sprengel, V. mollis Boiss. et Hausskn. ex Boiss., V. noeana Reuter ex Boiss., V. peregrina L., and V. sericocarpa Fenzl.), which are useful plants in animal feed in the eastern Anatolia region in Turkey. The vitamin content was found to differ between mature and immature seeds. The levels of vitamins A, C, and E and β-carotene were higher in mature seeds than in immature seeds ( P < 0.01).
(Managing editor: Wei WANG)  相似文献   

5.
The food-grade yeast Candida utilis has been engineered to confer a novel biosynthetic pathway for the production of carotenoids such as lycopene, β-carotene, and astaxanthin. The exogenous carotenoid biosynthesis genes were derived from the epiphytic bacterium Erwinia uredovora and the marine bacterium Agrobacterium aurantiacum. The carotenoid biosynthesis genes were individually modified based on the codon usage of the C. utilis glyceraldehyde 3-phosphate dehydrogenase gene and expressed in C. utilis under the control of the constitutive promoters and terminators derived from C. utilis. The resultant yeast strains accumulated lycopene, β-carotene, and astaxanthin in the cells at 1.1, 0.4, and 0.4 mg per g (dry weight) of cells, respectively. This was considered to be a result of the carbon flow into ergosterol biosynthesis being partially redirected to the nonendogenous pathway for carotenoid production.Carotenoids are yellow, orange, and red pigments which are widely distributed in nature (3). Industrially, carotenoid pigments such as β-carotene are utilized as food or feed supplements. β-Carotene is also a precursor of vitamin A in mammals (11). Recently, carotenoids have attracted greater attention, due to their beneficial effect on human health: e.g., the functions of lycopene and astaxanthin include strong quenching of singlet oxygen (12), involvement in cancer prevention (2), and enhancement of immune responses (6). Astaxanthin has also been exploited for industrial use, principally as an agent for pigmenting cultured fish and shellfish.The genes responsible for the synthesis of carotenoids such as lycopene, β-carotene, and astaxanthin have been isolated from the epiphytic Erwinia species or the marine bacteria Agrobacterium aurantiacum and Alcaligenes sp. strain PC-1, and their functions have been elucidated (13, 14). The first substrate of the encoded enzymes for carotenoid synthesis is farnesyl pyrophosphate (diphosphate) (FPP), which is the common precursor for the biosynthesis of numerous isoprenoid compounds such as sterols, hopanols, dolicols, and quinones. The ubiquitous nature of FPP among yeasts has been utilized in the microbial production of lycopene and β-carotene by the yeast Saccharomyces cerevisiae carrying the Erwinia uredovora carotenogenic genes (19). However, the amount of carotenoids produced in these hosts was only 0.1 mg of lycopene and 0.1 mg of β-carotene per g (dry weight) of cells, respectively.The edible yeast Candida utilis is generally recognized as a safe substance by the Food and Drug Administration. Large-scale production of the yeast cells has been developed with cheap biomass-derived sugars as the carbon source for the production of single-cell protein and several chemicals such as glutathione and RNA (1, 4). This yeast was also found to accumulate a large amount of ergosterol in the cell during stationary phase (6 to 13 mg/g [dry weight] of cells) (17). Thus, C. utilis has the potential to produce a large amount of carotenoids by redirecting the carbon flux for the ergosterol biosynthesis into the nonendogenous pathway for carotenoid synthesis via FPP. Previously, a C. utilis strain was made to produce lycopene (0.8 mg/g [dry weight]) by expressing the three nonmodified genes crtE, crtB, and crtI derived from E. uredovora (15).In this paper, the de novo biosynthesis of lycopene, β-carotene, and astaxanthin has been performed in C. utilis by using six carotenogenic genes, which were synthesized according to the codon usage of the C. utilis glyceraldehyde-3-phosphate dehydrogenase (GAP) gene, which is expressed at high levels. By this approach, increased carotenoid production in C. utilis was achieved.  相似文献   

6.
We purified a β-glucosidase from the mutant strain Candida molischiana 35M5N. Analysis of the kinetic properties of this enzyme did not show any differences between the previously purified wild-type enzyme and that of the mutant. Nevertheless, a study of the stability of the enzyme at different pH levels and temperatures showed the increased resistance of this protein. This enzyme was found to be stable at pH 5 for 145 h and retained 78% of its initial activity after the same time at pH 3.5 (optimal pH) and 30°C. This difference between the wild-type and the mutant enzyme could be explained by differences in the quantity or quality of glycosylation. This glycoprotein showed different forms after deglycosylation. Some peptides from this protein were also sequenced. An homology analysis found similarities between this β-glucosidase and β-glucosidases of Candida pelliculosa and Schizophyllum commune.  相似文献   

7.
Opportunistic infections are an increasingly common problem in hospitals, and the yeast Candida parapsilosis has emerged as an important nosocomial pathogen. The aims of this study were to determine and compare (i) the prevalence rate among C. parapsilosis complex organisms isolated from blood in a public children’s hospital in São Paulo state, (ii) the ability of the complex C. parapsilosis species identified to produce biofilm and (iii) the antifungal susceptibility profiles. Forty-nine (49) specimens of isolated blood yeast were analyzed, previously identified as C. parapsilosis by conventional methods. After the molecular analysis, the isolates were characterized as C. parapsilosis sensu stricto (83.7 %), C. orthopsilosis (10.2 %) and C. metapsilosis (6.1 %). All species were able to form biofilm. The species with the highest biofilm production was C. parapsilosis sensu stricto, followed by C. orthopsilosis and further by C. metapsilosis. All of the strains have demonstrated similar susceptibility to fluconazole, caspofungin, voriconazole, cetoconazole and 5-flucytosine. Only one strain of C. parapsilosis was resistant to amphotericin B. Regarding itraconazole, 66.6 and 43.9 % isolates of C. metapsilosis and C. parapsilosis, respectively, have demonstrated to be susceptible dose-dependent, with one isolate of the latter species resistant to the drug. Candida parapsilosis sensu stricto has demonstrated to be the less susceptible, mainly to amphotericin B, caspofungin and “azoles” such as fluconazole. Therefore, C. metapsilosis and C. orthopsilosis are still involved in a restricted number of infections, but these data have become essential for there are very few studies of these species in Latin America.  相似文献   

8.
A hemicellulosic polysaccharide, which was homogeneous on sedimentation analysis and also on electrophoresis, was isolated from the rice endosperm cell walls by the combination of alkaline extraction, ion exchange chromatography and iodine complex formation. It is composed of arabinose, xylose and glucose (molar ratio, 1.0: 2.0: 5.7) together with a small amount of galactose and rhamnose. Methylation analysis, Smith degradation and fragmentation with cellulase showed that this polysaccharide is composed of three distinct polysaccharide moieties i.e., xyloglucan, β-glucan and arabinoxylan. The xyloglucan consists of β-(1→4)-linked glucan back bone and short side chains of single xylose units or galactosylxylose both attached to C-6 of the glucose residues. The β-glucan contains both (1 →3)-and (1→4)-linkages similarly to the other cereal β-glucans, but differ from them in containing the blocks of (1→3)-linked glucose residues in the chain. The arabinoxylan has a highly branched structure, in which 78% of (1→4)-linked xylose residues have short side chains of arabinose at C-3 position.

On the basis of these findings, the interconnection of these polysaccharide moieties is discussed.  相似文献   

9.
10.
11.
The cluster of neurodegenerative disorders in the western Pacific termed amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS-PDC) has been repeatedly linked to the use of seeds of various species of cycad. Identification and chemical synthesis of the most toxic compounds in the washed cycad seeds, a variant phytosteryl glucosides, and even more toxic cholesterol β-D-glucoside (CG), which is produced by the human parasite Helicobacter pylori, provide a possibility to study in vitro the mechanisms of toxicity of these compounds. We studied in detail the effects of CG on the respiratory activities and generation of reactive oxygen species (ROS) by nonsynaptic brain and heart mitochondria oxidizing various substrates. The stimulatory effects of CG on respiration and ROS generation showed strong substrate dependence, suggesting involvement of succinate dehydrogenase (complex II). Maximal effects on ROS production were observed with 1 μmol CG/1 mg mitochondria. At this concentration the cycad toxins β-sitosterol-β-D-glucoside and stigmasterol-β-D-glucoside had effects on respiration and ROS production similar to CG. However, poor solubility precluded full concentration analysis of these toxins. Cholesterol, stigmasterol and β-sitosterol had no effect on mitochondrial functions studied at concentrations up to 100 μmol/mg protein. Our results suggest that CG may influence mitochondrial functions through changes in the packing of the bulk membrane lipids, as was shown earlier by Deliconstantinos et al. (Biochem Cell Biol 67:16-24, 1989). The neurotoxic effects of phytosteryl glucosides and CG may be associated with increased oxidative damage of neurons. Unlike heart mitochondria, in activated neurons mitochondria specifically increase ROS production associated with succinate oxidation (Panov et al., J Biol Chem 284:14448-14456, 2009).  相似文献   

12.
The increasing consumption of shark products, along with the shark’s fishing vulnerabilities, has led to the decrease in certain shark populations. In this study we used a DNA barcoding method to identify the species of shark landings at fishing ports, shark fin products in retail stores, and shark fins detained by Taiwan customs. In total we identified 23, 24, and 14 species from 231 fishing landings, 316 fin products, and 113 detained shark fins, respectively. All the three sample sources were dominated by Prionace glauca, which accounted for more than 30% of the collected samples. Over 60% of the species identified in the fin products also appeared in the port landings, suggesting the domestic-dominance of shark fin products in Taiwan. However, international trade also contributes a certain proportion of the fin product markets, as four species identified from the shark fin products are not found in Taiwan’s waters, and some domestic-available species were also found in the customs-detained sample. In addition to the species identification, we also found geographical differentiation in the cox1 gene of the common thresher sharks (Alopias vulpinus), the pelagic thresher shark (A. pelagicus), the smooth hammerhead shark (Sphyrna zygaena), and the scalloped hammerhead shark (S. lewini). This result might allow fishing authorities to more effectively trace the origins as well as enforce the management and conservation of these sharks.  相似文献   

13.
By using DNA 3′-end labeling, immunocytochemistry and mRNA insitu hybridization detection techniques, the expression of inhibin subunits and LH receptor in the granulosa cells and tissue-type plasminogen activator (tPA) in the oocytes has been studied in relation to follicular development and atresia. The results demonstrated that: (i) tPA activity in the oocytes of normal developing follicles is undetectable, and increases significantly in the follicle undergoing atresia; (ii) the production of inhibin subunits in granulosa cells is negatively correlated with the expression of oocyte tPA activity, indicating that they may be an important regulator of oocyte tPA production and follicular development; (iii) in atretic follicles, granulosa cells do not express LH receptor and inhibin subunits. It is therefore suggested that tPA may play a role in oocyte self-destruction and clearance in some of atretic follicles, and inhibin of granulosa-origin might be an inhibitory factor for the translation of tPA in the oocyte.  相似文献   

14.
Uses and Conservation of Plant Species in a National Park—A Case Study of Ben En, Vietnam. This paper surveys the use of wild and cultivated plants by local people in Ben En National Park, Vietnam, and analyzes its impact on the conservation status of some of the utilized species. A total of 208 species used for a range of nonmedicinal purposes are listed. See Hoang et al. (2008a) for 230 medicinal plants used in the park. Most species are used for food. The use of plants contributes very significantly to the livelihood of local people in the park, but the current use patterns are not sustainable and would lead to local extinction of rare and endangered species if no additional conservation measures are introduced. Men collect nonmedicinal plants more often than women. A total of 38 useful plant species are commercialized, and contribute 12% of the average income of individual households. Bamboo shoots of Schizostachyum funghomii (Poaceae) are the most important for income generation. The monetary equivalent of noncommercialized useful plants probably far exceeds the value of the traded plant products. Plant use is independent of the ethnicity of the different populations living in the park. Larger households make use of a greater variety of useful plant species than small families. Abundant species in the forest have a higher use index (UI) than less common species. Out of the 208 useful species, as many as 27 were found to be endangered locally, many more than the 11 or 8 endangered species included in national or global red lists. Currently, useful plants, especially important timber trees, are more abundant in the less disturbed parts of the park, far away from the villages, indicating the pressures of illegal logging and harvesting near villages on the ecosystems.  相似文献   

15.
Gene frequencies of the milk -lactoglobulin, S1-casein, -casein, and -casein loci have been estimated from 1663 cows of five dairy breeds. Departure from Hardy-Weinberg equilibrium was found only in the -casein system in Jerseys. However, chance alone could have accounted for this single significant finding. Results of pairwise comparisons among the five breeds of allele frequencies at these milk protein loci indicate that of the 40 possible tests, only six comparisons are not significant at the 5% probability level. It would appear that these breeds are characterizable in terms of the gene frequencies of these milk protein loci. Nonindependent assortment of genotypes among these milk protein loci was also studied. The closely linked casein loci were not independent in almost all the breeds where tests could be carried out. The only exception was between the S1-casein and -casein loci in Holsteins. -Lactoglobulin was independent of the casein loci in all breeds except Brown Swiss, where it was found to be significantly associated with -casein. Close linkage is proposed as an important factor for maintaining the observed milk protein polymorphisms.This paper represents a portion of a doctoral dissertation submitted by the first author as partial fulfillment of the requirements for the degree of Doctor of Philosophy at the University of Massachusetts at Amherst.  相似文献   

16.
Among post-translational modifications of chromatin proteins taking place in DNA double strand break (DSB) repair, acetylation plays a prominent role. This review lists several facts and hypotheses concerning this process. Lack of acetyltransferase TIP60 (HIV-Tat interacting protein of 60 kDa) activity results in cells with defective DSB repair. The enzyme is present in the nucleus in a multimeric protein complex. TIP60 dependent activation of ATM (ataxia telangiectasia mutated kinase) is an early event in the response to DNA breakage. Other important acetylations are those of histones H4 and γH2AX. Correct reconstruction of the damaged site is critical for survival and prevention of genetic and epigenetic changes in the cell that may affect the function of its daughter cells. Recently, two proteins with previously unsuspected functions in DSB repair have been identified as active in this process: Alzheimer β-amyloid precursor protein (APP) and its binding partner FE65, β-amyloid precursor binding protein. Their participation in DSB repair in both neuronal and non-neuronal cells is related to acetylation carried out by the acetyltransferase complex. The same function is ascribed to heterochromatin protein 1 (HP1). So far, the relations (if any) between TIP60 activation by HP1 and by the FE65 complex remain unidentified.  相似文献   

17.
Aspergillus fumigatus is an environmental mold that causes severe, often fatal invasive infections in immunocompromised patients. The search for new antifungal drug targets is critical, and the synthesis of the cell wall represents a potential area to find such a target. Embedded within the main β-1,3-glucan core of the A. fumigatus cell wall is a mixed linkage, β-D-(1,3;1,4)-glucan. The role of this molecule or how it is synthesized is unknown, though it comprises 10% of the glucans within the wall. While this is not a well-studied molecule in fungi, it has been studied in plants. Using the sequences of two plant mixed linkage glucan synthases, a single ortholog was identified in A. fumigatus (Tft1). A strain lacking this enzyme (tft1Δ) was generated along with revertant strains containing the native gene under the control of either the native or a strongly expressing promoter. Immunofluorescence staining with an antibody against β-(1,3;1,4)-glucan and biochemical quantification of this polysaccharide in the tft1Δ strain demonstrated complete loss of this molecule. Reintroduction of the gene into the knockout strain yielded reappearance in amounts that correlated with expected expression of the gene. The loss of Tft1 and mixed linkage glucan yielded no in vitro growth phenotype. However, there was a modest increase in virulence for the tft1Δ strain in a wax worm model. While the precise roles for β-(1,3;1,4)-glucan within A. fumigatus cell wall are still uncertain, it is clear that Tft1 plays a pivotal role in the biosynthesis of this cell wall polysaccharide.  相似文献   

18.
The relative proportions of α-helix, β-sheet, and unordered form in β-lactoglobulin A and B were examined in solutions of urea, guanidine, and sodium dodecyl sulfate (SDS). In the curve-fitting method of circular dichroism (CD) spectra, the reference spectra of the corresponding structures determined by Chen et al. (1974) were modified essentially according to the secondary structure of β-lactoglobulin B predicted by Creamer et al. (1983), i.e., that the protein has 17% α-helix and 41% β-sheet. The two variants showed no appreciable difference in structural changes. The reduction of disulfide bridges in the proteins increased β-sheet up to 48% but did not affect the α-helical proportion. The α-helical proportions of nonreduced β-lactoglobulin A and B were not affected below 2 M guanidine or below 3 M urea, but those of the reduced proteins began to decrease in much lower concentrations of these denaturants. By contrast, the α-helical proportions of the nonreduced and reduced proteins increased to 40–44% in SDS. The β-sheet proportions of both nonreduced and reduced proteins, which remained unaffected even in 6 M guanidine and 9 M urea, decreased to 24–25% in SDS.  相似文献   

19.
Behçet’s disease is a multisystemic disease characterized by activation and remission periods. The etiopathogenesis is not exactly known; a genetic defect in the immunoregulatory system induced by infectious agents, like viruses and bacteria, is thought to cause the disease. In this study, we examine the serum levels of vitamins A, C, and E, β-carotene, selenium, and zinc in Behçet’s disease patients and investigate the relationship between these serum levels and the activation of the disease. We conclude that adding vitamin E to the treatment of Behçet’s disease patients and its effects on the prognosis of the disease need to be further investigated by controlled studies.  相似文献   

20.
BD Rae  BM Long  MR Badger  GD Price 《PloS one》2012,7(8):e43871
Cyanobacterial CO(2)-fixation is supported by a CO(2)-concentrating mechanism which improves photosynthesis by saturating the primary carboxylating enzyme, ribulose 1, 5-bisphosphate carboxylase/oxygenase (RuBisCO), with its preferred substrate CO(2). The site of CO(2)-concentration is a protein bound micro-compartment called the carboxysome which contains most, if not all, of the cellular RuBisCO. The shell of β-type carboxysomes is thought to be composed of two functional layers, with the inner layer involved in RuBisCO scaffolding and bicarbonate dehydration, and the outer layer in selective permeability to dissolved solutes. Here, four genes (ccmK2-4, ccmO), whose products were predicted to function in the outer shell layer of β-carboxysomes from Synechococcus elongatus PCC 7942, were investigated by analysis of defined genetic mutants. Deletion of the ccmK2 and ccmO genes resulted in severe high-CO(2)-requiring mutants with aberrant carboxysomes, whilst deletion of ccmK3 or ccmK4 resulted in cells with wild-type physiology and normal ultrastructure. However, a tandem deletion of ccmK3-4 resulted in cells with wild-type carboxysome structure, but physiologically deficient at low CO(2) conditions. These results revealed the minimum structural determinants of the outer shell of β-carboxysomes from this strain: CcmK2, CcmO and CcmL. An accessory set of proteins was required to refine the function of the pre-existing shell: CcmK3 and CcmK4. These data suggested a model for the facet structure of β-carboxysomes with CcmL forming the vertices, CcmK2 forming the bulk facet, and CcmO, a "zipper protein," interfacing the edges of carboxysome facets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号